• Aucun résultat trouvé

Application of time-domain reflectometry to determine the thickness of the frozen zone in soils

N/A
N/A
Protected

Academic year: 2021

Partager "Application of time-domain reflectometry to determine the thickness of the frozen zone in soils"

Copied!
12
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

3rd International Symposium on Ground Freezing [Proceedings of the], p. 8, 1982

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC : https://nrc-publications.canada.ca/eng/view/object/?id=0c6bd679-29be-4918-8ece-9f7b7eed1a95 https://publications-cnrc.canada.ca/fra/voir/objet/?id=0c6bd679-29be-4918-8ece-9f7b7eed1a95

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Application of time-domain reflectometry to determine the thickness of

the frozen zone in soils

(2)

c

-.

Ser

TH1

N21d

National Research

Conseil national

C . 2

1215

'h*

Council Canada

de recherches Canada

BIw

APPLICATION OF TIME-DOMAIN REFLECTOMETRY TO DETERMINE THE THICKNESS OF THE FROZEN ZONE I N SOILS

by T.H.W. Baker and J.L. Davis

Presented at

Third International Symposium on Ground Freezing Hanover, New Hampshire, 21

-

24 June 1982, 8 p.

ANALYZED

1

Printed with permission

DBR Paper No. 1215

Division of Building Research

(3)

La r 6 f l e c t o d t r i e a s s o c i d e au temps e s t une t e c h n i q u e f a i s a n t i n t e r v e n i r d e s impulsions dlectromagn6tiques q u i a b t b u t i l i s 6 e pour mesurer l a c o n s t a n t e d i d l e c t r i q u e d e s s o l s 3 d e s frdquences v a r i a n t e n t r e 1 MHz e t 1 GHz. La c o n s t a n t e d i g l e c - t r i q u e de l ' e a u 6quivaut 3 30 f o i s c e l l e de l a g l a c e , ce q u i f a i t q u ' i l e s t p o s s i b l e de s i t u e r l e f r o n t de c o n g d l a t i o n dans l e s s o l s . Les r b s u l t a t s d ' e x p g r i e n c e s en l a b o r a t o i r e s o n t p r b s e n t b s a f i n d ' i l l u s t r e r l ' a p p l i c a t i o n de c e t t e t e c h n i q u e l a mesure de 1 1 6 p a i s s e u r de l a zone g e l e e de s o l s 3 granulo- m 6 t r i e g r o s s i S r + a+ f j - - -_L'melaceaent de l a

-.

limite de

congglat i o n s i t w i d e au

temps e s t comp s de l a

tempdrature e D-s aux

(4)

APPLICATION OF TIME-DOMAIN REFLECTOMETRY TO DETERMINE THE THICKNESS OF THE FROZEN ZONE I N SOILS

T.H.W. Baker, D i v i s i o n of Building Research, N a t i o n a l Research Council of Canada, Ottawa, O n t a r i o ,

KIA

0R6, Canada J.L. Davis, EarthTech Research Ltd., Baltimore,

MD,

21227, U.S.A.

ABSTRACT

Time-domain r e f l e c t o m e t r y is an e l e c t r o m a g n e t i c p u l s e t e c h n i q u e t h a t h a s been used t o measure t h e d i e l e c t r i c c o n s t a n t of s o i l s a t f r e q u e n c i e s between 1 MHz and 1 GHz. The d i e l e c t r i c c o n s t a n t of w a t e r i s 30 t i m e s t h a t of i c e , making i t p o s s i b l e t o d e l i n e a t e t h e f r e e z i n g f r o n t i n s o i l s . R e s u l t s of l a b o r a t o r y experiments w i l l be p r e s e n t e d t o show t h e a p p l i c a t i o n of t h i s t e c h n i q u e t o determine t h e t h i c k n e s s of t h e f r o z e n zone i n c o a r s e g r a i n e d and f i n e g r a i n e d s o i l s . The l o c a t i o n of t h e f r e e z i n g boundary u s i n g t ime-domain r e f l e c t o m e t r y w i l l be compared w i t h temperature

measurements and i n t e r p r e t a t i o n s from X- ray photographs.

