• Aucun résultat trouvé

New integral results using Pólya-Szegö inequality

N/A
N/A
Protected

Academic year: 2021

Partager "New integral results using Pólya-Szegö inequality"

Copied!
8
0
0

Texte intégral

(1)

Volume 17, Number 2, December 2013 Available online at http://acutm.math.ut.ee

New integral results using P´

olya–Szeg¨

o inequality

Ahmed Anber and Zoubir Dahmani

Abstract. In this paper, we use the Riemann–Liouville fractional in-tegral to present recent inin-tegral results using new inequalities of P´olya– Szeg¨o type.

1. Introduction

The integral inequalities involving functions of independent variables play a fundamental role in the theory of differential equations. Significant devel-opment in this area has been achieved in the last two decades. For more details, we refer to [3, 11, 14, 15] and the references therein. The study of fractional type inequalities is also of great importance. We refer the reader to [1, 16] for further information and applications.

Let us now introduce some results that have inspired our work. We con-sider the functional (see [2])

T (f, g) := 1 b − a Z b a f (x) g (x) dx − 1 (b − a)2 Z b a f (x) dx Z b a g (x) dx, where f and g are two integrable functions on [a, b]. Gr¨uss [10] proved the inequality

|T (f, g)| ≤ (M − m)(N − n)

4 ,

provided that f and g are two integrable functions on [a, b] satisfying m ≤ f (x) ≤ M, n ≤ g(x) ≤ N, m, M, n, N ∈ R, x ∈ [a, b]. Using the P´olya–Szeg¨o inequality (see [17], pp. 213–214)

Rb a f 2(x) dxRb ag 2(x) dx  Rb a f (x) dx Rb ag (x) dx 2 ≤ 1 4  r M N mn + r mn M N 2 , (1) Received March 25, 2013.

2010 Mathematics Subject Classification. 26A33, 26D10.

Key words and phrases. Gr¨uss inequality, fractional integral, P´olya–Szeg¨o inequality. http://dx.doi.org/10.12097/ACUTM.2013.17.15

171

(2)

Dragomir and Diamond [8] proved that |T (f, g)| ≤ (M − m)(N − n) 4(b − a)2√mM nN Z b a f (x) dx Z b a g (x) dx, (2) where f and g are two positive integrable functions on [a, b] such that

0 < m ≤ f (x) ≤ M < ∞, 0 < n ≤ g(x) ≤ N < ∞.

For other Gr¨uss type inequalities, see [5, 4, 6, 7, 12, 13, 18] and the references cited therein.

The main aim of this paper is to establish some new fractional integral inequalities of P´olya–Szeg¨o type. Then, we use these results to generate some other fractional integral inequalities.

2. Description of the fractional calculus

We introduce some definitions and properties concerning the Riemann– Liouville fractional integral operator.

Definition 1. A real valued function f is said to be in the space Cµ([0,∞)),

µ ∈ R, if there exists a real number p > µ such that f (t) = tpf1(t), where

f1 ∈ C([0, ∞)).

Definition 2. A function f is said to be in the space Cµn([0, ∞)), n ∈ N, if f(n)∈ Cµ([0, ∞)).

Definition 3. The Riemann–Liouville fractional integral operator of or-der α ≥ 0, for a function f ∈ Cµ([0, ∞)), µ ≥ −1, is defined as

Jαf (t) = 1 Γ(α) Z t 0 (t − τ )α−1f (τ )dτ, α > 0, t > 0, J0f (t) = f (t). (3)

For the convenience of establishing the results, we give the following prop-erty:

JαJβf (t) = Jα+βf (t).

For the expression (3), when f (t) = tβ, we get another expression that will be used later:

Jαtβ = Γ(β + 1) Γ(α + β + 1)t

α+β.

(3)

3. Main results

Our first result is the following theorem.

Theorem 1. Let f and g be two positive integrable functions on [0, ∞). Suppose that there exist positive real numbers m, M, n, N such that

0 < m ≤ f (τ ) ≤ M < ∞, 0 < n ≤ g(τ ) ≤ N < ∞, τ ∈ [0, t], t > 0. (4) Then we have tα Γ (α + 1)J αf (t) g (t)− Jαf (t) Jαg (t) ≤ (M − m) (N − n) 4√mM nN J αf (t) Jαg (t) , (5) for any α > 0, t > 0.

Remark 2. If we take α = 1, then we obtain (2) on [0, t]. To prove Theorem 1, we need the following lemma.

