• Aucun résultat trouvé

Stochastic coagulation-fragmentation models for the study of protein aggregation phenomena

N/A
N/A
Protected

Academic year: 2021

Partager "Stochastic coagulation-fragmentation models for the study of protein aggregation phenomena"

Copied!
32
0
0

Texte intégral

(1)

HAL Id: hal-02795563

https://hal.inrae.fr/hal-02795563

Submitted on 5 Jun 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Stochastic coagulation-fragmentation models for the

study of protein aggregation phenomena

Romain Yvinec, Samuel Bernard, Tom Chou, Julien Deschamps, Maria R.

d’Orsogna, Erwan Hingant, Laurent Pujot-Menjouet

To cite this version:

(2)

Stochastic coagulation-fragmentation models for

the study of protein aggregation phenomena

Romain Yvinec1, Samuel Bernard2,3, Tom Chou4, Julien

Deschamps5, Maria R. D’Orsogna6, Erwan Hingant7 and

Laurent Pujo-Menjouet2,3

1

BIOS group INRA Tours, France.

2Institut Camille Jordan, Universit´e Lyon 1, Villeurbanne, France. 3

INRIA Team Dracula, Inria Center Grenoble Rhˆone-Alpes, France.

4Depts. of Biomathematics and Mathematics, UCLA, Los Angeles, USA. 5

DIMA, Universita degli Studi di Genova, Italy.

6

Dept. of Mathematics, CSUN, Los Angeles, USA.

(3)

Numerical results

Coarse-graining

(4)

Outline

Amyloid diseases and Becker-D¨oring model

Numerical results Coarse-graining

(5)

Protein accumulation in amyloid by

nucleation-polymerization

(6)

Protein accumulation in amyloid by

nucleation-polymerization

(7)

Times series of in-vitro spontaneous polymerization

Xue et al. PNAS (2008)

(8)
(9)
(10)
(11)
(12)

Nucleation time in the Stochastic Becker-D¨

oring model

Reversible one-step agregation

Ci ` C1 pi ÝÝá âÝÝ qi `1 Ci `1 (1)

(13)

Nucleation time in the Stochastic Becker-D¨

oring model

Reversible one-step agregation

Ci ` C1 pi ÝÝá âÝÝ qi `1 Ci `1 (1)

The nucleation time is given by the following First Passage Time, TN,M :“ inftt ě 0 : CNptq “ 1 | Cipt “ 0q “ Mδi “1u . (2)

§ What are the dependencies of the nucleation time with respect to

the model parameters ?

total mass : M ; nucleus size : N

(14)

Nucleation time in the Stochastic Becker-D¨

oring model

Reversible one-step agregation

Ci ` C1 pi ÝÝá âÝÝ qi `1 Ci `1 (1)

The nucleation time is given by the following First Passage Time, TN,M :“ inftt ě 0 : CNptq “ 1 | Cipt “ 0q “ Mδi “1u . (2)

§ What is the nucleation time for very large initial quantity M and

nucleus size N ?

lim

M,NÑ8T N,M

(15)

Nucleation time in the Stochastic Becker-D¨

oring model

Reversible one-step agregation

Ci ` C1 pi ÝÝá âÝÝ qi `1 Ci `1 (8,0,0) (6,1,0) (4,2,0) (2,3,0) (5,0,1) (3,1,1) (1,2,1) (2,0,2) (0,4,0) (0,1,2) (7,0,0) (5,1,0) (3,2,0) (1,3,0) (4,0,1) (2,1,1) (0,2,1) (1,0,2) (a) (b)

(16)

Outline

Amyloid diseases and Becker-D¨oring model

Numerical results

Coarse-graining

(17)

§ Non-monotonous w.r.t

reaction rate

§ Bimodal for ’small’

fragmentation rate

(18)
(19)
(20)

§ For M Ñ 8 : deterministic trajectory. § Metastable behavior : ’pure-aggregation’.

§ Medium-large polymer formed only after a longer time

pk “ 1 and qk ” 1 for k ě 2, M “ 105 (we plot M´1CkptM´1q).

(21)

Outline

Amyloid diseases and Becker-D¨oring model Numerical results

Coarse-graining

(22)

Large nucleus N „

?

M

§ First case (pp0qm ą qp0q) : Convergence towards a

deterministic value.

(23)

Large nucleus N „

?

M

§ Second case (pp0qM ă qp0q) : Exponentially large time and

(24)

Outline

Amyloid diseases and Becker-D¨oring model Numerical results

Coarse-graining

(25)

Quantifying the large deviation in the SBD model

A much simpler version of this model consider that a single aggregate may be formed at a time :

k ÝÝÝÝÝÝáâÝÝÝÝÝÝpkpm´kεq

qk`1

k ` 1 , which converges (with time rescaling) to dx dt “ ppx qpm ´ x q ´ qpx q FPT are given by E“T1,0N ‰ “ N´1 ÿ i “1 i ÿ j “1 śi k“j`1qk śi k“jpkpm ´ εkq .