INTRODUCTION

During t h e c o n s t r u c t i o n and r e p a i r of s h a f t s and t u n n e l s , a r t i f i c i a l ground f r e e z i n g has been used t o supply

temporary s t r u c t u r a l s u p p o r t and t o c o n t r o l w a t e r i n f i l t r a t i o n . I n t h e s e p r o j e c t s i t i s n e c e s s a r y t o monitor t h e t h i c k n e s s of t h e f r o z e n l a y e r f o r s a f e t y and economic reasons. S e v e r a l t e c h n i q u e s have been used i n c l u d i n g temperature measurement, e l e c t r i c a l r e s i s t i v i t y , f r o s t - t u b e , u l t r a s o n i c , s e i s m i c and r a d a r methods. This paper d e s c r i b e s t h e u s e of a n o t h e r technique, time-domain r e f l e c t o m e t r y , t o l o c a t e t h e f r e e z i n g f r o n t and t o c a l c u l a t e t h e t h i c k n e s s of t h e f r o z e n zone. Time-domain r e f l e c t o m e t r y was f i r s t u s e d by Davis e t a l . (1976) t o measure t h e a p p a r e n t d i e l e c t r i c c o n s t a n t of s o i l s . They found t h a t t h e a p p a r e n t d i e l e c t r i c c o n s t a n t was s t r o n g l y dependent on v o l u m e t r i c w a t e r c o n t e n t and weakly dependent on s o i l t y p e , d e n s i t y , t e m p e r a t u r e (above O°C) and s o l u b l e s a l t c o n t e n t i n t h e frequency

range between 20 MHz and 1 GHz

.

Topp e t a l . (1980) proposed an e m p i r i c a l r e l a t i o n s h i p between t h e a p p a r e n t d i e l e c t r i c c o n s t a n t and t h e v o l u m e t r i c w a t e r c o n t e n t of s o i l s . S i m i l a r l y , P a t t e r s o n and Smith (1981) i n v e s t i g a t e d t h e r e l a t i o n s h i p between t h e a p p a r e n t d i e l e c t r i c c o n s t a n t of f r o z e n s o i l s and unfrozen w a t e r c o n t e n t u s i n g time-domain r e f l e c t o m e t r y . TIME-DOMAIN REFLECTOMETRY Time-domain r e f l e c t o m e t r y i s used t o determine t h e d i e l e c t r i c c o n s t a n t of t h e medium s u r r o u n d i n g a t r a n s m i s s i o n l i n e by measuring t h e p r o p a g a t i o n v e l o c i t y (V) of a n e l e c t r o m a g n e t i c wave t r a n s m i t t e d a l o n g t h e t r a n s m i s s i o n l i n e f o r a known

d i s t a n c e . For t h e complete range of s o i l s s t u d i e d by Topp e t a l . (1980) t h e e l e c t r i c l o s s was found t o b e s m a l l and d i d n o t a f f e c t t h e measured p r o p a g a t i o n v e l o c i t y . They e x p r e s s e d t h e p r o p a g a t i o n v e l o c i t y a s : where c = v e l o c i t y of l i g h t i n a vacuum (30 cmlns)

K

,

= a p p a r e n t d i e l e c t r i c c o n s t a n t of t h e medium. The p r o p a g a t i o n v e l o c i t y

