• Aucun résultat trouvé

Mathematical models on cancer progression

N/A
N/A
Protected

Academic year: 2022

Partager "Mathematical models on cancer progression"

Copied!
2
0
0

Texte intégral

(1)

Mathematical models on cancer progression

Marco Beccuti

Universit`a degli Studi di Torino, Dipartimento di Informatica, Italy

beccuti@di.unito.it

Abstract.The Cancer Stem Cell (CSC) involvement into tumor progression, tumor recurrence, and therapy resistance is one of the most studied subject of current cancer research [10,4,8,6]. Nevertheless, due to the complex dynamics characterizing the CSC tumor, a comprehensive theory has not been established yet. To this end, some advises can be obtained combining mathematical modeling and experimental data [5,9,2,7]. Indeed, mathematical modeling is a powerful instrument which may drive the comprehension of a biological system, providing a clear description of its essential dynamics.

The aim of this talk is hence to show how the CSC tumor growth could be de- scribed/studied through the application of mathematical models. In details two different modeling approaches are presented: the former one consists in a mul- tilevel/multiscale model [1], which details both molecular and cellular aspects.

By means of this framework we were able to reproduce the tumor growth trend observed in mice, highlighting the strong connection existing between cellular events and cell population dynamics. We were also able to reproduce molecular vaccinations, correctly miming the in vivo vaccinations in animals. However, this detailed approach can engender difficulties in the parameter estimation process when only few kinetic information is available.

The second contribution [3] was designed really to address this complexity issue. We defined a new compartmental mathematical framework only focusing on the cell subpopulation dynamics. Indeed, the aim of this work was to describe CSC tumor progression trying to identify its essential mechanisms at population level. Through a quantitative and qualitative analysis of our model was hence possible to define rules controlling the breast cancer progression.

Lastly, we point out that the CSC theory is applicable to several other human cancers. Therefore, being our two model based on the key dynamics of the CSC theory, they can be further adapted for the study of many other tumor cases too.

References

1. F Cordero M Beccuti C Fornari S Lanzardo L Conti F Cavallo G Balbo RA Calogero. Multi-level model for the investigation of oncoantigen-driven vaccination effect. BMC Bioinformatics, 14, 2013.

2. MD Johnston CM Edwards WF Bodmer PK Maini SJ Chapman. Mathematical modeling of cell population dynamics in the colonic crypt and in colorectal cancer.

PNAS, 104, 2007.

M. Heiner (Ed.): BioPPN 2014, a satellite event of PETRI NETS 2014, CEUR Workshop Proceedings Vol. 1159, 2014.

(2)

2 M. Beccuti

3. C Fornari M Beccuti S Lanzardo L Conti G Balbo F Cavallo RA Calogero F Cordero. A mathematical-biological joint effort to investigate the tumor-initiating ability of cancer stem cells. PloS Computational Biology, under review.

4. JE Visvader GJ Lindeman. Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nature Review Cancer, 10, 2008.

5. R Molina-Pena and M ´Alvarez. A simple mathematical model based on the cancer stem cell hypothesis suggests kinetic commonalities in solid tumor growth. Plos One, 7, 2012.

6. R Pardal MF Clarke SJ Morrison. Applying the principles of stem-cell biology to cancer. Nature Review Cancer, 3, 2003.

7. F Michor Y Iwasa MA Nowak. Dynamics of cancer progression. Nature Reviews Cancer, 4, 2004.

8. R Bjerkvig BB Tysnes KS Aboody J Najbauer AJA Terzis. The origin of the cancer stem cells: current controversis and new insights. Nature Review Cancer, 5, 2005.

9. A Marciniak-Czochra T Stiehl W Wagner. Characterization of stem cells using mathematical models of multistage cell lineages. Math Comp Model, 2010.

10. MF Clarke JE Dick PB Dirks CJ Eaves CH Jamieson DL Jones J Visvader IL Weissman GM Wahl. Cancer stem cells’ perspectives on current status and future directions: Aacr workshop on cancer stem cells. Cancer Res, 66, 2006.

Proc. BioPPN 2014, a satellite event of PETRI NETS 2014

Références

Documents relatifs

The goal of my internship was in a first time to improve the validation of the mathemat- ical models defined in [Benzekry et al., 2016] which reproduce tumor growth, especially

Formula milk was offered free to women enrolled in the study but bottles and sterilising materials.. were not

The effects of aircraft noise exposure on subjective sleep quality: the results of the DEBATS study in France Ali Mohamed Nassur, Marie Lefevre, Damien Leger, Bernard Laumon,

structures is far from neutral; in particular, it yields a peculiar relation to causality. Our claim is that the often implicit, but pervasive, reference to discrete mathematics,

Using a mathematical model based on the RAI treatment applied to PTC, we eval- uated the parameters of RAI activity, IL-6 levels and the number of remnant can- cer cells in

Figure 3: Single-tumor growth models’ analysis: parameter distributions Models for single tumor growth were independently fitted to the large and small growth curves from

If the numerical approximation for the concentration evolution in case of the zero order method is not sufficiently accurate compare to the classical finite differ- ences method,