• Aucun résultat trouvé

Time scales in a coagulation-fragmentation model, Nucleation Time in Stochastic Becker-Döring Model

N/A
N/A
Protected

Academic year: 2021

Partager "Time scales in a coagulation-fragmentation model, Nucleation Time in Stochastic Becker-Döring Model"

Copied!
82
0
0

Texte intégral

(1)

HAL Id: hal-02785742

https://hal.inrae.fr/hal-02785742

Submitted on 4 Jun 2020

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Time scales in a coagulation-fragmentation model, Nucleation Time in Stochastic Becker-Döring Model

Romain Yvinec

To cite this version:

Romain Yvinec. Time scales in a coagulation-fragmentation model, Nucleation Time in Stochastic

Becker-Döring Model. Workshop on Protein Aggregation: Biophysics and Mathematics, Jun 2017,

vienna, Austria. �hal-02785742�

(2)

Time scales in a coagulation-fragmentation model

Nucleation Time in Stochastic Becker-D¨oring Model

Romain Yvinec

1

, Samuel Bernard

2,3

, Tom Chou

4

, Julien Deschamps

5

, Maria R. D’Orsogna

6

, Erwan Hingant

7

and

Laurent Pujo-Menjouet

2,3

1BIOS group INRA Tours, France.

2Institut Camille Jordan, Universit´e Lyon 1, Villeurbanne, France.

3INRIA Team Dracula, Inria Center Grenoble Rhˆone-Alpes, France.

4Depts. of Biomathematics and Mathematics, UCLA, Los Angeles, USA.

5DIMA, Universita degli Studi di Genova, Italy.

6Dept. of Mathematics, CSUN, Los Angeles, USA.

7Departamento de Matem´atica, U. Federal de Campina Grande, PB, Brasil.

(3)

Becker-D¨ oring model

Coarse-graining : to include nucleation in continuous model Stochastic Becker D¨ oring model

Variability in nucleation time

Re-scaling reaction rates with M

Re-scaling nucleus size with M

Back to classical nucleation theory

(4)

Outline

Amyloid diseases and nucleation Becker-D¨ oring model

Coarse-graining : to include nucleation in continuous model Stochastic Becker D¨ oring model

Variability in nucleation time

(5)

Protein accumulation in amyloid by nucleation-dependent polymerization

Misfolding Prusiner model for prion

The early aggregation formation requires a series of association steps that are thermodynamically unfavorable (with an dissociation constant K

d

" 1).

These aggregation steps are unfavorable up to a given size (that is

not currently known), which is referred to the nucleus size.

(6)

Motivation BD Coarse-graining SBD Variability

Protein accumulation in amyloid by nucleation-dependent polymerization

Misfolding Prusiner model for prion

The early aggregation formation requires a series of association steps that are thermodynamically unfavorable (with an dissociation constant K

d

" 1).

These aggregation steps are unfavorable up to a given size (that is

not currently known), which is referred to the nucleus size.

(7)

Key questions

We want to study nucleation mechanism for in-vitro spontaneous polymerization experiments of rPrP (kinetics monitored by fluorescence intensity)

§

How to include nucleation in (macroscopic) model of protein polymerization ?

§

How to explain large variability in nucleation lag time, despite

the large number of proteins ?

(8)

Outline

Amyloid diseases and nucleation Becker-D¨ oring model

Coarse-graining : to include nucleation in continuous model Stochastic Becker D¨ oring model

Variability in nucleation time

(9)

Becker-D¨ oring model

Reversible one-step

coagulation-fragmentation

C

i

`C

1 pi

ÝÝá âÝÝ

qi`1

C

i`1

, i “ 2 , , 3 , ¨ ¨ ¨

§

First used in the work Kinetic treatment of nucleation in supersaturated vapors by physicists Becker and D¨ oring (1935).

§

Traditionally used as an infinite set of Ordinary Differential

Equations. More recently used as a finite state-space Markov

Chain.

(10)

Motivation BD Coarse-graining SBD Variability

Becker-D¨ oring model

Reversible one-step

coagulation-fragmentation C

i

` C

1

pi

ÝÝá âÝÝ

qi`1

C

i`1

Ball, Carr, Penrose, Comm. Math. Phys 104(4), 1986

§

Purely kinetic model (law of mass-action) : no space, no polymer structure (but size-dependent kinetic rates).

§

Indirect interaction between polymer C

i

, i ě 2 via the available number of monomers C

1

.

C

1

ptq ` ÿ

iě2

iC

i

ptq “ constant

(11)

Becker-D¨ oring model

Reversible one-step

coagulation-fragmentation C

i

` C

1

pi

ÝÝá âÝÝ

qi`1

C

i`1

Ball, Carr, Penrose, Comm. Math. Phys 104(4), 1986

§

Purely kinetic model (law of mass-action) : no space, no polymer structure (but size-dependent kinetic rates).

§

Indirect interaction between polymer C

i

, i ě 2 via the available number of monomers C

1

.