(V)

a l o n g a

(5)

t r a n s m i s s i o n l i n e of known l e n g t h (L) i s given by: where t = t i m e of t r a v e l Combining e q u a t i o n s 1 and 2 y i e l d s a n e x p r e s s i o n f o r Ka i n terms of t h e t r a n s m i s s i o n l i n e l e n g t h (L) and t h e t r a v e l time ( t ) : The t r a v e l t i m e s of e l e c t r o m a g n e t i c waves t r a n s m i t t e d along a t r a n s m i s s i o n l i n e a r e measured u s i n g a time-domain r e f l e c t o m e t e r (TDR). T h i s i n s t r u m e n t i s widely used i n t h e e l e c t r o n i c s i n d u s t r y t o measure t h e r e f l e c t i o n c h a r a c t e r i s t i c s of t r a n s m i s s i o n l i n e s . A d e s c r i p t i o n of how t h e instrument o p e r a t e s i n r e l a t i o n t o t h e t r a n s m i s s i o n l i n e i s p r e s e n t e d i n Baker e t a l . (1982). The TDR o u t p u t c o n s i s t s of a waveform w i t h a time b a s e d i s p l a y e d on a cathode r a y t u b e (CRT) and photographed o r p l o t t e d on a n x-y

p l o t t e r . The shape and amplitude of t h e r e f l e c t e d wave, i n r e l a t i o n t o t h e outgoing wave, r e v e a l t h e n a t u r e and magnitude of t h e impedance mismatches and d i s c o n t i n u i t i e s a l o n g t h e t r a n s m i s s i o n l i n e .

The amplitude of t h e r e f l e c t e d waveform i s dependent upon t h e change i n impedance along t h e t r a n s m i s s i o n l i n e . The impedance i s dependent upon t h e l i n e and t h e e l e c t r i c a l p r o p e r t i e s of t h e g e o m e t r i c a l shape of t h e t r a n s m i s s i o n surrounding medium. For a balanced p a r a l l e l w i r e t r a n s m i s s i o n l i n e , t h e c h a r a c t e r i s t i c s impedance (Zo) i s g i v e n by: where K = d i e l e c t r i c c o n s t a n t of t h e surrounding medium S = s p a c i n g between t h e rods (cm) d = diameter of t h e r o d s (cm). I n t h e s e experiments, t h e p a r a l l e l w i r e t r a n s m i s s i o n l i n e i s t e r m i n a t e d i n an open c i r c u i t . The impedance a t an open c i r c u i t i s i n f i n i t e and t h e energy from impinging s i g n a l s i s t o t a l l y r e f l e c t e d . Events on t h e TDR waveform can be used t o c a l c u l a t e t h e d i e l e c t r i c c o n s t a n t of t h e medium, u s i n g e q u a t i o n 3, provided t h e p h y s i c a l d i s t a n c e between t h e d i s c o n t i n - u i t i e s i s known, o r t h e y c a n b e u s e d t o l o c a t e t h e d i s c o n t i n u i t y provided t h e d i e l e c t r i c c o n s t a n t of t h e medium i s known. The d i f f e r e n c e i n t h e d i e l e c t r i c c o n s t a n t of f r o z e n and unfrozen s o i l w i t h a h i g h w a t e r c o n t e n t c a u s e s a n impedance change a t t h e f r e e z i n g f r o n t producing a r e f l e c t i o n o n t h e TDR waveform. Using t h e t i m e base on t h e waveform i t i s p o s s i b l e t o measure t h e time f o r t h e wave t o t r a v e l through t h e f r o z e n zone ( t f ) and unfrozen zone (t,). I n making t h e c a l c u l a t i o n s t h e s e t r a v e l t i m e s a r e d i v i d e d i n h a l f because r e f l e c t e d waves a c t u a l l y t r a v e l t w i c e t h e d i s t a n c e along t h e transrmlssion l i n e . P r i o r measurement of t h e d i e l e c t r i c c o n s t a n t of t h e f r o z e n and/or u n f r o z e n m a t e r i a l c a n b e used t o l o c a t e t h e f r e e z i n g f r o n t r e l a t i v e t o t h e f r o z e n o r u n f r o z e n end of t h e t r a n s m i s s i o n l i n e u s i n g e q u a t i o n 3 w r i t t e n i n t h e f o l l o w i n g form: Being a b l e t o c a l c u l a t e t h e l o c a t i o n of t h e f r e e z i n g f r o n t , w i t h r e s p e c t t o b o t h ends of t h e t r a n s m i s s i o n l i n e , improves t h e accuracy of t h e t e c h n i q u e (Baker e t a l .

