• Aucun résultat trouvé

Nucleation time in stochastic Becker-Doring model

N/A
N/A
Protected

Academic year: 2021

Partager "Nucleation time in stochastic Becker-Doring model"

Copied!
46
0
0

Texte intégral

(1)

HAL Id: hal-02797058

https://hal.inrae.fr/hal-02797058

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Nucleation time in stochastic Becker-Doring model

Romain Yvinec, Samuel Bernard, Tom Chou, Julien Deschamps, Maria R.

d’Orsogna, Erwan Hingant, Laurent Pujot-Menjouet

To cite this version:

(2)

Nucleation Time in Stochastic Becker-D¨

oring

Model

Romain Yvinec1, Samuel Bernard2,3, Tom Chou4, Julien

Deschamps5, Maria R. D’Orsogna6, Erwan Hingant7 and

Laurent Pujo-Menjouet2,3

1

BIOS group INRA Tours, France.

2Institut Camille Jordan, Universit´e Lyon 1, Villeurbanne, France. 3

INRIA Team Dracula, Inria Center Grenoble Rhˆone-Alpes, France. 4Depts. of Biomathematics and Mathematics, UCLA, Los Angeles, USA.

5

DIMA, Universita degli Studi di Genova, Italy. 6Dept. of Mathematics, CSUN, Los Angeles, USA. 7

(3)

Numerical results

Coarse-graining

(4)

Outline

Amyloid diseases and Becker-D¨oring model

(5)

Protein accumulation in amyloid by

nucleation-polymerization

(6)

Protein accumulation in amyloid by

nucleation-polymerization

(7)

Times series of in-vitro spontaneous polymerization

Xue et al. PNAS (2008)

(8)

Quantification of experiment

ThT fluorescence « Number of polymerized protein

(9)

Becker-D¨

oring model

(10)

Becker-D¨

oring model

Reversible one-step agregation Ci ` C1 pi ÝÝá âÝÝ qi `1 Ci `1 (1)

§ Purely dynamic model (law of mass-action) : no space, no polymer

(11)

Becker-D¨

oring model

Reversible one-step agregation Ci ` C1 pi ÝÝá âÝÝ qi `1 Ci `1 (1)

§ Indirect interaction between polymer Ci, i ě 2 via the available

number of monomers C1.

C1ptq `

ÿ

i ě2

(12)

Becker-D¨

oring model

Reversible one-step agregation Ci ` C1 pi ÝÝá âÝÝ qi `1 Ci `1 (1)

§ In spontaneous polymerization experiment,

§ Initial condition given by Cipt “ 0q “ 0 @i ě 2. § Measured variable :ř

(13)

Becker-D¨

oring model

Reversible one-step agregation Ci ` C1 pi ÝÝá âÝÝ qi `1 Ci `1 (1)

§ The (observed) nucleation time is given by

inftt ě 0 : ÿ

i ěN

iCiptq ě ρM | Cipt “ 0q “ Mδi “1u .

(14)

Becker-D¨

oring model

Reversible one-step agregation Ci ` C1 pi ÝÝá âÝÝ qi `1 Ci `1

§ What are the dependencies of the nucleation time with

respect to the model parameters ?

total mass : M ; nucleus size : N

aggregation rates : pi, i ě 1 fragmentation rates : qi, i ě 2

§ What is the nucleation time for very large initial quantity M

and nucleus size N ?

§ In experiment, M « 1010´ 1015,

(15)

Deterministic BD model and Classical Nucleation Theory

$ ’ ’ ’ & ’ ’ ’ % dci dt “ Ji ´1´ Ji, i ě 2 , Ji “ pic1ci´ qi `1ci `1, i ě 1 , dc1 dt “ ´J1´ ř8 i “1Ji.