C

1

ptq ` ÿ

iě2

iC

i

ptq “ constant

(12)

Motivation BD Coarse-graining SBD Variability

Becker-D¨ oring model

Reversible one-step

coagulation-fragmentation C

i

` C

1

ÝÝá âÝÝ

pi

qi`1

C

i`1

Ball, Carr, Penrose, Comm. Math. Phys 104(4), 1986

§

§

Typical coefficient are derived from physical principles p

i

“ i

α

, q

i

“ p

i

´ z

s

` q

i

γ

¯

.

(13)

Becker-D¨ oring model

Reversible one-step

coagulation-fragmentation C

i

` C

1

ÝÝá âÝÝ

pi

qi`1

C

i`1

Ball, Carr, Penrose, Comm. Math. Phys 104(4), 1986

§

§

Typical coefficient are derived from physical principles p

i

“ i

α

, q

i

“ p

i

´ z

s

` q

i

γ

¯

.

(14)

Motivation BD Coarse-graining SBD Variability

Becker-D¨ oring model

Reversible one-step coagulation-fragmentation Set of kinetic reactions :

C

i

` C

1 pi

ÝÝá âÝÝ

qi`1

C

i`1

, i ě 1 .

§

In spontaneous polymerization experiment,

§ Initial condition given bycipt“0q “0 @iě2.

§ Measured variable :ř

iěniCi (nis an unknown parameter)

§

The (observed) nucleation time is given by inftt ě 0 : ÿ

iěn

iC

i

ptq ě δm | C

i

pt “ 0q “ mδ

i“1

u . Another quantity of interest is the following First Passage Time,

inf tt ě 0 : C

N

ptq ě 1 | C

i

pt “ 0q “ mδ

i“1

u .

(15)

Motivation BD Coarse-graining SBD Variability

Deterministic Becker-D¨ oring model

Reversible one-step

coagulation-fragmentation C

i

` C

1

ÝÝá âÝÝ

pi

qi`1

C

i`1

$

’ ’

’ &

’ ’

’ % dc

i

dt “ J

i´1

´ J

i

, i ě 2 ,

J

i

“ p

i

c

1

c

i

´ q

i`1

c

i`1

, i ě 1 , dc

1

dt “ ´J

1

´ ř

8

i“1

J

i

.

§

Deterministic version : infinite system of ODEs.

X

#

pc

i

q

iě1

P

RN`

: ÿ

iě1

ic

i

ă 8 +

§

Preserves mass for all times

8

ÿ

i“1

ic

i

ptq “

8

ÿ

i“1

ic

i

p0q “: m .

(16)

Motivation BD Coarse-graining SBD Variability

Deterministic Becker-D¨ oring model

Reversible one-step

coagulation-fragmentation C

i

` C

1

ÝÝá âÝÝ

pi

qi`1

C

i`1

$

’ ’

’ &

’ ’

’ % dc

i

dt “ J

i´1

´ J

i

, i ě 2 ,

J

i

“ p

i

c

1

c

i

´ q

i`1

c

i`1

, i ě 1 , dc

1

dt “ ´J

1

´ ř

8

i“1

J

i

.

§

Deterministic version : infinite system of ODEs.

§

Well-posedness theory for sublinear coefficients in

X

#

pc

i

q

iě1

P

RN`

: ÿ

iě1

ic

i

ă 8 +

§

Preserves mass for all times

8

ÿ

i“1

ic

i

ptq “

8

ÿ

i“1

ic

i

p0q “: m .

(17)

Deterministic Becker-D¨ oring model

Reversible one-step

coagulation-fragmentation C

i

` C

1

ÝÝá âÝÝ

pi

qi`1

C

i`1

$

’ ’

’ &

’ ’

’ % dc

i

dt “ J

i´1

´ J

i

, i ě 2 ,

J

i

“ p

i

c

1

c

i

´ q

i`1

c

i`1

, i ě 1 , dc

1

dt “ ´J

1

´ ř

8

i“1

J

i

.

§

Deterministic version : infinite system of ODEs.

§

Well-posedness theory for sublinear coefficients in

X

#

pc

i

q

iě1

P

RN`

: ÿ

iě1

ic

i

ă 8 +

§

Preserves mass for all times

8

ÿ

i“1

ic

i

ptq “

8

ÿ

i“1

ic

i

p0q “: m .

(18)

Motivation BD Coarse-graining SBD Variability

Equilibrium of the BD model

$

’ ’

’ &

’ ’

’ % dc

i

dt “ J

i´1

´ J

i

, i ě 2 ,

J

i

“ p

i

c

1

c

i

´ q

i`1

c

i`1

, i ě 1 , dc

1

dt “ ´J

1

´ ř

8

i“1

J

i

.

Ball, Carr, Penrose, Comm.