,

1982). I f t h e u n i f o r m i t y of t h e d i e l e c t r i c c o n s t a n t i s b e t t e r i n one zone t h a n t h e o t h e r , t h e n i t i s b e t t e r t o l o c a t e t h e f r e e z i n g f r o n t from one s i d e o n l y , a s i n t h e f i e l d measurements r e p o r t e d i n Baker e t a l . (1 982). LABORATORY EXPERIMENTS The s o i l s u s e d i n t h i s s t u d y were a graded s t a n d a r d q u a r t z sand from Ottawa, I l l i n o i s (ASTM Spec. C-log), and a l o c a l marine s i l t y c l a y . A l l samples were prepared from t h e i r d r y s t a t e and compacted i n t o waxed cardboard

c y l i n d r i c a l moulds (15.2 cm i n d i a m e t e r and 28 c m i n depth). Two s t e e l r o d s (0.2 cm i n d i a m e t e r , 3 c m s p a c i n g ) were i n s e r t e d i n t o d r i l l e d h o l e s t o a d e p t h of 25 cm. A s t r i n g of thermocouples was a l s o i n s e r t e d i n t o t h e s o i l w i t h s e n s o r s spaced a t 2 c m i n t e r v a l s . Two o t h e r t h e m o c o u p l e s were placed, one on t h e s u r f a c e of t h e s o i l and one on t h e bottom of t h e mould. The c y l i n d r i c a l sample mould was s e a t e d on a b a t t e r y h e a t e r , surrounded w i t h 10 cm of v e r m i c u l i t e i n s u l a t i o n and p l a c e d i n a c o l d room a t -5.5OC.

(6)

F i g u r e s 1 t o 3 show i n f o r m a t i o n on t h e r e l a t i o n s h i p between v o l u m e t r i c w a t e r c o n t e n t and t h e measured d i e l e c t r i c

c o n s t a n t f o r t h e s o i l s u s e d i n t h e s e experiments. D i e l e c t r i c c o n s t a n t measurements were made on t h e u n f r o z e n s o i l s a s soon a s t h e t r a n s m i s s i o n l i n e s were i n p l a c e . When t h e t r a n s m i s s i o n

l i n e s had become completely f r o z e n i n and t h e temperature had s t a b i l i z e d , t h e f r o z e n d i e l e c t r i c c o n s t a n t was measured.

-

-

- 4 c

-

r -0.5"C '" 20

-

A -18OC

-

T O P P E T A L ( 1 9 8 0 ) V LL -

-

MEAN Y

-

-

n - C Z W

-

PI

-

8

-

&

i

A

A

-r

-

V O L U M E T R I C W A T E R C O N T E N T . % F i g u r e 1. Volumetric w a t e r c o n t e n t v e r s u s a p p a r e n t d i e l e c t r i c c o n s t a n t f o r Ottawa sand a t v a r i o u s ambient

t e m p e r a t u r e s

X-RAY NEASUREMENT S

I n t h e s i l t y c l a y experiments, i t

was f e l t n e c e s s a r y t o have a means of observing t h e f o r m a t i o n of i c e i n t h e sample d u r i n g f r e e z i n g . The r a d i o g r a p h i c equipment used by Penner and Goodrich

(1980) had proven u s e f u l i n l o c a t i n g s e g r e g a t e d i c e i n t h e i r l a b o r a t o r y f r o s t heaving experiments. The X-ray

photographs were t a k e n through t h e c y l i n d r i c a l sample on a 20 x 2 5 cm f i l m placed behind t h e sample mould. The exposure t i m e was a b o u t 7 t o 8 minutes a t a d i s t a n c e of 1.5 m and a s e t t i n g of 200 25 TOPP ET A 1 119801 MEAN + Z

---

STANDARD DNlATlON a

=;