Equilibrium is given by Ji ” J “ 0, which implies

ci “ Qic1i , Qi “

p1p2¨ ¨ ¨ pi ´1

q2q3¨ ¨ ¨ qi

The mass at equilibrium is given by ρpc1q “

ÿ

i ě1

iQic1i

If this series has a finite radius of convergence, zs, then there is a

critical mass

ρs “

ÿ

i ě1

(16)

Deterministic BD model and Classical Nucleation Theory

$ ’ ’ ’ & ’ ’ ’ % dci dt “ Ji ´1´ Ji, i ě 2 , Ji “ pic1ci´ qi `1ci `1, i ě 1 , dc1 dt “ ´J1´ ř8 i “1Ji.

[Ball, Carr, Penrose, CMP (1986)]

If M ď ρs, then (with strong convergence)

lim

tÑ8ciptq “ Qiz

i, ρpzq “ M

If M ą ρs, then (with weak convergence)

lim

tÑ8ciptq “ Qiz i

s, M ´ ρpzsq ““loss of mass”

As M Œ ρs, there is a solution for which Ji « J˚ is exponentially

small, and

(17)

Deterministic BD model – Some remarks

§ For constant or linear kinetic rates pi, qi, one can reduce the

system to 1 or 2 ODEs on ÿ i ě1 ci, ÿ i ě1 ici.

§ Based on scaling arguments, one can show that for qi “ 0

(irreversible nucleation),

inftt ě 0 : cNptq ě ρM | cipt “ 0q “ Mδi “1u »

1

M .

while for “qi Ñ 82 (pre-equilibrium nucleation),

inftt ě 0 : cNptq ě ρM | cipt “ 0q “ Mδi “1u »

(18)

Stochastic Becker-D¨

oring model

Reversible one-step agregation Ci ` C1 pi ÝÝá âÝÝ qi `1 Ci `1

We define a continuous time Markov Chain on

tpCiqi ě 1 : Ci P N,

ÿ

i ě1

iCi “ Mu

Transitions are given by

(19)

Stochastic Becker-D¨

oring model

Reversible one-step agregation Ci ` C1 pi ÝÝá âÝÝ qi `1 Ci `1

(20)

Outline

Amyloid diseases and Becker-D¨oring model

Numerical results

(21)

§ Law of large numbers as

M Ñ 8 [Jeon. CMP (1998)]

§ Any macroscopic quantity like.

inftt ě 0 : ÿ

i ěN

iCiptq ě ρM

| Cipt “ 0q “ Mδi “1u .

converges (if reachable) to a finite deterministic value as M Ñ 8.

§ This may not be true for

microscopic quantity, for instance.

inftt ě 0 : CNptq ě 1

| Cipt “ 0q “ Mδi “1u .

[Y., D’Orsogna, Chou JCP (2012)]

(22)

§ Non-monotonous w.r.t

reaction rate

§ Bimodal for ’small’

fragmentation rate

(23)
(24)
(25)

Outline

Amyloid diseases and Becker-D¨oring model

Numerical results

Coarse-graining

(26)

When N Ñ 8?

We start from a rescaled model (ε “ 1{N, ε2“ 1{M)

$ ’ & ’ % dciε dt “ 1 ε“J ε i ´1´ Jiε‰ , i ě 2 , mε “ c1εptq ` ε2ÿ i ě2 iciεptq . With fεpt, x q “ři ě2ciεptq1rpi ´1{2qε,pi `1{2qεqpx q,

Scaling idea : excess of monomer c1εptq “ ε2c1ptq ,

Compensated aggregation / fragmentation pεpx q “ ÿ i ě2 ppi{ε2q1rεi ,εpi `1qr qεpx q “ ÿ i ě3 qi1rεi ,εpi `1qr

and slow first step :

(27)

When N Ñ 8?

We start from a rescaled model (ε “ 1{N, ε2“ 1{M)

$ ’ & ’ % dciε dt “ 1 ε“J ε i ´1´ Jiε‰ , i ě 2 , mε “ c1εptq ` ε2ÿ i ě2 iciεptq . With fεpt, x q “ři ě2ciεptq1rpi ´1{2qε,pi `1{2qεqpx q,

From the polymer point of view, we have accelerated fluxes, all of the same order :

(28)

When N Ñ 8?