Lemma 3. Suppose that h and l are two positive integrable functions on [0, ∞) such that

0 < m1 ≤ h(τ ) ≤ M1< ∞, 0 < n1 ≤ l(τ ) ≤ N1< ∞, τ ∈ [0, t], t > 0.

(6) Then for any α > 0, t > 0 we have

Jαh2(t) Jαl2(t) (Jαh (t) l (t))2 ≤ 1 4 r M1N1 m1n1 +r m1n1 M1N1 !2 . Proof. From the condition

h (τ ) l (τ ) ≤ M1 n1 , τ ∈ [0, t] , t > 0, we have n1 M1 h2(τ ) ≤ h(τ )l(τ ), τ ∈ [0, t] , t > 0. (7) Multiplying both sides of (7) by (t−τ )Γ(α)α−1, τ ∈ (0, t), and integrating the resulting inequality with respect to τ over (0, t), we get

n1 M1Γ (α) Z t 0 (t − τ )α−1(h(τ ))2dτ ≤ 1 Γ (α) Z t 0 (t − τ )α−1h(τ )l(τ )dτ. Therefore, n1 M1 Jαh2(t) ≤ Jα  h(t)l(t)  . (8)

Now, using the condition m1

N1

≤ h (τ )

(4)

we can write m1 N1 Jαl2(t) ≤ Jα  h(t)l(t)  . (9)

Multiplying (8) and (9), we obtain  n1 M1 m1 N1  Jαh2(t)Jαl2(t) ≤  Jα(l(τ )h(τ )) 2 . This implies that

h2(t)Jαl2(t)  Jαl(t)h(t)2 ≤ M1N1 m1n1 ≤ 1 4 r M1N1 m1n1 +r m1n1 M1N1 !2 .

Lemma is thus proved. 

Remark 4. If we take α = 1, then we obtain P´olya–Szeg¨o inequality on [0, t].

Proof of Theorem 1. Denoting

Q(τ, ρ) := (f (τ ) − f (ρ)) (g (τ ) − g (ρ)) , we have Z t 0 (t − τ )α−1 Γ (α) Q(τ, ρ)dτ = Z t 0 (t − τ )α−1 Γ (α)  f (τ ) g (τ ) + f (ρ) g (ρ) − f (τ ) g (ρ) − f (ρ) g(τ )dτ = Jα(f (t)) g(t)+ t α Γ (α + 1)f (ρ) g (ρ) − g (ρ) Jα(f (t)) − f (ρ) Jα(g (t)) . Consequently, Z t 0 Z t 0 (t − τ )α−1(t − ρ)α−1 Γ2(α) Q(τ, ρ)dτ dρ = 2 t α Γ (α + 1)J α(f (t)) g(t)− 2Jαf (t) Jαg (t) . (10)

On the other hand, using the Cauchy–Schwartz inequality for double inte-grals, we can write

Z t 0 Z t 0 (t − τ )α−1(t − ρ)α−1 Γ2(α) Q(τ, ρ)dτ dρ ≤ " Z t 0 Z t 0 (t − τ )α−1(t − ρ)α−1 Γ2(α) f 2(τ )dτ dρ + Z t 0 Z t 0 (t − τ )α−1(t − ρ)α−1 Γ2(α) f 2(ρ)dτ dρ

(5)

−2 Z t 0 Z t 0 (t − τ )α−1(t − ρ)α−1 Γ2(α) f (ρ) f (τ ) dτ dρ #12 × " Z t 0 Z t 0 (t − τ )α−1(t − ρ)α−1 Γ2(α) g 2(τ )dτ dρ + Z t 0 Z t 0 (t − τ )α−1(t − ρ)α−1 Γ2(α) g 2(ρ)dτ dρ −2 Z t 0 Z t 0 (t − τ )α−1(t − ρ)α−1 Γ2(α) g (ρ) g (τ ) dτ dρ #1 2 . Therefore, Z t 0 Z t 0 (t − τ )α−1(t − ρ)α−1 Γ2(α) Q(τ, ρ)dτ dρ ≤ 2  tα Γ(α + 1)J αf2(t) −Jαf (x)2 1 2 ×  tα Γ(α + 1)J αg2(t) −Jαg (x)2 12 . (11)

Using Lemma 3, we get tα Γ(α + 1)J αf2(x) ≤ 1 4 r M m + r m M !2 (Jαf (x))2 = (M + m) 2 4mM (J αf (x))2 . Hence tα Γ(α + 1)J αf2(x) − (Jαf (x))2 ≤ ((M + m)2 4mM − 1) (J αf (x))2 , (12) that is tα Γ(α + 1)J αf2(x) − (Jαf (x))2 (M − m)2 4mM (J αf (x))2 . In a similar fashion, we obtain

tα Γ(α + 1)J αg2(x) − (Jαg (x))2 (N − n) 2 4nN (J αg (x))2. (13)

Combining (10), (11), (12) and (13), we deduce the desired inequality (5). 