2 0 Z 0 U U

-

oz C 1 5 A w

-

n C Z w LL

2

1 0 n 4 5 0 o 10 2 0 30 a o V O L U M E T R I C W A T E R C O N T E N T . % F i g u r e 2. Volumetric w a t e r c o n t e n t v e r s u s a p p a r e n t d i e l e c t r i c c o n s t a n t f o r s i l t y c l a y a t 22OC A N N A N A N D D A V I S ( 1 9 7 8 ) B A K E R A N D D A V I S ( T H I S P A P E R ) T E M P E R A T U R E . O C F i g u r e 3. Temperature e f f e c t on a p p a r e n t d i e l e c t r i c c o n s t a n t of s i l t y c l a y

(7)

Figure 4. TDR waveforms f o r t h e sand experiment s c a l e : v e r t i c a l 200 mpldiv; h o r i z o n t a l 2 n s / d i v

kV and 5 ma. A 1 cm2 l e a d t a r g e t was p l a c e d on t h e f r o n t of t h e mould t o a c t a s l o c a t i o n i n d i c a t o r on t h e r a d i o g r a p h and t o p r o v i d e i n f o r m a t i o n on t h e maximm d i s t o r t i o n . The l e a d t a r g e t and s t e e l r o d s showed up very c l e a r l y on t h e radiographs. I c e s t r i n g e r s o r v e i n s could be s e e n i n t h e f r o z e n zone and formed t h e c h a r a c t e r i s t i c r e t i c u l a t e p a t t e r n of f r o z e n c l a y . The lowest i c e s t r i n g e r o r l e n s o c c u r r i n g between t h e s t e e l rods and/or w i t h i n one rod s p a c i n g around t h e r o d s was used t o i n d i c a t e t h e depth of i c e i n t h e sample. This i s

r e f e r r e d t o i n t h i s paper a s t h e X-ray

measurement. SAND EXPERIMENT

Some TDR t r a c e s from t h e s a n d

experiment a r e shown i n F i g u r e 4. These t r a c e s were made from photographs of t h e TDR s c a n on t h e CRT. The t i m e i n h o u r s i s i n d i c a t e d i n t h e upper l e f t c o r n e r of e a c h t r a c e and i s r e l a t i v e t o t h e t i m e of t h e f i r s t i n d i c a t i o n of t h e f r e e z i n g f r o n t on t h e TDR t r a c e s . The f i r s t t r a c e a t -20 h o u r s shows t h e sample t o be

completely unfrozen. The sample was allowed t o f r e e z e from t h e t o p down and t h e l o c a t i o n of t h e f r e e z i n g f r o n t a s

(8)

S U R F A C E T E M P E R A T U R E 30 25 20 E u ; 1 5 C n w 10 T I M E , h

F i g u r e 5. Data from t h e sand experiment

5 4-

4

@ " @ '

-

3

I 0

,b

0 do o

'

a l b o 1:o z:o ' 220 TIME, h l ~ ~ ~ ~ ~ r ~ ~ ~ l ~ l ~ l l ' l ' l ' ~

+

Z E R O I S O T H E R M A N D A S S O C I A T E D E R R O R

-

.

T D R M E A S U R E M E N T ( F R O Z E N S I D E ) T D R M E A S U R E M E N T ( U N F R O Z E N S I D E )

-

-

&!

b

time progressed i s i n d i c a t e d i n Figure

4

by a n arrow. A t 218 hours, t h e sample was completely f r o z e n and had reached a n i s o t h e r m a l temperature of about -5.6OC. The d i e l e c t r i c c o n s t a n t of t h e f r o z e n sand was used t o l o c a t e t h e f r e e z i n g f r o n t from t h e f r o z e n s i d e .