Math. Phys 104(4), 1986

Equilibrium is given by J

i

” J “ 0, which implies c

i

“ Q

i

z

i

, Q

i

“ p

1

p

2

¨ ¨ ¨ p

i´1

q

2

q

3

¨ ¨ ¨ q

i

z is given by the mass at equilibrium, mpzq :“ ÿ

iě1

iQ

i

z

i Is there a solution of

mpz q “

?

mp“ ÿ

iě1

ic

i

ptqq

(19)

Equilibrium of the BD model

$

’ ’

’ &

’ ’

’ % dc

i

dt “ J

i´1

´ J

i

, i ě 2 ,

J

i

“ p

i

c

1

c

i

´ q

i`1

c

i`1

, i ě 1 , dc

1

dt “ ´J

1

´ ř

8

i“1

J

i

.

Ball, Carr, Penrose, Comm.

Math. Phys 104(4), 1986

If the serie mpzq “ ř

iě1

iQ

i

z

i

has a finite radius of convergence z

s

and if

suptmpz q , z ă z

s

u “: m

s

ă 8 ,

then there is a critical mass such that there is no equilibrium with

mass m ą m

s

.

(20)

Motivation BD Coarse-graining SBD Variability

Deterministic BD model and Classical Nucleation Theory

$

’ ’

’ &

’ ’

’ % dc

i

dt “ J

i´1

´ J

i

, i ě 2 ,

J

i

“ p

i

c

1

c

i

´ q

i`1

c

i`1

, i ě 1 , dc

1

dt “ ´J

1

´ ř

8

i“1

J

i

.

Ball, Carr, Penrose, Comm.

Math. Phys 104(4), 1986 Slemrod, Nonlinearity 2(3), 1989

Ca˜nizo, Lods, J. Diff. Eqs.

255(5), 2013

If m ď m

s

, then (with strong convergence)

tÑ8

lim c

i

ptq “ Q

i

z

i

, mpz q “ m If m ą m

s

, then (with weak convergence)

tÑ8

lim c

i

ptq “ Q

i

z

si

, m ´ m

s

“ ”loss of mass to 8”

Remark

There is a Lyapounov function, given by Hpc q “

ÿ

iě1

c

i

ˆ ln

ˆ c

i

Q

i

˙

´ 1

˙

.

(21)

Deterministic BD model and Classical Nucleation Theory

$

’ ’

’ &

’ ’

’ % dc

i

dt “ J

i´1

´ J

i

, i ě 2 ,

J

i

“ p

i

c

1

c

i

´ q

i`1

c

i`1

, i ě 1 , dc

1

dt “ ´J

1

´ ř

8

i“1

J

i

.

Penrose, Comm. Math. Phys 124, 1989

There exist ”almost steady-states”, for which J

i

” J

˚

pmq ‰ 0. As m Œ m

s

, if such steady-states are used as initial condition, then the solution

§

(for finite t) c

i

ptq ´ c

i

p0q is exponentially small

§

lim

tÑ8

c

i

ptq ´ c

i

p0q is not exponentially small Moreover J

˚

pmq is exponentially small

§

The new phase is being formed extremely slowly, after a

long metastable period.

(22)

Motivation BD Coarse-graining SBD Variability

Deterministic BD model – Some remarks

§

For constant or linear kinetic rates p

i

, q

i

, one can reduce the system to 1 or 2 ODEs on

c

1

, ÿ

iě2

c

i

, ÿ

iě2

ic

i

.

§

Based on scaling arguments, one can show that for q

i

“ 0 (irreversible nucleation),

inf tt ě 0 : c

n

ptq ě δm | c

i

pt “ 0q “ mδ

i“1

u » 1 m . while for “q

i

Ñ 8

2

(pre-equilibrium nucleation),

inftt ě 0 : c

n

ptq ě δm | c

i

pt “ 0q “ mδ

i“1

u » 1

m

n

.

(23)

Deterministic BD model – Some remarks

§

For constant or linear kinetic rates p

i

, q

i

, one can reduce the system to 1 or 2 ODEs on

c

1

, ÿ

iě2

c

i

, ÿ

iě2

ic

i

.

§

Based on scaling arguments, one can show that for q

i

“ 0 (irreversible nucleation),

inf tt ě 0 : c

n

ptq ě δm | c

i

pt “ 0q “ mδ

i“1

u » 1 m . while for “q

i

Ñ 8

2

(pre-equilibrium nucleation),

inftt ě 0 : c

n

ptq ě δm | c

i

pt “ 0q “ mδ

i“1

u » 1

m

n

.

(24)

Motivation BD Coarse-graining SBD Variability

Use of BD-like model in protein polymerization models

Irreversible nucleation step, ”Heaviside” rates

Powers & Powers, Biophys. J. 91, 2006 For b"c :

pre-equilibrium hypothesis.

(25)

Use of BD-like model in protein polymerization models

pre-equilibrium nucleation step, constant rates

$

’ ’

’ ’

&

’ ’

’ ’

% dc

1

dt “ ´ppc

1

´ qqy, . dy

dt “ Kc

1n

p`Qpm ´ c

1

pt qqq , dz

dt “ ppc

1

´ qqy , .

Ferrone et al., Bophys. J.