(6)

Our second result is the following.

Theorem 5. Let f and g be two positive integrable functions on [0, ∞). Suppose that there exist positive real numbers m, n, M, N such that (4) holds. Then we have tα Γ (α + 1)J βf (t) g (t)+ tβ Γ (β + 1)J αf (t) g (t) −Jαf (t) Jβg (t) − Jβf (t) Jαg (t) ≤ (M − m) (N − n) 2√mM nN J αf (t) Jβg (t) (14) for any α > 0, β > 0, t > 0.

To prove this theorem, we need the following lemma which is another generalization of P´olya–Szeg¨o inequality (1).

Lemma 6. Suppose that h and l are two positive integrable functions on [0, ∞) such that (6) holds. Then for any α > 0, β > 0, t > 0, we have

Jαh2(t) Jβl2(t) (Jαh (t) l (t)) (Jβh (t) l (t)) ≤ 1 4 r M1N1 m1n1 +r m1n1 M1N1 !2 . (15)

Proof. By the condition m1 N1 ≤ h (τ ) l (τ ), τ ∈ [0, t], t > 0, we get m1 N1 Jβl2(t) ≤ Jβh(t)l(t). (16)

Thanks to (8) and (16) we obtain (15). 

Proof of Theorem 5. We have Z t o Z t 0 (t − τ )α−1(t − ρ)β−1 Γ (α) Γ (β) Q(τ, ρ)dτ dρ = t α Γ (α + 1)J β(f (t)) g(t)+ tβ Γ (β + 1)J α(f (t)) g(t) − Jαf (t) Jβg (t) − Jβf (t) Jαg (t) . (17)

As in the proof of Theorem 1, using Cauchy–Schwartz inequality for double integrals, we find that

Z t 0 Z t 0 (t − τ )α−1(t − ρ)β−1 Γ (α) Γ (β) Q(τ, ρ)dτ dρ

(7)

≤ " Z t 0 Z t 0 (t − τ )α−1(t − ρ)β−1 Γ (α) Γ (β) f 2(τ )dτ dρ + Z t 0 Z t 0 (t − τ )α−1(t − ρ)β−1 Γ (α) Γ (β) f 2(ρ)dτ dρ −2 Z t 0 Z t 0 (t − τ )α−1(t − ρ)β−1 Γ (α) Γ (β) f (ρ) f (τ ) dτ dρ #12 × " Z t 0 Z t 0 (t − τ )α−1(t − ρ)β−1 Γ (α) Γ (β) g 2(τ )dτ dρ + Z t 0 Z t 0 (t − τ )α−1(t − ρ)β−1 Γ (α) Γ (β) g 2(ρ)dτ dρ −2 Z t 0 Z t 0 (t − τ )α−1(t − ρ)β−1 Γ (α) Γ (β) g (ρ) g (τ ) dτ dρ #12 . Thus Z t 0 Z t 0 (t − τ )α−1 Γ (α) (t − ρ)α−1 Γ (α) Q(τ, ρ)dτ dρ ≤  tα Γ(α + 1)J βf2(t) + tβ Γ(β + 1)J αf2(t) − 2Jαf (t) Jβf (t) 12 ×  tα Γ(α + 1)J βg2(t) + tβ Γ(β + 1)J αg2(t) − 2Jαg (t) Jβg (t) 12 . (18)

Using Lemma 6, we may state that tα Γ(α + 1)J βf2(t) − Jαf (t) Jβf (t) ≤ (M − m) 2 4mM J αf (t) Jβf (t) (19) and tβ Γ(β + 1)J αf2(t) − Jαf (t) Jβf (t) ≤ (M − m) 2 4mM J αf (t) Jβf (t) . (20)

For the function g, we have tα Γ(α + 1)J βg2(t) − Jαg (t) Jβg (t) ≤ (N − n) 2 4nN J αg (t) Jβg (t) (21) and tβ Γ(β + 1)J αg2(t) − Jαg (t) Jβg (t) ≤ (N − n) 2 4nN J αg (t) Jβg (t) . (22)

(8)

Remark 7. Applying Theorem 5, for α = β we obtain Theorem 1, and for α = β = 1 we obtain (4) on [0, t].