We start from a rescaled model (ε “ 1{N, ε2“ 1{M)

$ ’ & ’ % dciε dt “ 1 ε“J ε i ´1´ Jiε‰ , i ě 2 , mε “ c1εptq ` ε2ÿ i ě2 iciεptq . With fεpt, x q “ři ě2ciεptq1rpi ´1{2qε,pi `1{2qεqpx q,

(29)

d dt ż`8 0 fεpt, x qϕpx q dx ““p1εc1εptq2´ q2c2εptq ‰ ˜ 1 ε ż5{2ε 3{2ε ϕpxq dx ¸ ` ż`8 0 rpεpx qc1εptqfεpt, x q∆εϕpxq ´ qεpx qfεpt, x q∆´εϕpxqs dx ,

Theorem (Deschamps, Hingant, Y. (2016))

we have fε Ñ f (weakly in X “ tν P Mbpr0, 8q : ş xνpdxq ă 8u)

solution of d dt ż`8 0 f pt, xqϕpxq dx “ ż`8 0 rppx qc1ptq ´ qpx qs ϕ1px qf pt, x q dx ,

and c1ptq `ş xf pt, xq “ m, for all ϕ P Ccp0, 8q.

This is the weak form of Bf

Bt `

BpJpx , tqf pt, x qq

(30)

d dt ż`8 0 fεpt, x qϕpx q dx ““p1εc1εptq2´ q2c2εptq ‰ ˜ 1 ε ż5{2ε 3{2ε ϕpxq dx ¸ ` ż`8 0 rpεpx qc1εptqfεpt, x q∆εϕpxq ´ qεpx qfεpt, x q∆´εϕpxqs dx ,

Theorem (Deschamps, Hingant, Y. (2016)) When c1p0q ą limx Ñ0 qpxqppxq, d dt ż`8 0 f pt, xqϕpxq dx “ Nptqϕp0q ` ż`8 0 rppx qc1ptq ´ qpx qs ϕ1px qf pt, x q dx ,

for all ϕ P Cbp0, 8q, which gives the boundary condition

lim

(31)

d dt ż`8 0 fεpt, x qϕpx q dx ““p1εc1εptq2´ q2c2εptq ‰ ˜ 1 ε ż5{2ε 3{2ε ϕpxq dx ¸ ` ż`8 0 rpεpx qc1εptqfεpt, x q∆εϕpxq ´ qεpx qfεpt, x q∆´εϕpxqs dx ,

Theorem (Deschamps, Hingant, Y. (2016))

Nptq is an explicit function of c1ptq, and is given by a quasi

steady-state approximation of c2ε“ fεpt, 2εq, given by the solution of #

0 “ rJi ´1pc1q ´ Jipc1qs , i ě 2 ,

c1ptq “ c1.

When c1 ą limx Ñ0qpxqppxq, the solution of Ji ” J ‰ 0 is linked to the

(32)

Large nucleus N „

?

M

§ First case (pp0qm ą qp0q) : Convergence towards a

deterministic value.

(33)

Large nucleus N „

?

M

§ Second case (pp0qM ă qp0q) : Exponentially large time and

(34)

Outline

Amyloid diseases and Becker-D¨oring model

Numerical results Coarse-graining

(35)

Quantifying the large deviation in toy model

A much simpler version of this model consider that a single aggregate may be formed at a time :

k ÝÝÝÝÝÝáâÝÝÝÝÝÝpkpm´kεq

qk`1

k ` 1 , which converges (with time rescaling) to

dx

(36)

Quantifying the large deviation in toy model

A much simpler version of this model consider that a single aggregate may be formed at a time :

k ÝÝÝÝÝÝáâÝÝÝÝÝÝpkpm´kεq

qk`1

k ` 1 , which converges (with time rescaling) to

dx

dt “ ppx qpm ´ x q ´ qpx q

§ To leading order the stationary

prob. density is u˚ px q “ Ce ´1εşxlog ´ qpy q ppy qpm´y q ¯ dy a ppxqpm ´ xqqpxq . § MFPT is explicit and is exponentially large in ε

(37)

