• Aucun résultat trouvé

Inhomogeneity and anisotropy effects on the redistribution term in RANS modelling

N/A
N/A
Protected

Academic year: 2021

Partager "Inhomogeneity and anisotropy effects on the redistribution term in RANS modelling"

Copied!
34
0
0

Texte intégral

(1)

HAL Id: hal-02990731

https://hal.archives-ouvertes.fr/hal-02990731

Submitted on 5 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative CommonsAttribution - NonCommercial - NoDerivatives| 4.0 International License

Inhomogeneity and anisotropy effects on the redistribution term in RANS modelling

Remi Manceau, Meng Wang, Dominique Laurence

To cite this version:

Remi Manceau, Meng Wang, Dominique Laurence. Inhomogeneity and anisotropy effects on the redistribution term in RANS modelling. Journal of Fluid Mechanics, Cambridge University Press (CUP), 2001, 438, pp.307-338. �10.1017/S0022112001004451�. �hal-02990731�

(2)

Inhomogeneity and anisotropy eets on the

redistribution term in RANS modelling

By R

EMI MANCEAU 1

y, MENG WANG 2

AND DOMINIQUE LAURENCE 1;3

1

LaboratoireNationald'Hydraulique,

EletriitedeFrane,78401Chatou,Frane

2

CenterforTurbuleneResearh,BLDG.500,StanfordUniversity,Stanford,CA94305-3030,

USA

3

DepartmentofMehanialEngineering,UMIST,GeorgeBeggBuilding,SakvilleStreet,

Manhester,M601QD,UK

(Reeived??andinrevisedform??)

A hannel owDNS databaseat Re

=590is used to assessthe validity of modelling

theredistributiontermintheReynoldsstresstransportequationsbyelliptirelaxation.

Themodelassumptionsarefoundtobegloballyonsistentwiththedata. However,the

orrelationfuntion betweentheutuatingveloityand theLaplaianof thepressure

gradient, whih enters the integralequation of the redistribution term, is shown to be

anisotropi.It is elongated in thestreamwisediretion andstrongly asymmetri in the

diretionnormaltothewall,inontrasttotheisotropi,exponentialmodelrepresentation

usedintheoriginalelliptirelaxationmodel.Thisdisrepanyisthemainauseforthe

slightampliationoftheenergyredistributionintheloglayeraspreditedbytheellipti

relaxationequation.Newformulationsofthemodelareproposedinordertoorretthis

spurious behaviour, by aounting for the rapid variations of the length sale and the

asymmetrial shape of theorrelation funtion. These formulationsdo not relyon the

useofwallehoorretiontermstodamptheredistribution.Thebeliefthatthedamping

isduetothesoalled\walleho"eetisalled intoquestionthroughthepresentDNS

analysis.

1. Introdution

Inseondmomentlosures,oneofthemostimportantand diÆulttasksistomodel

the pressure gradient{veloity orrelation in the Reynolds stress transport equations.

Indeed,sinetheprodutiondoesnotneedanymodellingatthislosurelevel,partiular

attentionmust befousedonthisorrelationtermandonthedissipation. Inahannel

ow(e.g.Mansour,Kim&Moin1988)thepressuregradient{veloityorrelation,whose

eetismainlytoredistributetheenergyamongtheReynoldsstresses(henealledthe

\redistribution term"), is the only soure term in the budgets of the wall-normal and

spanwiseReynoldsstresses;itbalanestheprodutionintheshearstressbudget.

SinethepioneeringworksofChou(1945)andRotta(1951),theloalapproah,whih

algebraiallyrelatestheunlosedredistributiontermtothe Reynoldsstress anisotropy,

meanstrain,and meanvortiitytensors, hasbeenpopularinthe turbulenemodelling

ommunity.All standardmodelsarebasedonthisapproah.Theredistributiontermis

y Present address: Laboratoire d'

Etudes Aerodynamiques, UMR CNRS 6609, SP2MI,

(3)

writtenin anintegralform andsplitinto threeparts,therapid, slowandsurfaeparts.