F i g u r e 5 shows TDR measurements i n comparison w i t h t h e l o c a t i o n of t h e z e r o degree isotherm i n t e r p o l a t e d from t h e temperature measurements. V e r t i c a l l i n e s on t h e l o c a t i o n of t h e z e r o degree

i s o t h e r m i n d i c a t e e r r o r s a s s o c i a t e d w i t h shallow thermal g r a d i e n t s i n t h e v i c i n i t y of 0°C. I n t h e e a r l y s t a g e s of t h e experiment, t h e r e was almost an

i s o t h e r m a l c o n d i t i o n w i t h d e p t h a s t h e sample approached 0 O C . This c o n d i t i o n

remained f o r t h e f i r s t 30 hours b e f o r e t h e bottom temperature was i n c r e a s e d . I n F i g u r e 4, t h e TDR t r a c e a t 25 hours showed a d i s t i n c t r e f l e c t i o n which t h e a u t h o r s a t t r i b u t e d t o t h e f r e e z i n g f r o n t even though t h e temperature d a t a

i n d i c a t e d a n i s o t h e r m a l c o n d i t i o n a s d e s c r i b e d above. A s time progressed and t h e thermal g r a d i e n t i n c r e a s e d , t h e TDR measurements and t h e thermal measurements agreed more c l o s e l y . Between 120 and 150 hours a s l i g h t thaw-back of t h e f r o z e n l a y e r was i n d i c a t e d by b o t h t h e TDR and

--

temperature measurements.

-

SILTY CLAY EXPERIMENT

*

r r

-

Some TDR t r a c e s from t h e s i l t y c l a y experiment a r e shown i n F i g u r e 6. The f i r s t t r a c e a t -25 hours shows t h e sample completely unfrozen a t 22OC. The sample was allowed t o f r e e z e from t h e t o p d a r n , s i m i l a r t o t h e sand experiment. The

f r e e z i n g f r o n t i s i n d i c a t e d on e a c h of t h e TDR t r a c e s i n F i g u r e 6 by a n arrow. R e f l e c t i o n s from t h e f r e e z i n g f r o n t a r e n o t a s d i s t i n c t a s t h o s e i n t h e sand experiment (Fig.

4).

A l l TDR t r a c e s were simultaneously produced on t h e x-y

p l o t t e r where t h e l a r g e r s c a l e made t h e r e f l e c t i o n s from t h e f r e e z i n g f r o n t much more d i s t i n c t t h a n shown i n F i g u r e 6. T r a v e l times i n t h e unfrozen zone were used t o l o c a t e t h e p o s i t i o n of t h e f r e e z i n g f r o n t from t h e unfrozen s i d e . A t 336 h o u r s (Fig. 8 ) , t h e sample had s t a b i l i z e d a t a n i s o t h e r m a l temperature of -5.7OC. For t h e t i m e s 240 h o u r s and 336 h o u r s , r e f l e c t i o n s a r e noted a t a l o c a t i o n s i m i l a r t o t h a t p r e v i o u s l y a t t r i b u t e d t o t h e f r e e z i n g f r o n t . The

temperature d a t a i n d i c a t e d t h a t t h e sample had been completely lowered w e l l below O°C and t h a t some i c e s h o u l d e x i s t

(9)

F i g u r e 6. TDR waveforms f o r t h e s i l t y c l a y experiment s c a l e : v e r t i c a l 200 mp/div; h o r i z o n t a l 2 n s l d i v along t h e e n t i r e l e n g t h of t h e sample. F i g u r e 7 p r e s e n t s d a t a from t h e s i l t y c l a y experiment. During t h e i n i t i a l f r e e z i n g s t a g e , t h e TDR measurements remained a t a s h a l l o w e r d e p t h t h a n t h e z e r o d e g r e e isotherm. I n t h e second h a l f of t h e experiment, t h e h i g h bottom t e m p e r a t u r e produced a thaw- back of t h e f r o z e n zone and t h e TDR

measurements and z e r o d e g r e e i s o t h e r m a r e c o i n c i d e n t . X-ray measurements were made d u r i n g t h e experiment and t h e y showed i c e s t r i n g e r s o c c u r r i n g about 1.5 t o 2 c m deeper t h a n t h e TDR measurements. A t 173 hours, t h e TDR measurements and t h e X-ray measurements c o i n c i d e . Three r a d i o g r a p h s

t a k e n a t 7.5, 79 and 173 h o u r s ,

r e s p e c t i v e l y , a r e p r e s e n t e d i n F i g u r e 8.