32, 1980 y “ř

iěnci z “ř

iěnici ppiq “p,qpiq “q Q “secondary nucleation mechanism (fragmentation, heterogeneous nucleation...)

(26)

Motivation BD Coarse-graining SBD Variability

Use of BD-like model in protein polymerization models

pre-equilibrium nucleation,

polymerization-fragmentation, ”oligomers at 0”

$

’ ’

’ ’

&

’ ’

’ ’

% dc

1

dt “ ´pc

1

ÿ

iěn

c

i

` 2q

n´1

ÿ

i“1

ÿ

jěi`1

ic

j

´ nKc

1n

. dc

i

dt “ pc

1

pc

i´1

´ c

i

q ´ qpi ´ 1qc

i

` 2q ÿ

jěi`1

c

j

` Kc

1n

δ

i,n

, i ě n ,

Knowles et al., Science 326, 2009

Approximate analytical solution.

$

’ ’

’ ’

’ ’

&

’ ’

’ ’

’ ’

% dc

1

dt “ ´pc

1

y ` npn ´ 1qqy ´ nKc

1n

. dy

dt “ qz ´ p2n ´ 1qqy ` Kc

1n

, y “ ÿ

iěn

c

i

, dz

dt “ pc

1

y ´ npn ´ 1qqy ` nKc

1n

, z “ ÿ

iěn

ic

i

.

(27)

Use of BD-like model in protein polymerization models

Continuous approximation, nucleation as a boundary condition

$

’ ’

’ &

’ ’

’ %

Bf px, tq

Bt ` c

1

ptq Bppxqf px, t q

Bx “ r¨ ¨ ¨ s . c

1

ptqppx

0

qf px

0

, tq “ Npc

1

ptqq ,

dc

1

dt “ λ ´ γc

1

´ nNpc

1

q ´ c

1

ż

8

x0

ppxqf px, tqdx ,

Helal et al., J. Math.

Biol., 2013 fpt,xq=number of polymer sizex Npc1q “αc1n

(28)

Motivation BD Coarse-graining SBD Variability

Use of BD-like model in protein polymerization models

Continuous approximation, nucleation as a boundary condition

$

’ &

’ %

Bf px, tq

Bt ` Bpppxqc

1

ptq ´ qpx qqf px, t q

Bx “ r¨ ¨ ¨ s .

ppx

0

qf px

0

, tq “ ppx

0

q p

N

c

1

ptq

n

q

N

` ppx

0

qc

1

ptq ,

Prigent et al., Plos One, 7, 2012

Banks et al., J. Math.

Biol., 74, 2017

(29)

Outline

Amyloid diseases and nucleation Becker-D¨ oring model

Coarse-graining : to include nucleation in continuous model Stochastic Becker D¨ oring model

Variability in nucleation time

(30)

Motivation BD Coarse-graining SBD Variability

Large Size, Excess of monomer

We start from a rescaled model (ε “ 1{n, ε

2

“ 1{m)

$

’ &

’ % dc

iε

dt “ 1 ε

“ J

i´1ε

´ J

iε

, i ě 2 , m

ε

“ c

1ε

ptq ` ε

2

ÿ

iě2

ic

iε

pt q . Scaling idea : excess of monomer, time scale “ 1{ε

c

1ε

ptq :“ ε

2

c

1

pt{εq , c

iε

ptq :“ c

i

pt{εq Compensated aggregation / fragmentation

p

iε

:“ p

i

ε

2

, q

εi

:“ q

i

, J

iε

“ p

iε

c

1ε

c

iε

´ q

i`1ε

c

i`1ε

and slow first step :

p

1ε

:“ p

1

ε

4

,

(31)

Large Size, Excess of monomer

We start from a rescaled model (ε “ 1{n, ε

2

“ 1{m)

$

’ &

’ % dc

iε

dt “ 1 ε

“ J

i´1ε

´ J

iε

, i ě 2 , m

ε

“ c

1ε

ptq ` ε

2

ÿ

iě2

ic

iε

pt q .

From the polymer point of view, we have accelerated fluxes, all of the same order :

1 εpε1C1εC1ε

Ý ÝÝÝÝÝ á â ÝÝÝÝÝ Ý

1 εqε2C2ε

C

2ε

C

i´1ε

1

εpεpεpi´1qqC1εCi´1ε

Ý ÝÝÝÝÝÝÝÝÝÝÝ á â ÝÝÝÝÝÝÝÝÝÝÝ Ý

1 εqεpεiqCiε

C

iε

1

εpεpεiqC1εCiε

ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ

1

εqεpεpi`1qqCi`1ε

C

i`1ε

,

(32)

Motivation BD Coarse-graining SBD Variability

Large Size, Excess of monomer

We start from a rescaled model (ε “ 1{n, ε

2

“ 1{m)

$

’ &

’ % dc

iε

dt “ 1 ε

“ J

i´1ε

´ J

iε

, i ě 2 , m

ε

“ c

1ε

ptq ` ε

2

ÿ

iě2

ic

iε

pt q . Weak form : for any test function (ϕ

i

),

d dt

ÿ

iě2

c

iε

ϕ

i

“ 1

ε J

2ε

ϕ

2

` ÿ

iě3

J

iε

„ ϕ

i`1

´ ϕ

i

ε

.