Theslow part,whih doesnot involveanymean owquantity, ismodelledin terms of

theReynoldsstressanisotropy.Therapidpartisexpressedintermsofprodutsbetween

mean veloity gradients and a fourth-order tensor, based on the assumption that the

mean veloitygradientis loally onstant. This quasi-homogeneousapproah hasbeen

thestartingpointofalmost allseond momentlosuremodels. Inmostofthem, linear

onesin partiular,(e.g.Rotta1951;Naot,Shavit&Wolfshtein1973;Launder,Reee&

Rodi 1975) and even fully nonlinear ones (e.g. Fu, Launder &Tselepidakis 1987), the

surfae part is negleted or modelled by wall eho terms, as suggested by Gibson &

Launder(1978).Inothers, theinueneofthesolid boundaryis aountedforthrough

variable oeÆients, leadingto quasi-linear models, suh asthat of Speziale, Sarkar&

Gatski(1991).InthereentmodelofCraft&Launder(1996),thenonlinearformulation

diretlyinludes wallinduedeets.

However,thevalidityofthequasi-homogeneousapproximationusedfortherapidpart

is questionable.It assumesthat themean veloitygradient variessuÆiently slowlyto

allowittobetakenoutsidetheintegral,whihisnottheaseinstronglyinhomogeneous

turbulene.Bradshaw,Mansour&Piomelli(1987)usedthehannelowDNSofMansour

etal.(1988)toshowthatthishypothesisisorretdowntoy +

=40,buttotallyinvalid

belowthisvalue.Anotherweaknessofthequasi-homogeneousapproahisthelossofthe

non-loalharateroftheredistributionterm.Theintegralequationforthelatter,whih

involvestwo-pointorrelationsbetweenveloitiesandLaplaianofthepressuregradient,

showsthatitatuallydependsonthemeanowandtheturbulenestateatallpointsof

thedomain. Kim (1989)showedthat in ahannel, exeptin theverynear-wallregion,

theredistributionterm takesontributionsfrom allthedomain, inludingtheopposite

wall.Furthermore,anumberoftheoretialstudies(e.g.Hunt&Graham1978)aswellas

diretnumerialsimulations(Perot&Moin1993)showedthatthestruturesoftheow,

andtheassoiatedlengthsales,arestronglyaetedbythepreseneofasolidboundary

evenin theabseneofmean shear,beauseoftheblokingeet whih isnon-loal.In

partiular,thetwo-pointorrelationsofthewall-normalveloityare,asshownbyHunt

etal.(1989),inuenednearthewallbytheimageeddies.Thesenon-loaleets make

theredistributiontermdiÆult,ifnotimpossible,tomodelin termsofloal variables.

Furthermore,thequasi-homogeneousmodelsannotingeneralbeintegrateddownto

solidboundarieswithoutintroduing orretions,suhasdampingfuntions (there are

exeptions,suhastheCraft&Launder1996model).Dampingfuntionsarenotuniver-

sal,sinetheyarederivedbyttingexperimental orDNSresultswith littletheoretial

justiation.

In order to avoid suh problems, Durbin (1991;1993) introdued a novel approah.

Heproposedto model diretlythetwo-pointorrelationin theintegralequation ofthe

redistribution term, using an isotropi, exponential funtion.A onvolution produt is

obtained,whih an be inverted to givethe so-alledellipti relaxation approah. The

redistribution term is no longer given by an algebrai relation, but rather by a dif-

ferential equation. The non-loal harater is preserved through the ellipti operator

(1 L 2

r 2

),andthemodelanbeintegrateddowntothewall.Anotablefeatureofthis

approahisthat thesouretermof theelliptirelaxationequationanbegivenbyany

quasi-homogeneousmodel.Hene,itenablesthederivationofmodelsvaliddowntosolid

boundaries, from the quasi-homogeneous models ited above, whih have been tested

overawiderangeof dierentows.Eventhoughsomeintuitiveassumptionshavebeen

made,Durbin's modelisbasedonatheoretialapproah, leadingto thehopethatit is

somewhatuniversal,unlikedampingfuntions.

(4)

to thev 2

{f (ork " v 2

)model, whihis aversionofthe full Reynoldsstressmodel

reduedtothreetransportequations.Suessfulpreditionsinlude,butarenotlimited

to, ows with adverse pressure gradient and around blu bodies (Durbin 1995), three

dimensional boundary layers (Parneix, Durbin & Behnia 1998), aerodynamis (Lien,

Durbin&Parneix1997),andheat transfer(Behnia, Parneix&Durbin 1998;Maneau,

Parneix&Laurene 2000).

