• Aucun résultat trouvé

15 1.2.1 The Roche model

N/A
N/A
Protected

Academic year: 2021

Partager "15 1.2.1 The Roche model"

Copied!
5
0
0

Texte intégral

(1)

Abstract i

Contents iii

1 Introduction 1

1.1 Evolution of low- and intermediate-mass single stars . . . 2

1.1.1 The Main Sequence phase . . . 4

1.1.2 The Red Giant Branch phase . . . 7

1.1.3 Helium ignition and the core-helium burning phase . . . 8

1.1.4 The Asymptotic Giant Branch phase . . . 9

1.1.5 The Post-AGB phase and beyond . . . 12

1.2 Giant stars in binary systems . . . 15

1.2.1 The Roche model . . . 15

1.2.2 Orbital evolution . . . 17

1.2.3 Binary interaction mechanisms . . . 18

1.2.4 The eccentricity-period diagram . . . 24

1.3 Barium stars . . . 25

1.3.1 The discovery of Ba stars and their binarity . . . 25

1.3.2 Formation and evolution . . . 27

iii

(2)

1.3.3 Observational properties . . . 28

1.3.4 The other progeny of AGB binaries . . . 33

1.3.5 Open questions . . . 34

1.4 Motivation and thesis outline . . . 36

2 Analysis methodology 39 2.1 Spectroscopic binaries and Keplerian orbits . . . 39

2.1.1 Radial-velocity data . . . 41

2.1.2 Fitting Keplerian orbits . . . 43

2.1.3 The mass function . . . 46

2.2 Ba stars in the HR diagram . . . 46

2.2.1 Spectral Energy Distributionfitting . . . 46

2.2.2 Luminosity determination in theGaiaera . . . 51

2.3 STAREVOL models and Ba star masses . . . 54

2.4 Companion masses . . . 57

2.5 BINSTAR evolutionary models . . . 57

3 Hertzsprung-Russell diagram and mass distribution of barium stars 61 3.1 Introduction . . . 62

3.2 The sample . . . 64

3.3 Hertzsprung-Russell diagram . . . 68

3.3.1 Atmospheric parameters . . . 68

3.3.2 Input physics for the stellar grid calculations . . . 70

3.3.3 Discussion . . . 72

3.4 Mass distribution . . . 76

3.4.1 Comparison with M- and K-type giants . . . 78

3.4.2 Discussion . . . 80

3.5 Location in the HRD and orbital period . . . 82

(3)

3.6 Conclusions . . . 89

4 Barium and related stars, and their white-dwarf companions: Main- sequence and subgiant stars 91 4.1 Introduction . . . 93

4.2 Sample overview and data description . . . 94

4.2.1 Radial-velocity measurements with CORAVEL and CORALIE . . . 95

4.2.2 Radial-velocity monitoring with the HERMES spectrograph . . . 96

4.2.3 Radial velocities with SALT-HRS . . . 97

4.2.4 Stellar sample . . . 98

4.3 Orbital analysis . . . 99

4.4 Results . . . 100

4.4.1 Single-lined spectroscopic binaries . . . 101

4.4.2 HD 48565 . . . 101

4.4.3 HD 114520 . . . 103

4.4.4 HD 26455 and HD 177996 . . . 107

4.4.5 Binaries with incomplete orbital phase coverage and uncon- firmed binaries . . . 107

4.5 Hertzsprung–Russell diagram . . . 109

4.6 Discussion . . . 114

4.6.1 Eccentricity-period diagram . . . 114

4.6.2 dBa vs. sgCH . . . 116

4.6.3 Mass distribution . . . 116

4.6.4 Mass function and companion masses . . . 117

4.6.5 Comparison with evolutionary models . . . 120

4.7 Summary and conclusions . . . 123

(4)

5 Binary evolution along the Red Giant Branch with BINSTAR: The

barium star perspective 125

5.1 Introduction . . . 126

5.2 Observational constraints . . . 128

5.3 Modeling methodology . . . 129

5.3.1 Input stellar and binary physics . . . 130

5.3.2 Tidally-enhanced wind mass loss . . . 132

5.3.3 Reduced circularisation efficiency . . . 133

5.3.4 Model grid set-up . . . 133

5.4 Results of the simulations . . . 134

5.4.1 Standard binary evolution . . . 134

5.4.2 Tidally-enhanced wind mass loss . . . 137

5.4.3 Reduced circularisation efficiency . . . 140

5.4.4 The combined effect . . . 140

5.4.5 Validity of the assumptions . . . 140

5.5 Comparison with observations . . . 144

5.6 Summary and conclusions . . . 149

6 Summary and future plans 151 6.1 Conclusion summary . . . 151

6.2 Future plans . . . 153

6.2.1 The search for main-sequence Ba stars at higher masses . . . 153

6.2.2 The masses of the white dwarf companions . . . 157

6.2.3 The formation of Ba stars . . . 158 A Sample of barium and related stars with accurate parallaxes 161 B Ba dwarf candidates: classification and radial-velocity data 163

(5)

C Orbital solutions of the Ba dwarfs 167

Bibliography 177

Acknowledgements 193

List of publications 197

Références

Documents relatifs

i) La droite (MM’) passe par un point fixe que l’on précisera. ii) Le triangle MM’M’’ est rectangle isocèle.. En Déduire le calcul de l’aire S exprimée en unité d’aire..

[r]

aaabbaaa

► Dans un triangle rectangle le cosinus d’un angle aigu est égal au quotient de la longueur du côté adjacent à cet angle par la longueur de l’hypoténuse.. ► Dans un

Tracer le rayon lumineux sur la figure 1 qui partant du tuyau atteint l’œil de l’observateur.. L’observateur se situe au centre de la pièce

Interestingly, post-CE systems are observed in a large range of orbital periods: systems with periods ranging from hours to days (cataclysmic variables, so-called CVs and

On the other hand, the regeneration treatment leads to lower NOx storage trapping properties on sulfated Pt/10Ba/Al and Pt/20Ba/Al5.5Si catalysts annealed at 800°C, while

[r]