(33)

Large Size, Excess of monomer

We start from a rescaled model (ε “ 1{n, ε

2

“ 1{m)

$

’ &

’ % dc

iε

dt “ 1 ε

“ J

i´1ε

´ J

iε

, i ě 2 , m

ε

“ c

1ε

ptq ` ε

2

ÿ

iě2

ic

iε

pt q .

fεpt,xq “ř

iě2ciεptq1rpi´1{2qε,pi`1{2qεqpxq,ϕi “şpi`1{2qε

pi´1{2qεϕpxqdx,

$

’’

’’

’’

’&

’’

’’

’’

’% d dt

ż`8 0

fεpt,xqϕpxqdx “ “

pε1c1εptq2´q2εc2εptq‰

˜ 1 ε

ż5{2ε 3{2ε

ϕpxqdx

¸

` ż`8

0

Jεpt,xq∆εϕpxqdx,

mε “ c1εptq ` ż`8

0

xfεpt,xqdx.

where ∆εϕpxq “ϕpx`εq´ϕpxq

ε andJεpt,xq “.pεpxqc1εptqfεpt,xq ´qεpx` εqfεpt,x`εq

(34)

Motivation BD Coarse-graining SBD Variability

d dt

ż

`8

0

f

ε

pt, xqϕpxq dx “ “

p

1ε

c

1ε

ptq

2

´ q

ε2

c

2ε

ptq ‰

˜ 1 ε

ż

5{2ε 3{2ε

ϕpxq dx

¸

` ż

`8

0

rp

ε

pxqc

1ε

ptqf

ε

pt, xq∆

ε

ϕpxq ´ q

ε

pxqf

ε

pt, xq∆

´ε

ϕpxqs dx , Theorem (Deschamps, Hingant, Y. (2016))

We suppose :

§

Control and convergence of rate functions

§

Control and convergence of initial condition

§

ppxq „ px

rp

, qpxq „ qx

rq

near x “ 0, and r

q

ě r

p

.

§

c

1

p0q ą ρ :“ lim

xÑ0

qpxq{ppxq

(35)

d dt

ż

`8

0

f

ε

pt, xqϕpxq dx “ “

p

1ε

c

1ε

ptq

2

´ q

ε2

c

2ε

ptq ‰

˜ 1 ε

ż

5{2ε 3{2ε

ϕpxq dx

¸

` ż

`8

0

rp

ε

pxqc

1ε

ptqf

ε

pt, xq∆

ε

ϕpxq ´ q

ε

pxqf

ε

pt, xq∆

´ε

ϕpxqs dx , Theorem (Deschamps, Hingant, Y. (2016))

we have f

ε

Ñ f (in

C

pr0, T s; w ´ ˚ ´

M

pr0, 8qqq) solution of d

dt ż

`8

0

f pt, xqϕpxq dx “ Npt qϕp0q

` ż

`8

0

rppxqc

1

ptq ´ qpxqs ϕ

1

pxqf pt, xq dx , for all ϕ P C

0

r0, 8q, which is the weak form of

Bf

Bt ` BpJpx, tqf pt, xqq

Bx “ 0 , lim

xÑ0

Jpx, tqf pt, xq “ Nptq .

(36)

Motivation BD Coarse-graining SBD Variability

d dt

ż

`8

0

f

ε

pt, xqϕpxq dx “ “

p

1ε

c

1ε

ptq

2

´ q

ε2

c

2ε

ptq ‰

˜ 1 ε

ż

5{2ε 3{2ε

ϕpxq dx

¸

` ż

`8

0

rp

ε

pxqc

1ε

ptqf

ε

pt, xq∆

ε

ϕpxq ´ q

ε

pxqf

ε

pt, xq∆

´ε

ϕpxqs dx , Theorem (Deschamps, Hingant, Y. (2016))

Nptq is an explicit function of c

1

ptq, and is given by a quasi steady- state approximation of c

2ε

“ f

ε

pt, 2εq, given by the solution of

$

’ &

’ %

0 “ rJ

i´1

pc

1

q ´ J

i

pc

1

qs , i ě 2 , c

1

ptq “ c

1

.

J

i

pc

1

q “ pi

rp

c

1

´ qpi ` 1q

rq

1

rp“rq

.

When c

1

ą lim

xÑ0 qpxqppxq

, the solution of J

i

” J ‰ 0 is linked to the

loss of mass in the classical BD theory.

(37)

Motivation BD Coarse-graining SBD Variability

Exemples

§

For r

p

ă r

q

, we get Npc

1

q “ αc

12

, and

xÑ0

lim

`

x

rp

f pt, xq “ α p c

1

ptq .

For r

p

“ r

q

, we get Npc

1

q “

p

c

1

ppc

1

´ qq, and lim

xÑ0`

x

rp

f pt, xq “ α p c

1

ptq .

§

For faster fragmentation rate q

ε2

, we may get Npc

1

q “ αc

12pcpc1

1`q2

and lim

xÑ0`

x

rp

f pt, xq “ αc

1

ptq c

1

ptq pc

1

ptq ` q

2

, or Npc

1

q “ 0, and

lim

xÑ0`

x

rp

f pt , xq “ 0 .

(38)

Motivation BD Coarse-graining SBD Variability

Exemples

§

For r

p

ă r

q

, we get Npc

1

q “ αc

12

, and

xÑ0

lim

`

x

rp

f pt, xq “ α p c

1

ptq .

§

For r

p

“ r

q

, we get Npc

1

q “

αp

c

1

ppc

1

´ qq, and lim

xÑ0`

x

rp

f pt, xq “ α p c

1

ptq .

§

For faster fragmentation rate q

ε2

, we may get Npc

1

q “ αc

12pcpc1

1`q2

and lim

xÑ0`

x

rp

f pt, xq “ αc

1

ptq c

1

ptq pc

1

ptq ` q

2

, or Npc

1

q “ 0, and

lim

xÑ0`

x

rp

f pt , xq “ 0 .

(39)

Exemples

§

For r

p

ă r

q

, we get Npc

1

q “ αc

12

, and

xÑ0

lim

`

x

rp

f pt, xq “ α p c

1

ptq .

§

For r

p

“ r

q

, we get Npc

1

q “

αp

c

1

ppc

1

´ qq, and lim

xÑ0`

x

rp

f pt, xq “ α p c

1

ptq .

§

For faster fragmentation rate q

ε2

, we may get Npc

1

q “ αc

12pcpc1

1`q2

and lim

xÑ0`

x

rp

f pt, xq “ αc

1

ptq c

1

ptq pc

1

ptq ` q

2

, or Npc

1

q “ 0, and

lim

xÑ0`

x

rp

f pt, xq “ 0 .

(40)

Outline

Amyloid diseases and nucleation Becker-D¨ oring model

Coarse-graining : to include nucleation in continuous model Stochastic Becker D¨ oring model

Variability in nucleation time

(41)

Motivation BD Coarse-graining SBD Variability

Stochastic Becker D¨ oring model

Reversible one-step coag.-frag.

C

i

` C

1

ÝÝá âÝÝ

pi

qi`1

C

i`1

$

’ ’

’ ’

’ ’

’ ’

&

’ ’

’ ’

’ ’

’ ’

%

C

i

ptq “ C

iin

` J

i´1

ptq ´ J

i

ptq , i ě 2 , J

i

ptq “ Y

i`

´ ż

t

0

p

i

C

1

psqC

i

ps qds

¯

´Y

i`1´

´ ż

t

0

q

i`1

C

i`1

ps qds

¯

C

1

ptq “ C

1in

´ 2J

1

pt q ´ ÿ

iě2

J

i

ptq ,

§

Stochastic version : Finite-state space Markov Chain, in X

M

:“

#

C “ pC

i

q

iě1

P

NN

:

8

ÿ

i“1

iC

i

“ M +

.

8

ÿ

i“1

iC

i

ptq “

8

ÿ

i“1

iC

i

p0q “: M .

(42)

Motivation BD Coarse-graining SBD Variability

Stochastic Becker D¨ oring model

Reversible one-step coag.-frag.

C

i

` C

1

ÝÝá âÝÝ

pi

qi`1

C

i`1

$

’ ’

’ ’

’ ’

’ ’

&

’ ’

’ ’

’ ’

’ ’

%

C

i

ptq “ C

iin

` J

i´1

ptq ´ J

i

ptq , i ě 2 , J

i

ptq “ Y

i`

´ ż

t

0

p

i

C

1

psqC

i

ps qds

¯

´Y

i`1´

´ ż

t

0

q

i`1

C

i`1

ps qds

¯

C

1

ptq “ C

1in

´ 2J

1

pt q ´ ÿ

iě2

J

i

ptq ,

§

Stochastic version : Finite-state space Markov Chain, in X

M

:“

#

C “ pC

i

q

iě1

P

NN

:

8

ÿ

i“1

iC

i

“ M +

.

§

Preserves mass for all times

8

ÿ

i“1

iC

i

ptq “

8

ÿ

i“1

iC

i

p0q “: M .

(43)

Stochastic Becker-D¨ oring model

Reversible one-step coag.-frag.

C

i

` C

1

ÝÝá âÝÝ

pi

qi`1

C

i`1

Transitions are given by

P

"

C

1

pt ` dtq “ C

1

ptq ´ 2 C

2

pt ` dtq “ C

2

ptq ` 1

*

“ p

1

C

1

ptqpC

1

ptq ´ 1qdt ` o pdtq

(44)

Motivation BD Coarse-graining SBD Variability

Stochastic Becker-D¨ oring model

Reversible one-step coag.-frag.