Despitetheremarkablesuess,roomsforimprovingtheellipti relaxationmodelex-

ist. Many of the underlying model assumptions, introdued intuitively, havenot been

validatedbyeither experimentsorDNS.Theobjetiveofthepresentstudyis toevalu-

atetheseassumptionsthroughtheanalysisofahannelowDNSdatabase,andtond

waystoimprovethetheoretialbasisandperformaneofthemodel.Themainissuesto

be examined inlude thevalidity of the two-pointorrelation approximation employed

byDurbin (1991),thevalidityof thelengthsaleused in theelliptioperator,and the

unsatisfatorybehaviourofthemodelinthelogarithmilayer.Afullexplanationofthese

issuesisgivenin x2and x3.Inx4,theresultsoftheDNSanalysis aredisussed.It is

foundthat theelliptirelaxationmodel isgloballyonsistentwiththesimulationdata,

andthattheorrelationlengthsaleisadequatelymodelledbytheturbulentlengthsale

boundednearthewallbytheKolmogorovlengthsale.However,theorrelationfuntion

betweenthe utuatingveloityand theLaplaianof the pressuregradientis strongly

anisotropiandinhomogeneous.Itsapproximationbyanisotropi,exponentialfuntion

isresponsibleforthespuriousampliationoftheenergyredistributionintheloglayer,

aspreditedbythe model. Itis further disoveredthat the so alled\wall eho" eet

inreases the redistribution of energy, ontrary to the general belief. The physial in-

sightsgainedthroughtheDNSstudyareused,inx5,todevelopnewformulationsofthe

modelthatretifytheerroneouslogarithmi-layerbehaviour.Thisisahievedbytaking

intoaounttheinuene ofstronginhomogeneityandanisotropyontheredistribution

term,usingaspatiallyvariablelengthsaleandanasymmetrimodeloftheorrelation

funtion.Unlike somepreviousad ho formulations,thenew formulationsemphasizea

systemati,sientiapproahtoturbulenemodelling,guidedbytheDNSdata.Finally,

x6summarizesthemajorndingsandaomplishmentsofthiswork.

2. Theoretial bakground

2.1. Integral equationof the redistributionterm

Thepressuregradient{veloityorrelationenteringthe Reynoldsstresstransportequa-

tionsis

ij

= u

i p

x

j u

j p

x

i

; (2.1)

where is the density, pis theutuating pressureand u

i

are theutuatingveloity

omponents.Theoverlineindiatesensembleaverage.Traditionally,thistermissplitinto

pressure{strainorrelation and pressure diusion. However, sinethis splittingis non-

unique(Lumley1975)and inonsistentwiththeNavier{Stokesequationsinthelimitof

two-dimensionalturbulene (Speziale 1985),it appearsmore appropriateto model the

pressuregradient{veloityorrelationasawhole.Sinethepressurediusionisnegligible

in themain part ofthe ow,

ij

anberegardedasthe energyredistribution between

theomponentsoftheReynoldsstress,exeptinthenear-wallregion,whereitbalanes

thedierenebetweendissipationandmoleulardiusion.

(5)

fromthedivergeneoftheutuatingpartoftheNavier{Stokesequations,

r 2

p

x

k

=

x

k

2 U

i

x

j u

j

x

i +

u

i

x

j u

j

x

i u

i

x

j u

j

x

i

: (2.2)

FollowingKim(1989),itwillbeassumedthattheontributionfromtheinhomogeneous

boundary ondition, or the \Stokes part", is negligible. Aordingly, p=x

k

approxi-

matelysatisesahomogeneousNeumannboundaryondition.

UsingtheGreenfuntionG

ofthedomain,thesolutionof (2.2)takestheform

p

x

k (x)=

Z

r

2 p

x

k (x

0

)G

(x;x

0

)dV(x 0

); (2.3)

where x and x 0

denote position vetors,and dV the elementary volume. The integral

equationoftheredistributiontermanbederivedfrom (2.1)and (2.3):

ij (x)=

Z

ij

(x;x 0

)G

(x;x

0

)dV(x 0

); (2.4)

where

ij (x;x

0

)denotesthetwo-pointorrelationbetweentheveloityandtheLaplaian

ofthepressuregradient:

ij (x;x

0

)= u

i (x)r

2 p

x

j (x

0

) u

j (x)r

2 p

x

i (x

0

): (2.5)

2.2. Theellipti relaxation equation

In(2.4),thetwo-pointorrelationsbetweentheveloityandtheLaplaianofthepressure

gradientneedto bemodelled. Durbin(1991)dened aorrelationfuntion

ij (x;x

0

)=

ij (x

0

;x 0

)f(x;x 0

); (2.6)

andmodelled itby

f(x;x 0

)=exp

r

L

; (2.7)

where r=kx 0

xk and L is the orrelation length sale. This approximation is the

orner-stoneoftheelliptirelaxationmodelandthevalidityof(2.7)isthemainonern

ofthispaper.