(26)

Quantifying the large deviation in the SBD model

Can we perform similar calculations with n clusters ?

pk0, k1q pk0pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk0`1 pk0` 1, k1q , pk0, k1q pk1pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk1`1 pk0 , k1` 1q ,

which converges (with time rescaling) to dx dt “ ppxqpm ´ x ´ y q ´ qpxq dy dt “ ppy qpm ´ x ´ y q ´ qpy q 0.0 0.2 0.4 0.6 0.8 Size cluster 1 0.0 0.2 0.4 0.6 0.8 S iz e cl us te r2

(27)

Quantifying the large deviation in the SBD model

Can we perform similar calculations with n clusters ?

pk0, k1q pk0pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk0`1 pk0` 1, k1q , pk0, k1q pk1pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk1`1 pk0 , k1` 1q ,

which converges (with time rescaling) to dx dt “ ppxqpm ´ x ´ y q ´ qpxq dy dt “ ppy qpm ´ x ´ y q ´ qpy q 0.00 0.05 0.10 0.15 0.20 Size cluster 1 0.00 0.05 0.10 0.15 0.20 S iz e cl us te r2

(28)

Quantifying the large deviation in the SBD model

Can we perform similar calculations with n clusters ?

pk0, k1q pk0pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk0`1 pk0` 1, k1q , pk0, k1q pk1pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk1`1 pk0 , k1` 1q ,

which converges (with time rescaling) to dx dt “ ppxqpm ´ x ´ y q ´ qpxq dy dt “ ppy qpm ´ x ´ y q ´ qpy q 0.0 0.2 0.4 0.6 0.8 1.0 Size cluster 1 0.0 0.2 0.4 0.6 0.8 1.0 S iz e cl us te r2

(29)

Quantifying the large deviation in the SBD model

Can we perform similar calculations with n clusters ?

pk0, k1q pk0pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk0`1 pk0` 1, k1q , pk0, k1q pk1pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk1`1 pk0 , k1` 1q ,

which converges (with time rescaling) to dx dt “ ppxqpm ´ x ´ y q ´ qpxq dy dt “ ppy qpm ´ x ´ y q ´ qpy q 0.00 0.05 0.10 0.15 0.20 Size cluster 1 0.00 0.05 0.10 0.15 0.20 S iz e cl us te r2

(30)

Quantifying the large deviation in the SBD model

Can we perform similar calculations with n clusters ?

pk0, k1q pk0pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk0`1 pk0` 1, k1q , pk0, k1q pk1pm´pk0`k1qεq ÝÝÝÝÝÝÝÝÝÝá âÝÝÝÝÝÝÝÝÝÝ qk1`1 pk0 , k1` 1q ,

which converges (with time rescaling) to dx dt “ ppxqpm ´ x ´ y q ´ qpxq dy dt “ ppy qpm ´ x ´ y q ´ qpy q 0.00 0.05 0.10 0.15 0.20 Size cluster 1 0.00 0.05 0.10 0.15 0.20 S iz e cl us te r2

(31)

§ Extension to spatial models (diffusion) ?

(32)

Toy model with time-scale separation

$ ’ ’ & ’ ’ % X ÝÝÝáâÝÝÝγ γ˚r X ˚, X˚` X˚ ÝÑεα 2Y , X ` Y ÝÑεβ 2Y ,

Références

Documents relatifs

In this paper, we make use of different principles (volume conservation, entropy dissipation, existence of steady states) which allow to build a stable and accurate numerical scheme

Romain Yvinec, Samuel Bernard, Tom Chou, Julien Deschamps, Maria R3. d’Orsogna, Erwan Hingant,

a) We distribute a total number fit of clusters in the mass space, assigning a mass M to each cluster according to the initial distribution function N(M,t~)... b) We select a couple

The coagulation-only (F ≡ 0) equation is known as Smoluchowski’s equation and it has been studied by several authors, Norris in [23] gives the first general well-posedness result

However, there are few results concerning the convergence analysis of numerical methods for coagulation and fragmentation models (see [17] for quasi Monte-Carlo methods)....

QUASI STEADY STATE APPROXIMATION OF THE SMALL CLUSTERS IN BECKER-D ¨ ORING EQUATIONS LEADS TO BOUNDARY CONDITIONS IN THE LIFSHITZ-SLYOZOV LIMIT.. JULIEN DESCHAMPS † , ERWAN HINGANT ‡

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

We investigate the connection between two classical models of phase transition phenomena, the (discrete size) stochastic Becker-D¨oring, a continous time Markov chain model, and