References

[1] G. A. Anastassiou, Fractional Differentiation Inequalities, Springer, Dordrecht, 2009. [2] P. L. Chebyshev, Sur les expressions approximatives des int´egrales d´efinies par les

autres prises entre les mˆemes limites, Proc. Math. Soc. Charkov 2 (1882), 93–98. [3] P. Cerone and S. S. Dragomir, A refinement of the Gr¨uss inequality and applications,

Tamkang J. Math. 38 (2007), 37–49.

[4] Z. Dahmani and L. Tabharit, On weighted Gr¨uss type inequalities via fractional inte-gration, J. Adv. Res. Pure Math. 2 (2010), 31–38.

[5] Z. Dahmani, L. Tabharit, and S. Taf, New generalisation of Gr¨uss inequality using Riemann-Liouville fractional integrals, Bull. Math. Anal. Appl. 2 (2010), 93–99. [6] S. S. Dragomir, A generalization of Gr¨uss’s inequality in inner product spaces and

applications, J. Math. Anal. Appl. 237 (1999), 74–82.

[7] S. S. Dragomir, Some integral inequalities of Gr¨uss type, Indian J. Pure Appl. Math. 31 (2000), 397–415.

[8] S. S. Dragomir and N. T. Diamond, Integral inequalities of Gr¨uss type via P´olya-Szeg¨o and Shisha-Mond results, East Asian Math. J. 19 (2003), 27–39.

[9] R. Gorenflo and F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order, CISM Courses and Lectures 378, Springer, Vienna, 1997. [10] G. Gr¨uss, ¨Uber das Maximum des absoluten Betrages von b−a1 Rb

af (x) g (x) dx − 1 (b−a)2 Rb af (x) dx Rb ag (x) dx, Math. Z. 39 (1935), 215–226.

[11] S. Mazouzi and F. Qi, On an open problem regarding an integral inequality, J. Inequal. Pure Appl. Math. 4 (2003), No. 2, Article 31.

[12] A. McD. Mercer, An improvement of the Gr¨uss inequality, J. Inequal. Pure Appl. Math. 6 (2005), No. 4, Article 93.

[13] A. McD. Mercer and P. Mercer, New proofs of the Gr¨uss inequality, Aust. J. Math. Anal. Appl. 1 (2004), No.2, Art. 12.

[14] D. S. Mitrinovi´c, J. E. Peˇcari´c, and A. M. Fink, Classical and New Inequalities in Anal-ysis, Mathematics and its Applications (East European Series) 61, Kluwer Academic Publishers Group, Dordrecht, 1993.

[15] B. G. Pachpatte, On multidimensional Gr¨uss type integral inequalities, J. Inequal. Pure Appl. Math. 3 (2002), No. 2, Article 27.

[16] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineer-ing 198, Academic Press, San Diego, 1999.

[17] G. P´olya and G. Szeg¨o, Aufgaben und Lehrs¨atze aus der Analysis. Band 1, Die Grundlehren der mathmatischen Wissenschaften 19, J. Springer, Berlin, 1925. [18] M. Z. Sarikaya, N. Aktan, and H. Yildirim, On weighted ˇCebyˇsev-Gr¨uss type

inequal-ities on time scales, J. Math. Inequal. 2 (2008), 185–195.

Department of Mathematics, University of USTO, Oran, Algeria

Laboratory of Pure and Applied Mathematics, Faculty SEI, UMAB, Univer-sity of Mostaganem, Algeria

Références

Documents relatifs

Elle est également incluse en grande quantité dans la matrice osseuse (Schinke et al. Il se peut donc que l’uranium transporté soit lié à cette protéine dans le sang.. Figure

IW U i,t = f (deterrence i,t , policy i , production i,t , social i,t , weather i,t , N i,t , C) (2.3) Where i represents a municipality in which irrigators used water for produc-

D’autre part, je démontre ce que l’organisation industrielle peut apporter au champ de l’économie de la culture, non seulement dans le cadre de l’analyse des politiques

We fitted the parameters of this emulator against gridded aboveground maize biomass at the end of the growing sea- son simulated by eight different GGCMs in a given year (2000)..

Mertens et al., “Gate-all-around MOSFETs based on vertically stacked horizontal Si nanowires in a replacement metal gate process on bulk Si substrates,” in 2016

In conclusion, the goal of this PhD dissertation is to bring together an analysis of employment responses to cash transfer programs in South Africa to draw lessons about the

The comparison of ratios between europium 2+ and 3+ species in salts of di fferent origins by means of core level photoemission and X-ray absorption matches the di fferences observed

Simulations showed that the eMAL algorithm applied to a light, small and low power antenna like the Middle Alva can provide a positioning error lower than 0.6 m for 90% of estimates