Inafreespae,usingthemodel(2.7),theredistributiontermanbewrittenas

ij (x)=

Z

ij

(x 0

;x 0

) exp

r

L

4r

| {z }

E(r)

dV(x 0

): (2.8)

Inthis form,

ij

appearsasaonvolutionprodutbetween

ij

and E(r),whihis the

free-spaeGreen funtion assoiatedwith the operator r 2

+1=L 2

. Due to (2.6), the

one-pointorrelationintheintegrandisexpressedasafuntionofx 0

.Ifitwereexpressed

asafuntionofx,theone-pointorrelationouldhavebeentakenoutsidetheintegralin

(2.8),andthenon-loaleetwouldhavebeenlostorentirelyreastintof(x;x 0

),whih

would then bemore diÆultto model. Theonvolutionintegral(2.8)an be inverted,

yieldingtheelliptirelaxationequation:

ij L

2

r 2

ij

= L

2

(u

i r

2 p

x

j +u

j r

2 p

x

i

): (2.9)

(6)

ishes. Therefore, Durbin (1991) proposed to replae the right hand side by any quasi-

homogeneousmodel h

ij

,whihleadsto themodel

ij L

2

r 2

ij

= h

ij

: (2.10)

Thismethodprovidesasimplewayofextendingquasi-homogeneousmodelsdowntosolid

boundaries,whenappropriateboundaryonditionsfor

ij

areapplied(Durbin1993).

3. Presentation of the DNS assessment

3.1. Issuestoexamine

Theelliptirelaxationapproahismainly basedontheassumptionthattheorrelation

funtion f(x;x 0

), dened by (2.6), anbe modelled by an exponentialfuntion. This

approximationwasintroduedbyDurbin(1991)onanintuitivebasis,inordertopreserve

the non-loal eet on the redistribution term. However, its validity has never been

hekedbefore,andtheshapeof

ij (x;x

0

)needstobeinvestigated.TheDNSdatabase

of thehannel ow at Re

=590 (Moser,Kim & Mansour, 1999)will be used for this

purpose.

Another aim of this work is to evaluate the orrelation length sale involved in the

model(2.7)fortheorrelationfuntion f(x;x 0

).Iftheturbulentlengthsalewereused

in the whole ow, sineit goesto zero at solid boundaries, the elliptioperator L 2

r 2

wouldvanishatthewall,introduingasingularityinthedierentialequation.Therefore,

Durbin (1991) proposed using the standardturbulentlength sale in the main part of

theow,andtheKolmogorovlengthsaleintheviinityofthewall,i.e.,

L=C

L

max C

3=4

"

1=4

; k

3=2

"

!

: (3.1)

Itis ofinteresttoevaluatepreisely theorrelationlengthsalefrom theDNSdata,in

ordertoassessthevalidityof(3.1).

Theultimateobjetiveofthis workis tondwaysto improvethemodel. Aspointed

outbyWizman etal. (1996),the elliptioperator doesnotbehaveentirelyorretlyin

thelogarithmilayer.Suppose,forinstane,thattheIsotropisationofProdutionmodel

(Naot,Shavit&Wolfshtein1973;Launder, Reee&Rodi 1975),denoted heneforthas

IPmodel,andtheRotta(1951)modelareusedastherapidandslowpartsofthesoure

term h

ij

in(2.10). Theredistributiontermisthengivenby

ij L

2

r 2

ij

= C

1

"

k

u

i u

j 2

3

ij

C

2

P

ij 2

3

ij

; (3.2)

whereP

ij

= u

i u

k U

j

=x

k u

j u

k U

i

=x

k

andP= 1

2 P

ii

.Inthelogarithmilayer,the

Reynoldsstresses areonstant, andthe prodution and thedissipation behave asy 1

.

Thus,therighthandsidein(3.2)behavesasy 1

,andtheredistributiontermisthengiven

by

ij

1:51 h

ij

.Thisresultshowsthattheelliptioperatorleadstoanampliationof

theredistribution.Notethatthesameampliationourswithanymodelfor h

ij .