C

i

` C

1

ÝÝá âÝÝ

pi

qi`1

C

i`1

Transitions are given by

P

$

&

%

C

1

pt ` dt q “ C

1

ptq ´ 1 C

i

pt ` dt q “ C

i

ptq ´ 1 C

i`1

pt ` dt q “ C

i`1

ptq ` 1

, . -

“ p

i

C

1

ptqC

i

ptqdt ` opdtq

(45)

Stochastic Becker-D¨ oring model

Reversible one-step coag.-frag.

C

i

` C

1

ÝÝá âÝÝ

pi

qi`1

C

i`1

Transitions are given by

P

$

&

%

C

1

pt ` dtq “ C

1

ptq ` 1 C

i

pt ` dtq “ C

i

ptq ` 1 C

i`1

pt ` dtq “ C

i`1

pt q ´ 1

, . -

“ q

i`1

C

i`1

pt qdt ` o pdt q

(46)

Motivation BD Coarse-graining SBD Variability

Stochastic Becker-D¨ oring model

Reversible one-step coag.-frag.

C

i

` C

1

ÝÝá âÝÝ

pi

qi`1

C

i`1

Time interval between transition T

i`1

´ T

i

E

˜

p

1

C

1

pC

1

´ 1q ` ÿ

iě2

p

i

C

1

C

i

` q

i

C

i

¸

A given transition is selected at random according to its weight.

(47)

Stochastic Becker-D¨ oring model

Reversible one-step coag.-frag.

C

i

` C

1

ÝÝá âÝÝ

pi

qi`1

C

i`1

Time interval between transition T

i`1

´ T

i

E

˜

p

1

C

1

pC

1

´ 1q ` ÿ

iě2

p

i

C

1

C

i

` q

i

C

i

¸

A given transition is selected at random according to its weight.

(48)

Motivation BD Coarse-graining SBD Variability

Stochastic Becker-D¨ oring model

Reversible one-step coag.-frag.

C

i

` C

1

ÝÝá âÝÝ

pi

qi`1

C

i`1

Time interval between transition T

i`1

´ T

i

E

˜

p

1

C

1

pC

1

´ 1q ` ÿ

iě2

p

i

C

1

C

i

` q

i

C

i

¸

A given transition is selected at random according to its weight.

(49)

Stochastic Becker-D¨ oring model

Reversible one-step coag.-frag.

C

i

` C

1

ÝÝá âÝÝ

pi

qi`1

C

i`1

Time interval between transition T

i`1

´ T

i

E

˜

p

1

C

1

pC

1

´ 1q ` ÿ

iě2

p

i

C

1

C

i

` q

i

C

i

¸

A given transition is selected at random according to its weight.

(50)

Motivation BD Coarse-graining SBD Variability

Stochastic Becker-D¨ oring model

Reversible one-step coag.-frag.

C

i

` C

1

ÝÝá âÝÝ

pi

qi`1

C

i`1

Time interval between transition T

i`1

´ T

i

E

˜

p

1

C

1

pC

1

´ 1q ` ÿ

iě2

p

i

C

1

C

i

` q

i

C

i

¸

A given transition is selected at random according to its weight.

(51)

Stochastic Becker-D¨ oring model

Reversible one-step coag.-frag.

C

i

` C

1

ÝÝá âÝÝ

pi

qi`1

C

i`1

Time interval between transition T

i`1

´ T

i

E

˜

p

1

C

1

pC

1

´ 1q ` ÿ

iě2

p

i

C

1

C

i

` q

i

C

i

¸

A given transition is selected at random according to its weight.

(52)

Motivation BD Coarse-graining SBD Variability

Stochastic Becker-D¨ oring model

Reversible one-step coag.-frag.

C

i

` C

1

ÝÝá âÝÝ

pi

qi`1

C

i`1

XM:“

#

CPNN :

8

ÿ

i“1

iCi“M +

.

Drawback : exponential increase of the size of the state-space ! M | X

M

|“

M

ÿ

i“1

σpiq | X

M´i

| , | X

M

| 9 1 4M ?

3 exp

˜ π

c 2M 3

¸ ,

where σpiq is the sum of the divisors of i

(53)

Stochastic Becker-D¨ oring model

Reversible one-step coag.-frag.

C

i

` C

1 pi

ÝÝá âÝÝ

qi`1

C

i`1

Due to detailed-balance, the asymptotic prob. distribution is ΠpC q “ B

M

M

ź

i“1

pQ

i

q

Ci

C

i

! , Q

i

“ p

1

p

2

¨ ¨ ¨ p

i´1

q

2

q

3

¨ ¨ ¨ q

i

.

(54)

Motivation BD Coarse-graining SBD Variability

Stochastic Becker-D¨ oring model

Reversible one-step coag.-frag.

C

i

` C

1 pi

ÝÝá âÝÝ

qi`1

C

i`1

Due to detailed-balance, the asymptotic prob. distribution is ΠpC q “ B

M

M

ź

i“1

pQ

i

q

Ci

C

i

! , Q

i

“ p

1

p

2

¨ ¨ ¨ p

i´1

q

2

q

3

¨ ¨ ¨ q

i

. The expected number of clusters of size i is

E

Π

C

i

“ Q

i

B

M

{B

M´i

, and MB

M´1

M

ÿ

i“1

iQ

i

B

M´i´1

.

(55)

Stochastic Becker-D¨ oring model

Reversible one-step coag.-frag.

C

i

` C

1

ÝÝá âÝÝ

pi

qi`1

C

i`1

Due to detailed-balance, the asymptotic prob. distribution is ΠpC q “ B

M

M

ź

i“1

pQ

i

q

Ci

C

i

! , Q

i

“ p

1

p

2

¨ ¨ ¨ p

i´1

q

2

q

3

¨ ¨ ¨ q

i

.

The expected number of clusters of size i is E

Π

C

i

“ Q

i

B

M

{B

M´i

, and MB

M´1

ÿ

M

i“1

iQ

i

B

M´i´1

. Moreover, analogy with supercritical case in BD holds :

ˆ

iÑ8

lim p

i

q

i`1

“ z

s

ą 0

˙ ñ

ˆ

MÑ8

lim E

Π

C

i

“ Q

i

z

si

˙

(56)

Motivation BD Coarse-graining SBD Variability

§

With the large volume scaling : c

iε

“ εC

i

, and p

i

“ εp

i

,

q

i

“ q

i

: Law of large numbers as M Ñ 8 [Jeon, CMP (1998)]

§

Any macroscopic quantity like inftt ě 0 : ÿ

iěN

iC

i

ptq ě ρM

| C

i

pt “ 0q “ M δ

i“1

u .

converges (in standard scaling)

to a finite deterministic value as

M Ñ 8.

(57)

§

With the large volume scaling : c

iε

“ εC

i

, and p

i

“ εp

i

,

q

i

“ q

i

: Law of large numbers as M Ñ 8 [Jeon, CMP (1998)]

§

Any macroscopic quantity like inftt ě 0 : ÿ

iěN

iC

i

ptq ě ρM

| C

i

pt “ 0q “ M δ

i“1

u . converges (in standard scaling) to a finite deterministic value as M Ñ 8.

§ This may not be true for

microscopic quantity, for instance.

inftt ě0 :CNptq ě1

|Cipt “0q “Mδi“1u.

[Y., D’Orsogna, Chou JCP (2012)]

[Y., Bernard, Hingant, Pujo-Menjouet JCP (2016)]

(58)

Outline

Amyloid diseases and nucleation Becker-D¨ oring model

Coarse-graining : to include nucleation in continuous model Stochastic Becker D¨ oring model

Variability in nucleation time

Re-scaling reaction rates with M

Re-scaling nucleus size with M

Back to classical nucleation theory

(59)

How to explain large variability in M Ñ 8 ?

Roughly speaking, due to the law of large number (+CLT), in order to obtain a positive variance in a continuous settings, one needs to avoid that the nucleation occurs in finite time in the limit M Ñ 8.

§

We seek situations (model, scaling) where the nucleation is a

rare event, that do not occurs in the deterministic limit

M Ñ 8.

(60)

Motivation BD Coarse-graining SBD Variability Rate scaling Size scaling CNT

Coarse-Grained model

C

1

, Y , Z ÞÑ

$

&

%

C

1

´ n, Y ` 1, Z ` n at rate αpC

1

q , C

1

´ 1, Y , Z ` 1 at rate pC

1

Y ,

C

1

, Y ` 1, Z at rate qZ . Then, for ”small α”, and large

volume, the lag time is composed of the convolution of an Exponential variable of rate α and a

deterministic time given by the ODE

Szavits-Nossan et al., PRL 113, 2014

Y “ř

iě2Ci,Z “ř

iě2iCi

$

’ ’

’ ’

’ ’

&

’ ’

’ ’

’ ’

% dc

1

dt “ ´pc

1

y

p´nαpc1qq

. dy

dt “ qz

p`αpc1qq

, y “ ÿ

iěn

c

i

, dz

dt “ pc

1

y

`pnαpc1qq

, z “ ÿ

iěn

ic

i

.

Références

Documents relatifs

Keywords: Inverse problem; stability; mathematical model; Fredholm operator..

Keywords: Inverse problem; ill-posed problems; adjoint operators; Schwartz space; financial model..

Up to our knowledge, this is the first result of explicit convergence for inhomogeneous coagulation-fragmentation models with degenerate diffusion, and the first example in which

Critical temperature and chemical potential at coexistence as well as liquid-vapor interfacial tension and contact angle value are computed using both mean field calculations and

Abstract— We propose a novel stochastic control formulation for the microgrid energy management problem and extend previous works on continuous time rolling horizon strategy

Abstract: We investigate the connection between two classical models of phase transition phenomena, the (discrete size) stochastic Becker-D¨ oring equations and the (continuous

Under assumption (H0).. The proof of Theorem 5.2 is similar to the proof of Theorem 4.1 and consists in a coupling argument together with a control of the initial clusters in Π

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des