Quantifying the large deviation in toy model

Can we perform similar calculations with n clusters ?

pk0, k1q pk0pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk0`1 pk0` 1, k1q , pk0, k1q pk1pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk1`1 pk0 , k1` 1q ,

which converges (with time rescaling) to

dx

dt “ ppxqpm ´ x ´ y q ´ qpxq

dy

(38)

Quantifying the large deviation in toy model

Can we perform similar calculations with n clusters ?

pk0, k1q pk0pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk0`1 pk0` 1, k1q , pk0, k1q pk1pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk1`1 pk0 , k1` 1q ,

which converges (with time rescaling) to

dx

dt “ ppxqpm ´ x ´ y q ´ qpxq

dy

(39)

Quantifying the large deviation in toy model

Can we perform similar calculations with n clusters ?

pk0, k1q pk0pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk0`1 pk0` 1, k1q , pk0, k1q pk1pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk1`1 pk0 , k1` 1q ,

which converges (with time rescaling) to

dx

dt “ ppxqpm ´ x ´ y q ´ qpxq

dy

(40)

Quantifying the large deviation in toy model

Can we perform similar calculations with n clusters ?

pk0, k1q pk0pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk0`1 pk0` 1, k1q , pk0, k1q pk1pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk1`1 pk0 , k1` 1q ,

which converges (with time rescaling) to

dx

dt “ ppxqpm ´ x ´ y q ´ qpxq

dy

(41)

Quantifying the large deviation in toy model

Can we perform similar calculations with n clusters ?

pk0, k1q pk0pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk0`1 pk0` 1, k1q , pk0, k1q pk1pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk1`1 pk0 , k1` 1q ,

which converges (with time rescaling) to

dx

dt “ ppxqpm ´ x ´ y q ´ qpxq

dy

(42)

Quantifying the large deviation in toy model

Can we perform similar calculations with n clusters ?

pk0, k1q pk0pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk0`1 pk0` 1, k1q , pk0, k1q pk1pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk1`1 pk0 , k1` 1q ,

which converges (with time rescaling) to

dx

dt “ ppxqpm ´ x ´ y q ´ qpxq

dy

(43)

Quantifying the large deviation in toy model

Can we perform similar calculations with n clusters ?

pk0, k1q pk0pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk0`1 pk0` 1, k1q , pk0, k1q pk1pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk1`1 pk0 , k1` 1q ,

which converges (with time rescaling) to

dx

dt “ ppxqpm ´ x ´ y q ´ qpxq

dy

(44)

Quantifying the large deviation in toy model

Can we perform similar calculations with n clusters ?

pk0, k1q pk0pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk0`1 pk0` 1, k1q , pk0, k1q pk1pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk1`1 pk0 , k1` 1q ,

which converges (with time rescaling) to

dx

dt “ ppxqpm ´ x ´ y q ´ qpxq

dy

(45)
(46)

Next :

§ Proving Large Deviation Principle for the full (S)BD

§ Quantifying the MFPT

§ Data fitting in spontaneous polymerization experiment

Références

Documents relatifs

1, SBIP consists of three generic functional modules: Stochastic Simulation Engine, Monitoring, and Statistical Analyses that currently include Hypothesis Testing (HT),

Critical temperature and chemical potential at coexistence as well as liquid-vapor interfacial tension and contact angle value are computed using both mean field calculations and

The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.. L’archive ouverte pluridisciplinaire HAL, est

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Coarse-graining : to include nucleation in continuous model Stochastic Becker D¨ oring model.. Variability in nucleation time Re-scaling reaction rates with M Re-scaling nucleus

In this note, we prove a law of large numbers for an infinite chemical reaction network for phase transition problems called the stochastic Becker-Döring process.. Under a

Sommersemester 2008 Dr?. Ist das

J ACOBS , PAR SES VA - ET - VIENT DANS L ’ IMAGE , FAIT DURER LE PLAISIR DU FILM QUAND F ELDMAN QUI VOULAIT MAINTENIR LE TEMPS EN SUSPENS DANS UN MONDE QU ’ IL DISAIT ETRE