Theoverestimationoftheenergyredistribution bytheRotta&IPmodel inthe log-

arithmilayerhasled anumberof modellerstointroduewalleho typeterms,follow-

ingGibson &Launder (1978).It would bedesirablefor theelliptirelaxationequation

toompensateforthisshortoming.Somemodels,suhastheSpeziale,Sarkar&Gatski

(1991)model, orCraft&Launder (1996)model, orretlyreproduetheredistribution

in thelogarithmilayer.In thisase,it would bepreferablethat theellipti relaxation

(7)

Basedontheaboveonsiderations,Wizman etal. (1996)proposedtwonewformula-

tionsoftheellipti relaxationequation.First,theyintroduedaneutralformulationby

takingL 2

in(2.10)inside theLaplaianoperator:

ij r

2

L 2

ij

= h

ij

: (3.3)

Seondly, formodelsthatoverestimatetheredistribution,theyproposed

ij L

2

r

1

L 2

r L 2

ij

= h

ij

; (3.4)

whihexhibitstheexpeteddamping.Laurene&Durbin(1994)andDurbin&Laurene

(1996)suggestedtwootherneutralformulations,givenby

ij

r L 2

r

ij

= h

ij

; (3.5)

and

ij Lr

2

L

ij

= h

ij

: (3.6)

These newformulations havebeenderivedempirially and suer form a lakof jus-

tiations, as emphasizedby the authors themselves. This work aims, througha DNS

analysis,toprovideamoresolidbasisforderivingsuhmodiationstothemodel.The

entral idea is that the orrelation funtion f(x;x 0

) annot be represented by a sim-

pleexponentialfuntion,ontraryto whatwasassumedby Durbin (1991).Indeed,the

preseneof the wall indues ablokingeet, leadingto notonly anelongationof the

turbulent strutures,but alsoan asymmetryin thediretion normalto thewall. Flu-

tuatingquantitiesareorrelatedoverashorterdistaneinthediretiontowardthewall

thanawayfromit.There isplentyof experimentalevidene (Hanjali&Launder 1972;

Sabot 1976)ofthis featurein two-pointorrelationsbetweenomponentsoftheutu-

ating veloity, and onean reasonablydedue that the two-pointorrelations between

theutuating veloity and theLaplaianof the pressuregradientbehavein a similar

manner. The use of the symmetrial orrelation funtion (2.7) leads to overweighting

the region between the point and the wall, whih may be the reason for the spurious

behaviouroftheellipti relaxationequation in thelogarithmilayer.Thisissue willbe

explored in thepresentDNS analysis,in orderto understand howmodiationsto the

elliptirelaxationmodel, suhasthose proposed byWizman et al.(1996),Laurene &

Durbin(1994)andDurbin&Laurene(1996),anbederived.

3.2. Channelow databaseandpost-proessing

Theorrelationfuntionf(x;x 0

)involvestheLaplaianofthepressuregradient,whih

ontainsthree spatial derivatives. Therefore,a very aurateDNS database is needed.

ThehannelowsimulationatRe

=590performedbyMoseret al.(1999)washosen

beauseofitsnumerialauray,thelargenumberofavailablestatistial samples,and

therelativelyhighReynoldsnumber.Thisowwasomputedonagridof384257384

pointsin streamwise(x ),wall-normal(y)andspanwise(z)diretions,respetively.The

omputationaldomainis2h,2handhinx,yandz,wherehdenotesthehannelhalf-

width.Thesimulationodeisbasedonaspetralmethodforspatialderivatives(Fourier

seriesinxandz,andChebyhevpolynomialsiny),andasemi-impliitshemefortime

integration. For statistial averaging, atotal of75 elds (restart les) are available,in

additiontothespatialaveraginginx- andz-diretions.

Thetwo-pointorrelationsbetweentheutuatingveloitiesandtheLaplaianofthe

0

Références

Documents relatifs

For that purpose, we will characterise the balanced growth path of our overlapping generations model and analyse the effect of introducing an ELIE scheme on growth and inequality..

1.4 A description of inertial particles in turbulence The equation of motion for an inertial particle was first derived by Basset, Boussi- nesq, and Oseen ([ 45 , 46 , 46 ]) in the

Numerical convergence of the solution associated to problem with mass redistribution method to the exact solution in the contact point x = 0 (left).. Numerical convergence of the

Because of the isotropic thermal expansion and the absence of sinter- ing effects, the change of the macroscopic dimensions of a polycrystalline specimen of Mg ferrite is

Starting from isentropic compressible Navier-Stokes equations with growth term in the con- tinuity equation, we rigorously justify that performing an incompressible limit one arrives

Abstract— This paper is concerned with the controllability of quantum systems in the case where the standard dipolar approximation, involving the permanent dipole moment of the

important, namely (i) the evolution of wine consumption per inhabitant combined with the French demographic evolution, (ii) the polarization of vineyards by some historical

Figures 3~a! and 3~b! show that with the neutral formu- lations of the elliptic relaxation equation, namely the W1 model and the M model with b 5 1/12, the peak of u 2 can be