A t 7.5 h o u r s , t h e r e t i c u l a t e ice s t r u c t u r e i n d i c a t e s t h e e x t e n t of t h e f r o z e n zone down t o a d e p t h of about 12

cm. By 79 h o u r s , t h e f r o z e n zone e x t e n d s down t o about t h e same d e p t h a s t h e l e a d

t a r g e t . The i c e s t r i n g e r s a p p e a r t o have grown i n s i z e from t h e previous

photograph. A t 173 hours, t h e f r o z e n zone h a s thawed back t o between 10 and 1 1

cm i n d e p t h and a s e g r e g a t i o n of i c e ( i c e l e n s ) i s c l e a r l y v i s i b l e . It i s f e l t

t h a t t h e i c e l e n s was formed d u r i n g t h e c o o l i n g t r e n d i n i t i a t e d by t h e lowering of t h e bottom t e m p e r a t u r e a t 144 hours.

(10)

The growing i c e l e n s would account f o r t h e r e f l e c t i o n s on t h e TDR t r a c e s i n F i g u r e 6 a t 144 and 336 hours.

CONCLUSIONS

Time-domain r e f l e c t o m e t r y has been used t o d i s t i n g u i s h t h e f r e e z i n g f r o n t i n l a b o r a t o r y experiments i n v o l v i n g t h e u n i a x i a l f r e e z i n g of Ottawa sand and a s i l t y c l a y . Measurements of t h e a p p a r e n t d i e l e c t r i c c o n s t a n t s have been used t o c a l c u l a t e t h e t h i c k n e s s of t h e f r o z e n

zone. These measurements have been

compared w i t h t h e s t a n d a r d t e m p e r a t u r e method of l o c a t i n g t h e p o s i t i o n of t h e z e r o degree i s o t h e r m and showed e x c e l l e n t c o r r e l a t i o n s i n t h e sand experiment.

I n t h e s i l t y c l a y experiment, t h e t h r e e measurement techniques depended upon t h r e e d i f f e r e n t p r o p e r t i e s of w a t e r a s s o c i a t e d w i t h f r e e z i n g s o i l s . The t e c h n i q u e u s i n g time-domain r e f l e c t o m e t r y was dependent upon t h e change i n

e l e c t r i c a l p r o p e r t i e s of w a t e r when i t

changed from a l i q u i d t o s o l i d s t a t e . L o c a t i o n of t h e z e r o d e g r e e i s o t h e r m from

temperature measurements was not a

p r e c i s e i n d i c a t o r of t h e change of s t a t e of w a t e r i n f i n e - g r a i n e d s o i l s due t o a

f r e e z i n g p o i n t depression. The X-ray

technique provided a q u a l i t a t i v e

i n d i c a t i o n of t h e p r e s e n c e of s e g r e g a t e d i c e i n t h e f r o z e n s o i l . The u n c e r t a i n t y between t h e TDR and X-ray measurements

was i n t h e o r d e r of 2 cm. This

d i f f e r e n c e may be a t t r i b u t e d t o t h e r e s o l u t i o n of t h e TDR measurements o r t h e dependence on t h e volume and t h i c k n e s s of i c e r e q u i r e d t o produce r e f l e c t i o n s on t h e TDR t r a c e .

The TDR measurements a l o n e may n o t i n themselves p r o v i d e enough i n f o r m a t i o n t o t o t a l l y d e l i n e a t e t h e e x t e n t of t h e f r o z e n zone, but s h o u l d be used i n c o n j u n c t i o n w i t h o t h e r methods now being a p p l i e d .

REFERENCES

Annan, A.P. and J.L. Davis. 1978. High

frequency e l e c t r i c a l method f o r t h e

d e t e c t i o n of freeze-thaw i n t e r f a c e s .

Proc. T h i r d I n t . Permafrost Conf.,

Edmonton, A l b e r t a , Vol. 1, pp. 496-500.

Baker, T.H.W., J.L. Davis, H.N. Hayhoe

and G.C. Topp. 1982. Locating t h e f rozen/unfrozen i n t e r f ace i n s o i l s u s i n g

time-domain r e f l e c t o m e t r y . Can. Geot.

Jour. ( i n p r e s s ) .

Davis, J.L., G.C. Topp and A.P. Annan.

1976. Electromagnetic d e t e c t i o n of s o i l

w a t e r c o n t e n t . Proc. of Workshop on

Remote Seesing of S o i l Moisture and Ground Water, Toronto, 1 3 p.

P a t t e r s o n , D.E. and M.W. Smith. 1981.

The measurement of unfrozen w a t e r c o n t e n t by time-domain r e f l e c t o m e t r y :

r e s u l t s from l a b o r a t o r y tests. Can.

Geot. Jour., Vol. 18, No. 1, pp. 131- 144.

Penner, E. and L.E. Goodrich. 1981.

Location of s e g r e g a t e d i c e i n f r o s t -

s u s c e p t i b l e s o i l . Engineering Geology,

Vol. 18, pp. 231-244.

Topp, G.C., J.L. Davis and A.P. Annan.

1980. Electromagnetic d e t e r m i n a t i o n of

s o i l w a t e r content: measurements i n

c o a x i a l t r a n s m i s s i o n l i n e s . Water Resources Research, Vol. 16, No. 3, pp. 574-582.

T h i s paper i s a c o n t r i b u t i o n from t h e D i v i s i o n of Building Research,

N a t i o n a l Research Council of Canada, and i s published w i t h t h e permission of t h e D i r e c t o r of t h e Division.

(11)

I

+

Z E R O 0 0 I S O T H E R M A N D 00 *I3 A

*4,

n A S S O C I A T E D E R R O R

5 t

T O R M E A S U R E M E N T ( U N F R O Z E N S I D E ) n X - R A Y M E A S U R E M E N T O F I C E B O U N D A R Y o I l j l l l l l t l l ' l l l r l l l ' l l r ' l l l l [ l l l l l l l J 0 2 U 4 0 6 0 8 0 1 0 0 1 2 0 140 1 6 0 1 8 0 T I M E , h S U R F A C E T E M P F R A T U R E

p

t ' [ 1 1 1 1 ' 1 1 1 1 [ ~ 1 1 1 ~ 1 1 [ 1 ~ 1 ~ 1 1 1 1 ~ 1 1 1 1

r

0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 T I M E , h

F i g u r e 7. Data from t h e s i l t y c l a y experiment

F i g u r e 8. Radiographs from t h e s i l t y c l a y experiment, ( a ) 7.5 hours ( b ) 79 hours ( c ) 1 7 3 hours

(12)

T h i s paper, w h i l e being d i s t r i b u t e d i n r e p r i n t form by t h e D i v i s i o n of B u i l d i n g Research, remains t h e c o p y r i g h t of t h e o r i g i n a l p u b l i s h e r . It should n o t be reproduced i n whole o r i n p a r t w i t h o u t t h e permission of t h e p u b l i s h e r . A l i s t of a l l p u b l i c a t i o n s a v a i l a b l e from t h e D i v i s i o n may be o b t a i n e d by w r i t i n g t o t h e P u b l i c a t i o n s S e c t i o n , D i v i s i o n of B u i l d i n g R e s e a r c h , N a t i o n a l R e s e a r c h C o u n c i l of Canada, O t t a w a , O n t a r i o ,

KIA

OR6.

Figure

Figure  4.  TDR  waveforms  f o r   t h e   sand  experiment  s c a l e :   v e r t i c a l   200  mpldiv;  h o r i z o n t a l   2  n s / d i v   kV  and  5  ma

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

" Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers