• Aucun résultat trouvé

Standardized protocol for determination of biohydrogen potential

N/A
N/A
Protected

Academic year: 2022

Partager "Standardized protocol for determination of biohydrogen potential"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: hal-02921485

https://hal.inrae.fr/hal-02921485

Submitted on 26 Aug 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Standardized protocol for determination of biohydrogen potential

Julian Carrillo-Reyes, German Buitron, Iván Moreno-Andrade, Aida Cecilia Tapia-Rodríguez, Rodolfo Palomo-Briones, Elías Razo-Flores, Oscar Aguilar-Juárez, Jorge Arreola-Vargas, Nicolas Bernet, Adriana Ferreira Maluf

Braga, et al.

To cite this version:

Julian Carrillo-Reyes, German Buitron, Iván Moreno-Andrade, Aida Cecilia Tapia-Rodríguez, Rodolfo

Palomo-Briones, et al.. Standardized protocol for determination of biohydrogen potential. MethodsX,

Elsevier, 2020, 7, pp.100754. �10.1016/j.mex.2019.11.027�. �hal-02921485�

(2)

Protocol Article

Standardized protocol for determination of biohydrogen potential

Julián Carrillo-Reyes

a,

*, Germán Buitrón

a

,

Iván Moreno-Andrade

a

, Aida Cecilia Tapia-Rodríguez

b

, Rodolfo Palomo-Briones

b

, Elías Razo-Flores

b

,

Oscar Aguilar-Juárez

c

, Jorge Arreola-Vargas

d

, Nicolas Bernet

e

, Adriana Ferreira Maluf Braga

f

, Lucia Braga

g

, Elena Castelló

g

, Lucile Chatellard

e

, Claudia Etchebehere

h

, Laura Fuentes

h

, Elizabeth León-Becerril

c

, Hugo Oscar Méndez-Acosta

i

, Gonzalo Ruiz-Filippi

j

, Estela Tapia-Venegas

j

, Eric Trably

e

, Jorge Wenzel

h

, Marcelo Zaiat

f

aLaboratoryforResearchonAdvancedProcessesforWaterTreatment,InstitutodeIngeniería,Unidad AcadémicaJuriquilla,UniversidadNacionalAutónomadeMéxico,Blvd.Juriquilla3001,Queretaro,76230, Mexico

bDivisióndeCienciasAmbientales,InstitutoPotosinodeInvestigaciónCientíficayTecnológicaA.C.,Caminoa laPresaSanJoséNo.2055,Col.Lomas4aSección,C.P.78216,SanLuisPotosí,SLP,Mexico

cDepartmentofEnvironmentalTechnology,CentrodeInvestigaciónyAsistenciaenTecnologíayDiseñodel EstadodeJalisco,A.C.,Av.Normalistas800,Col.ColinasdelaNormal,C.P.44270,Guadalajara,Jalisco,Mexico

dDivisióndeProcesosIndustriales,UniversidadTecnológicadeJalisco,LuisJ.JiménezNo.577,1odeMayo,C.

P.44979,Guadalajara,Jalisco,Mexico

eINRAE,Univ.Montpellier,LBE,Narbonne,France

fBiologicalProcessLaboratory,SãoCarlosSchoolofEngineering,UniversityofSãoPaulo(LPB/EESC/USP),Av.

JoãoDagnone1100,SãoCarlos,SãoPaulo,13563-120,Brazil

gLaboratorioBioProA,FacultaddeIngeniería,UniversidaddelaRepúblicadeUruguay,Av.JulioHerreray Reissig565,Montevideo,Uruguay

hLaboratoriodeEcologíaMicrobiana,DepartamentodeBioquímicayGenómicaMicrobiana,Institutode InvestigacionesBiológicasClementeEstable,Av.Italia3318,Montevideo,Uruguay

iDepartamentodeIngenieríaQuímica,CUCEI-UniversidaddeGuadalajara,Blvd.M.GarcíaBarragan1451,C.P.

44430,Guadalajara,Jalisco,Mexico

jEscueladeIngenieríaBioquímica,FacultaddeIngeniería,PontificiaUniversidadCatólicadeValparaíso,Av.

Brasil2085,Valparaíso,Chile

DOIoforiginalarticle:http://dx.doi.org/10.1016/j.ijhydene.2019.08.124

*Correspondingauthor.

E-mailaddress:JCarrilloR@ii.unam.mx(J.Carrillo-Reyes).

http://dx.doi.org/10.1016/j.mex.2019.11.027

2215-0161/©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://

creativecommons.org/licenses/by/4.0/).

ContentslistsavailableatScienceDirect

MethodsX

journal homepage:www.elsevier.com/locate/mex

(3)

ABSTRACT

Biohydrogenproductionpotential(BHP)dependsonseveralfactorslikeinoculumsource,substrate,pH,among manyothers.Batchassaysarethemostcommonstrategytoevaluatesuchparameters,wherethecomparisonisa challengingtaskduetothedifferentproceduresused.Thepresentmethodintroducesthefirstinternationally validatedprotocol,evaluatedby8independentlaboratoriesfrom5differentcountries,toassessthebiohydrogen potential.Asqualitycriteria,acoefficientofvariationofthecumulativehydrogenproduction(Hmax)wasdefined

tobe<15%.TwooptionstorunBHPbatchtestswereproposed;amanualprotocolwithperiodicmeasurementsof

biogasproduction,needingconventionallaboratorymaterialsandanalyticalequipmentforbiogascharacteriza- tion;andanautomaticprotocol,whichisruninadevicedevelopedforonlinemeasurementsoflowbiogas production.Thedetailedproceduresforbothprotocoloptionsarepresented,aswellasdatavalidatingthem.The validation showed acceptable repeatability and reproducibility, measured as intra- and inter-laboratory coefficientofvariation,whichcanbereducedupto9%.

©2019TheAuthors.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://

creativecommons.org/licenses/by/4.0/).

ARTICLE INFO

Protocolname:Biohydrogenpotentialprotocol

Keywords:Automaticprotocol,Darkfermentation,Heat-treatedinoculum,Manualprotocol Articlehistory:Received25October2019;Accepted29November2019;Availableonline4December2019

SpecificationTable

SubjectArea: EnvironmentalScience Morespecificsubject

area:

Biofuelsproduction

Protocolname: Biohydrogenpotentialprotocol Reagents/tools: Requiredreagents

NH4Cl

MES(2-(N-Morpholino)ethanesulfonicacid,4-Morpholineethanesulfonicacid) MgCl26H2O

FeSO47H2O CoCl26H2O MnCl24H2O KI NiCl26H2O ZnCl2

Anhydrousglucose HCl(37%) NaOH

Thymolphthalein(onlyfortheautomaticversion) Distilledwater

Requiredmaterialsandequipment

10-mLgraduatedpipettesoranairdisplacementpipette(110mL)withtips Spatula

pHmeter Pasteurpipettes

Digitalanalyticalbalance(readabilitydownto0.1mg)

Industrialblender,electriccoffeegrinderorporcelainmortarandpestle Standardmesh#20(sievesize850mm)

Laboratoryovenat1051C

Gaschromatographtoanalyzebiogascomposition(H2andCO2) Specificmaterialsforthemanualprotocol

120-mLserumbottles(Fig.1a)

Rubberstoppersforserumbottles(foranaerobiccultures)(Fig.1b)(Note:Becarefultonotuse thinstoppersthatcanleadtoleakageofthegasafterthefirstpunctureoftheneedle)

(4)

Aluminumrings(Fig.1b)

18-Gx11/2-inhypodermicneedlesandtubing(Fig.1c) Medicaldisposablethree-waystopcockvalve(Fig.1d) 50-mLplasticsyringe

100-mLgraduatedcylinder 500-mLglassbeaker

Crimpertosealaluminumrings Incubatorwithorbitalagitation Glassthermometer

Specificmaterialsfortheautomaticprotocol

AutomaticMethanePotentialTestSystem(AMPTSII,BioprocessControlAB;LundSweden) (Fig.2)

500-mLSchottglassbottles(Fig.2d) 50-mLgraduatedcylinder

500-mLgraduatedcylinder 50-mLglassbeakers

Experimentaldesign: TheproposedmethodpresentstwooptionstorunBHPbatchtests;amanualprotocolwithperiodic measurementsofbiogasproduction;andanautomaticprotocol,whichisruninadevicedevelopedfor onlinemeasurementsoflowbiogasproduction.

Trialregistration: n/a

Ethics: n/a

ValueoftheProtocol

Thismethodstandsforthefirststandardizedprotocolvalidatedinternationallytoestimatethehydrogenpotential.

Twoversionsoftheprotocolareincluded,amanualonewithlowequipment’srequirementsandanautomaticone.

Theaverageintra-laboratorycoefficientofvariationcanbereducedupto9%.

Descriptionofprotocol

Background

Hydrogenproductionbydarkfermentationisanemergingtechnologyofincreasinginterestdueto itsrenewablefeature.TheassessmentoftheBHPisacommonproceduretoevaluatenewpotential substrates, and other parameters [1–3]. This method stands for the first standardized protocol validated internationally to estimate the BHP using batch tests. A complete discussion of the developmentofthisprotocolhasbeenpublished[4].

Fig.1.Serumbottles,rubberstoppers,andaluminumrings.

(5)

Stocksolutions

SolutionA:nutrientsandbuffersolution,modifiedfrom[5]

Dissolveinavolumetricflasktomake1Lsolutionwithdistilledwater:41.6gNH4Cl,19.52gMES, 2gMgCl2

6H2O,1.6gFeSO4

7H2O,40mgCoCl2

6H2O,40mgMnCl2

4H2O,40mgKI,8mgNiCl2

6H2O,

8mgZnCl2.

SolutionB:substrate,50gL1glucose

Dry28gofanhydrousglucose(105C,2h)andallowtocoolinadesiccator.Weigh25gofdry glucoseanddissolvewithdistilledwatertomakea500-mLsolutioninavolumetricflask.Thesource ofcarbohydratescanvaryaccordingtotheaimofeachdetermination,e.g.,usinganagroindustrial effluent. The recommendation to get the maximum hydrogen potential is to keep the initial carbohydrateconcentrationat5gL1duringtheassay.

SolutionC:pHadjustment,5NHCl

Add25mLofdistilledwatertoa50-mLvolumetricflask.Add20mLofHCl(37%)anddilutetothe graduationmarkingwithdistilledwater.

SolutionD:pHadjustment,5NNaOH

Add10gofNaOHto30mLofdistilledwater,dissolvewithmagneticstirringandallowtocool.

Dilutethesolutionwithdistilledwatertocomplete50mLinavolumetricflask.

SolutionE:pHindicator,0.4%(w/v)thymolphthalein

Dissolve40mgofthymolphthaleinin9mLofethanol(99.5%);dilutethesolutionwithdistilled watertocomplete10mLinavolumetricflask.

SolutionF:CO2absorptionsolution,3NNaOH

Add144g ofNaOHto1Lofdistilledwater,dissolve withagitation;diluteitto1.2L.Add6mLofsolutionE.

Note:SolutionsEandFareonlyrequiredfortheautomaticprotocol.

Inoculumpreparation

Use sludge froman anaerobic wastewater treatmentreactoras inoculum. Perform a thermal pretreatment drying the sludge at 105C during 24h, for the selection of hydrogen-producing microorganisms[6]. Letthesludge coolandhomogenizeit bygrinding(with theblender,coffee grinderorthemortar)andselecttheparticlesizelesserthan850

m

mbysieving.Determinevolatile

solids(VS)contentaccordingtostandardmethods[7].

Manualprotocol Preparation

1 Labelallbottles;triplicatesofeachevaluatedconditionmustbeincluded,aswellasendogenous control(withoutsubstrate)intriplicate.

Fig.2. Sample incubation unit (a), CO2absorption unit (b), gas volume measuring device (c), and Schott bottles with agitation system (d).

(6)

2CalculatethenecessaryamountofinoculumtoaddtoeachserumbottletomaintainanS/Xratio (substrate/inoculum,gsubstrategVS1)of2.7,consideringaworkingvolumeof80mLandan initialcarbohydrateconcentrationof5gL1.Weightheexactamountofinoculumdirectlyinthe serumbottleusingtheanalyticalbalance.

3Add5mLofsolutionAineachbottleusingagraduatedpipette(oranairdisplacementpipette).

4Add4mLofsolutionB(withtheexceptionoftheendogenouscontrol)usingagraduatedpipette(or anairdisplacementpipette);theinitialglucoseconcentrationwillbe5gL1.

5Addtheneededamountofdistilledwaterusingagraduatedcylinder,71mLor75mL,forbottles withcarbohydrates(withsolutionB)orendogenouscontrols,respectively;tocomplete80mLof workingvolumeintheserumbottles.Theheadspacewillbeof40mL.

6AdjusttheinitialpHto7.5bydrippingsolutionCorDasnecessaryusingaPasteurpipette.

7Closethebottleswiththerubberstopperandsealthemwiththealuminumrings(usethecrimper).

8Fortheheadspaceexchange,insertaneedleconnectedtoahosetoflushwithN2for30sinthe serumbottlesandwiththehelpofanotherneedletoletthegasout(Fig.3).After30s,getoutthe needlessimultaneously.

IncubationandmonitoringofH2production

1Consideringpreviousexperimentalexperiencestovalidatethisprotocol,starttheincubationclose tonoon(12:00h).

2Incubatethebottlesat37Cwithanorbitalshakingof150rpm.Afterthisstep,preparethewater- filledinvertedgraduatedcylinderaccordingtothefollowingsection.

3Afteronehourofincubation,dischargetheexcesspressureofeachserumbottlesintheinverted graduatedcylinder.

4Performgasproductionmeasurementseverythreeorfourhours.Recordthevolumeproduced,as wellasthetemperatureoftheacidwaterinthewater-filledinvertedgraduatedcylinder.

5Totakeagassample,purgethehosebeforetakingthesample.Analyzethecompositionofthe biogas(H2andCO2)atleastonceadaybygaschromatography.

6Todeterminetheendofthetest,applythestoptimecriterion(ST),whichisobtainedwhentheH2

productioncurve becomesasymptotic(FT) (Fig.4)[8].Additionally,you canusethecoefficient ofvariation betweenthelastthreerecordsofcumulativehydrogenasstopcriterionwhenitislowerthan5%.

Fig.3. Headspaceexchangeontheserumbottles.

(7)

7 Tostopthetest,removetheserumbottlesfromtheincubator.Seethesamplingandanalysissection forfurtherinstructions.

NOTE. Todetermine theendof thetestproperly, youwillhavetoplotimmediatelyeveryH2

productionreading.

Water-filled-invertedgraduatedcylindertomeasurebiogas

1 Acidify500mLofdistilledwaterwith10mLofsolutionC(pH<2)topreventCO2dissolutioninthe liquid.

2 Placea100mLinvertedcylinderasshowninFig.5usingahosetothebottomofthecylinder,a syringe,andathree-waystopcocktofillthecylinderwiththeacidwater(Fig.5c).

3 Tomeasurethebiogasproduction,connectaneedletoonesideofthethree-waystopcockandkeep itclosed,theninserttheneedlethroughtherubberstopperoftheserumbottlesandopenthe stopcocktoallowthebiogasdisplacetheliquidinthecylinder,registerthevolume(Fig.5d).

Fig.4.Kineticovertime.LT:latencytime;FT:finaltime;SP:timetostopthekinetic.

Fig.5.Requiredmaterialforthebiogasmeasuring(a),fillingtheinvertedcylinderwithasyringe(b),water-filled-inverted graduatedcylinder(c),andbiogasproductionmeasuring(d).

(8)

4The biogas samples can be taken from the displaced volume in the cylinder, or using a chromatographysyringedirectlyfromtheserumbottle.

Automaticprotocol

Fortheautomaticdeterminationofthebiohydrogenpotential,theprotocolwasadaptedtothe manufacturer recommendations of the Automatic Methane Potential Test System II (Bioprocess ControlAB;Lund,Sweden),intheoperationandmaintenancemanual[https://www.bioprocesscon- trol.com/media/1511/bioprocess-control-manual-ampts-ii-ampts-ii-light.pdf].

Preparation

1For theCO2 absorption unit preparation, add 80mLof F solution to each bottle of the CO2

absorptionunit(Fig.3b),placeaplasticstopperwiththetwotubingports.

2ConnectthebiogashosesofeachbottleoftheCO2absorptionunittothecorrespondentbottlein theincubationunit(Fig.3a)accordingtotheAMPTSIIinstructions.

3Label all Schott bottles;triplicates of each evaluatedcondition must beincluded, as wellas endogenouscontrol(orblank)intriplicate.

4CalculatethenecessaryamountofinoculumtoaddtoeachSchottbottletomaintainanS/Xratio (substrate/inoculum,gsubstrategVS1)of2.7,consideringaworkingvolumeof360mLandan initialcarbohydrateconcentrationof5gL1.Weightheexactamountofinoculumforeachbottle inglassbeakersusingtheanalyticalbalance.

5Add22.6mLofsolutionAineachglassbottleusingagraduatedpipette(oranair-displacement pipette).

6Add36mLofsolutionBineachbottle(excepttoendogenouscontrol)usingagraduatedpipette(or anairdisplacementpipette);theinitialglucoseconcentrationwillbe5gL1.

7Addtheweighedinoculumtoeachglassbottle,suspendtheremainingsludgethatstaysintheglass beakerusingthewaterpointedoutinthefollowingstep,andaddedtothecorrespondingbottle.

8Tocomplete360mLofworkingvolumeintheserumbottles,addtheneededamountofdistilled waterusingagraduatedcylinderandpipette,301.4and337.4mL,tothebottleswithcarbohydrates (withsolutionB)orforendogenouscontrols,respectively.Theheadspacewillbeof240mL.A workingvolume/headspaceratioof1.5willbemaintainedaccordingtotherecommendationsof theAMPTSIImanual.

9AdjusttheinitialpHto7.5bydrippingsolutionCorDasnecessaryusingaPasteurpipette.

10Putathinlayerofstopcockgreaseinthebottlethreadandtheoutsidepartofthebottleopening,to avoidgasleaks.

Fig.6. HeadspaceexchangeonAMPTSIIbottlesusingagassamplingbagwithN2.

(9)

11 Place thebottlestopperswithtwo tubingportsandrotatingshaft for mixingintheopening ofthe bottles.

12AttachthemultifunctionbrushlessDCmotor.

13PuttheTygon1hoseintheportsfromthestopper.Connectoneofthehosestothecorresponding bottleintheCO2absorptionunitandsealtheotherhosewithapipeplug.

Headspaceexchange

1 Fortheheadspaceexchange,temporallydisconnecttheTygon1hosefromtheCO2absorptionunit andintroducethehoseinabeakerwithwatertodischargetheexcesspressure.Removethepipe plugandconnectittoaN2flow,flushtheheadspaceduring30s(Fig.6).

2 ClosetheTygon1hosesagainwiththepipeplugandreconnecttheotherhosetothecorresponding bottleintheCO2absorptionunit.

AMPTSIIsystemincubationandmonitoring

1 Filltheincubationunitwithdistilledwaterandsettoatemperatureof37C.

2 Connecttheagitationsystemsofeachbottleseriallywiththemotorcables,andthefirstmotorto theMotorController.

3 Connectthe12VpoweradaptertotheGasVolumeMeasuringDevice,andtoa100240V50/

60Hzstandardpowersocket.Afterthis,connectthe24VpoweradaptertotheMotorController andtoa100240V50/60Hzstandardpowersocket.

4 SettheSystemswitchontheMotorControllertoON,andsettheON/OFFswitchesoneachmotor unittoON.

5 Emptyeachflowcellinthegasvolumemeasuringdevice.

6 Adjustthemotorspeedto60%(approx.120rpm),withintermittentmixingat60sONand180s OFF.ActivatethemotorsettingthecontroltoONandapplythesettings.

7 StartthedataloggingprogramaccordingtotheAMPTSIIsoftwaremanual.

8 Analyzethegascompositiontodeterminethehydrogenfractioninthebiogassamples,foreach bottleatleastonceduringthekinetics.DisconnecttheTygon1hosefromtheabsorberunitand sealitwithapipeplugandtakethebiogassamplewithasyringefromtheotherhose.

9 Checkdailythatthehardtubingpiecesthatconnectthebentstirrodtothemotorareundamaged andthemixingworksproperly.Otherwise,changethetubingpieces.

10Checkdailythatthewaterlevelinthethermostaticwaterbathreachestheplasticlidandfillitwith additionaldistilled water ifnecessary. Makesurethat theTygon1 hoseisnot bentabruptly, interferingwiththegasflowandnotbeingdamagedbytherotatingpartsoftheagitator/motor.

11 Verifythatthewaterlevelinthegasvolumemeasurementdeviceiswithintherecommended range.Fillwithadditionaldeionizedordistilledwatertotherecommendedwaterlevelwhen necessary.

12ThethymolphthaleinpHindicatorinsolutionFwillchangefrombluetocolorlesswhentheCO2

absorption capacity of the NaOH solution drops below the optimum. At this point, it is recommendedtoreplacethebottlewithnewsolutionFtopreventtheCO2gasfrompassingtothe gasvolumemeasuringdevice.Approximately2.9LofCO2canbecaptured(at22C)ineachbottle beforeitneedstobechanged.

13TochangethesolutionF,placepipeplugsonthehosesoftheincubationunitandgasmeasuring device.Replacetheoldsolutionwithanewone,reconnectthehosesandremovethepipeplugs.

NOTE.BeforeusingtheAMPTSIIsystem,readtheoperationandmaintenancemanualcarefully, detailsofsettinguptheequipment,connection,andsoftwaremanagementareincluded.

Endofthetest

1TheAMPTSIIsoftwareautomaticallyupgradesthecumulativehydrogenproductioncurve;review thecurvedailytodeterminetheendoftheessayfollowingthestopcriteria.Thestoptimecriterion (ST) is obtained when theH2 production curvebecomes asymptotic (FT) (Fig. 4) [8]. Asan

(10)

additionalstopcriterion,youcanusethecoefficientofvariationbetweenthelastthreerecordsof cumulativehydrogenwhenitbecomeslowerthan5%.

2 IntheAMPTSIIsoftware,generateareportintheDownloadreportmenu.Downloadthereportand openittomakesurethatthereporthasbeengeneratedcorrectlyandthatnoerrorshaveoccurred duringthedownloadofthefile.

3 Stoptheregistrationbypressingthepausebuttonandthenthestopbutton.Note:Bypressingthe stopbutton,theexperimentassociatedwiththatparticularcellcannolongercontinue.

4 Turnoffthethermostaticwaterbath.

5 Settheon/offswitchofeachmotorunittoOFF.

6 SetthesystemswitchonthemotorcontrollertoOFF.

7 Unplugthepoweradapters(forthemotorcontrollerandthegasvolumemeasuringdevice)from thepowersupply.

8 DisconnectthehosesbetweenthereactorsandtheNaOHbottles.

9 DisconnectthehosesbetweentheNaOHbottlesandthegasvolumemeasuringdevice.

10Emptythewaterbathusingthemanualwaterpumpincludedwiththeequipment.

Samplingandanalysis

1Oncethekineticshavebeencompletedaccordingtothepreviouslymentionedcriteria,openthe bottlesandrecordthepHvalueofitsliquidcontent.

2Keep the bottles in constant agitation with the help of a magnetic stirrer and grill. Take a homogeneoussampleofatleast20mLfromeachbottleanddeterminetheconcentrationoftotal andvolatilesuspendedsolidsbyduplicate(5mLpersample)accordingtostandardmethods[7].

3Take a sample of at least20mL fromeach bottle todeterminethechemical oxygen demand (COD),fermentationproducts,andresidualcarbohydrates.Acidifythesampleswithconcentrated H2SO4(pH<2).

4Centrifugethe20-mLsamples(3600rpmfor10min,oratahigherspeed)andfilterthesupernatant with0.45

m

mnitrocellulosefilters.Thesamplecanbekeptrefrigerated(4C)fornomorethan 7daysuntilanalysis.Ifsamplescontainmanysuspendedsolids,beforethenitrocellulosefilteritis advisabletousea1.5

m

mglassfiberfilter.

5FromthecentrifugedsampleanalyzetheCODaccordingtostandardmethods[7],thefermentation productsbygasorliquidchromatography,aswellastheresidualcarbohydratesbythephenol- sulfuricacidmethod[9].

Fig.7. Cumulativehydrogenproduction(Hmax)specifictotheworkingvolume(LH2L1),forthemanualandautomatic protocols,anditscorrespondingintra-andinter-laboratoryvariation.Forthemanualprotocolevaluationdifferentinoculum weretestedbydifferentlaboratories,meanwhilefortheautomaticprotocolthreedifferentsourceofinoculumwereevaluated indifferentlaboratories.Thedifferentinoculumsourceswereheat-treatedanaerobicsludgefromathermophilicdigester (HTT);heat-treatedanaerobicsludgefromamesophilicdigester(HTM);biomassfromanauto-fermentedeffluentrichin sucrose(AF);aerobicsludgepretreatedbycellwash-out(WO);compostfromkitchenwastes(C);andheat-treatedanaerobic sludgefromadigestertreatingsolidwastes(HTS).L1–L8standsforresultsfromdifferentlaboratories.

(11)

Validationofanalyticalmethods

It is highly recommended to validate the analytical methods to determine COD, sugars and fermentationproductsasindicatedbelow:

1 Weigh1gofanhydrousglucose(driedat105Cfor2handstoredinadesiccator)anddiluteina1L volumetricflaskwithdistilledwater.

2 Analyzethe CODand carbohydrates of thesolutionwith themethodologyof each laboratory.

ConsiderthatglucosehasatheoreticalCODof1.067gCODgglucose1.

3 IftheresultsofCODorcarbohydratesanalysisarenotasexpected,youshouldreviewyouranalysis procedureandcalibrationcurves.

4 Tovalidatethemethodsofmeasuringfermentationproductsitissuggestedtousecertifiedreference materials(e.g.VolatileFreeAcidMixCRM46975-Supelco,andLacticacidPHR1215-Supelco;Merck KGaA,Germany).

Calculations

H2cumulativevolume

FromthecumulativehydrogenvolumegraphadjustthecurvetothemodifiedGompertzmodel [10],recordthesoftwareusedandthecorrelationcoefficient,maketheadjustmentforeachreplicate:

HðtÞ¼Hmaxexp exp 2:71828Rmax

Hmax ð

l

tÞþ1

WhereH(t)(mL)isthecumulativehydrogenproductionattimet(h);Hmax(mL)isthemaximumgas produced;Rmaxisthemaximumproductionrate(mLh1);and

l

isthelag-phasetimebeforethe

exponentialhydrogenproduction(h).Forcumulativehydrogenproductionresultsusingthemanual version,adjusttherecordedvolumetostandardconditions(0Cand1atm).Theautomaticdevice AMPTSIIreportsthegasproductionatstandardconditions,accordingtointernaltemperatureand pressuresensors.

CODbalanceoffermentationproducts

It is highlyrecommended toquantifythenon-identified(N.I.CODeq)products followinga COD balance[11]:

N:I:CODeq¼CODfGlucoseCODeqX

MetabolitesCODeq

WhereCODf(gCODL1)istheanalyticalsolubleCODconcentrationdeterminedattheendofthetest;

GlucoseCODeq (gCODeqL1)istheresidualglucoseconcentration;and P

MetabolitesCODeq isthetotal solubleproductsconcentration(gCODeqL1)determinedbychromatography.TheCODequivalenceof the different fermentation products and carbohydrates, can be calculated with the following equations,basedontheaverageoxidationreactionsoftheanalyzedcompoundsandthewater-oxygen aselectronacceptor.

aÞ mg CODace

L ¼ X mgace L

1 mmol 60 mgace

8 meq e 1 mmolace

8 mg OD 1 meq e

bÞ mg CODpro

L ¼ X mgpro L

1 mmol 74 mgpro

14 meq e 1 mmolpro

8 mg OD 1 meq e

cÞ mg CODbut

L ¼ X mgbut L

1 mmol 88 mgbut

20 meq e 1 mmolbut

8 mg OD 1 meq e

(12)

dÞ mg CODval

L ¼ X mgval

L

1 mmol 102 mgval

12 meq e 1 mmolval

8 mg OD 1 meq e

eÞ mg CODcap

L ¼ X mgcap L

1 mmol 116 mgcap

24 meq e 1 mmolcap

8 mg OD 1 meq e

fÞ mg CODeth

L ¼ X mgeth L

1 mmol 46 mgeth

12 meq e 1 mmoleth

8 mg OD 1 meq e

gÞ mg CODlac

L ¼ X mglac L

1 mmol 90 mglac

12 meq e 1 mmollac

8 mg OD 1 meq e

hÞ mg CODfor

L ¼ X mgfor L

1 mmol 46 mgfor

2 meq e 1 mmolfor

8 mg OD 1 meq e

iÞ mg CODsuc

L ¼ X mgsuc

L

1 mmol 118 mgsuc

14 meq e 1 mmolsuc

8 mg OD 1 meq e

jÞ mg CODglu

L ¼ X mgglu L

1 mmol 180 mgglu

24 meq e 1 mmolglu

8 mg OD 1 meq e

kÞ mg CODH2¼X mL H2; STP 1 mmol 22:4 mLH2

2 meq e 1 mmolH2

8 mg OD 1 meq e

WhereXmgcompoundL ¼producedmetabolitesconcentration  mgL

;ace,aceticacid;pro,propionicacid;but, butyricandisobutyricacids;val,valericandisovalericacids;cap,caproicandisocaproicacids;eth, ethanol;lac,lacticacid;for,formicacid;suc,succinicacid;glu,glucose;H2,hydrogen;XmLH2,STP, hydrogen volume at standard temperature (0C) and pressure (1atm) conditions. The COD equivalenceisalsousefultodeterminethestoichiometryofthereactionsandmetabolicpathways followedbytheinoculumused.Anexampleofsuchcalculationisdetailedelsewhere[12].

Qualitycriteriafortheresults

Inordertovalidatethehydrogenproductiontests,thecoefficientofvariationofHmaxmustbe<15

%,evenafterapplyingastatisticalanalysistoeliminateoutliers[4].UsetheDixontesttoeliminatea uniqueoutlieroftriplicates,consideringapvalue=0.05.

Methodvalidation

The present method was validated in 8 independent laboratories from 5 different countries (Brazil, Chile, France,MexicoandUruguay);adetaileddiscussionaboutitsdevelopment,validationandconsiderationof workloadtimewerealreadypublished[4].Averagevaluesofcumulativehydrogenproduction(Hmax)and thecorrespondingstandarddeviationswereusedtocalculatetheintra-laboratoryandinter-laboratory coefficientofvariation(CV)asrepeatabilityandreproducibilityindicators,respectively.

(13)

Applyingthepresentprotocol,theaverageintra-laboratorycoefficientofvariationrangedfrom13

%to9%usingthemanualandtheautomaticprotocol,respectively.Butusingtheautomaticprotocol, theinterlaboratoryvariationcouldbereducedupto15%withtheHTTasinoculum;whichisan acceptableresultaccordingtostudiesanalyzingthebiochemicalmethanepotential(Fig.7)[13].

Conclusions

Thismethodfeaturesanewandvalidatedprotocolforbiohydrogenpotential,providingatoolfor inter-laboratory studies and reliable comparisons of results. Indeed, following the protocol, the variationofresultscanbereducedtoacceptablelevels,usingeitherthemanualorautomaticversion.

DeclarationofCompetingInterest

The authors declare that they have no known competing financial interests or personal relationshipsthatcouldhaveappearedtoinfluencetheworkreportedinthispaper.

Acknowledgements

ThisworkwasperformedintheframeoftheBiohydrogenLatinAmericanetwork.Theauthors thanksthefundingofthefollowingprojects:FondodeSustentabilidadEnergéticaSENERCONACYT, ClústerBiocombustiblesGaseosos,247006andCONACYT240087;Fondecyt3160219;ProgramECOS- CONICYTprojectN C12E06, GRAIL613667 (FP7-KBBE-2013);ANII-FSE102488 (Uruguay); FAPESP (2015/06246-7)and CNPq processes 406751/2013-7,150641/2015-0,150475/2016-0 (Brazil); and programEUWaste2bioHyproject(FP7-MC-IEF-326974).ThecofundingofBioprocessControlAB (Lund,Sweden)fortheopenaccesspublicationofthismethodisalsoacknowledged.Theauthors thankthe technicalassistance of Carolina MejíaSaucedo, Gloria MorenoRodríguez,Jaime Pérez Trevilla,ÁngelA.HernándezHuerta,GuillermoVidriales-EscobarandRobertoE.BolañosRosales.

References

[1]X.M.Guo,E.Trably,E.Latrille,H.Carrere,J.P.Steyer,Predictiveandexplicativemodelsoffermentativehydrogenproduction fromsolidorganicwaste:roleofbutyrateandlactatepathways,Int.J.HydrogenEnergy9(2013)3–12,doi:http://dx.doi.

org/10.1016/j.ijhydene.2013.08.079.

[2]L.Chatellard,E.Trably,H.Carrère,Thetypeofcarbohydratesspecificallyselectsmicrobialcommunitystructuresand fermentationpatterns,Bioresour.Technol.221(2016)541–549,doi:http://dx.doi.org/10.1016/j.biortech.2016.09.084.

[3]H.Han,L.Wei,B.Liu,H.Yang,J.Shen,Optimizationofbiohydrogenproductionfromsoybeanstrawusinganaerobicmixed bacteria,Int.J.HydrogenEnergy37(2012)13200–13208,doi:http://dx.doi.org/10.1016/j.ijhydene.2012.03.073.

[4]J.Carrillo-Reyes,A.C.Tapia-Rodríguez,G.Buitrón,I.Moreno-Andrade,R.Palomo-Briones,E.Razo-Flores,O.AguilarJuárez, J.Arreola-Vargas,N.Bernete,AdrianaFerreiraMalufBragaf,L.Braga,E.Castelló,L.Chatellard,C.Etchebehere,L.Fuentes,E.

León-Becerril,H.O.Méndez-Acosta,G.Ruiz-Filippi,E.TapiaVenegas,E.Trably,J.Wenzel,M.A.Zaiat,Standardized biohydrogenpotentialprotocol:aninternationalroundrobintestapproach,Int.J.HydrogenEnergy44(2019)26237–

26247,doi:http://dx.doi.org/10.1016/j.ijhydene.2019.08.124.

[5]O.Mizuno,R.Dinsdale,F.R.Hawkes,D.L.Hawkes,T.Noike,Enhancementofhydrogenproductionfromglucosebynitrogen gassparging,Bioresour.Technol.73(2000)59–65,doi:http://dx.doi.org/10.1016/S0960-8524(99)00130-3.

[6]I.Moreno-Andrade,G.Moreno,G.Kumar,G.Buitrón,Biohydrogenproductionfromindustrialwastewaters,WaterSci.

Technol.71(2015)105–110,doi:http://dx.doi.org/10.2166/wst.2014.471.

[7]APHA/AWWA/WFE,StandardMethodsfortheExaminationofWaterandWastewater,21thedn,(2005)WashingtonDC,USA.

[8]I.Moreno-Andrade,G.Buitrón,Influenceoftheoriginoftheinoculumontheanaerobicbiodegradabilitytest,WaterSci.

Technol.49(1)(2004)53–59.

[9]M.Dubois,K.A.Gilles,J.K.Hamilton,P.A.Rebers,F.Smith,Colorimetricmethodfordeterminationofsugarsandrelated substances,Anal.Chem.28(1956)350–356.

[10]M.H.Zwietering,I.Jongenburger,F.M.Rombouts,K.van’tRiet,Modelingofthebacterialgrowthcurve,Appl.Environ.

Microbiol.56(1990)1875–1881.

[11]B.E.Rittmann,P.L.McCarty,EnvironmentalBiotechnology:PrinciplesandApplications,McGraw-Hill,Boston,Mass,2001.

[12]H.S.Lee,B.E.Rittmann,Evaluationofmetabolismusingstoichiometryinfermentativebiohydrogen,Biotechnol.Bioeng.

102(2009)749–758.

[13]C.Holliger,M.Alves,D.Andrade,I.Angelidaki,S.Astals,U.Baier,etal.,Towardsastandardizationofbiomethanepotential tests,WaterSci.Technol.(2016)1–9.

Références

Documents relatifs

2018 Pernand-Vergelesses, Pierre Yves Collin-Morey, ‘Les Belles Filles’ (k) Chardonnay 2015 Chassagne-Montrachet, Thomas Morey, ‘Les Baudines’ (last bottle) Chardonnay 2017

– la composition indique que le bloc 2 appartient au bloc 1 (le bloc 2 est une partie du bloc 1) ; – l’association indique un lien entre blocs mais sans contenance.

Using a volumetric pipette, take a volume V 1 = 10,0 mL of the daughter solution (S 1 ) and pour it in an erlenmeyer flask ; Using a graduated cylinder, add around 20 mL of

The aim of step 2) is to replay the MTES algorithm to eliminate shared variables (that are assumed known locally). It may happen that these variables are just involved in

The PROJ rule must be applied on a parallel vector available at the current level p. The resulting value is a closure which contains the content of the given vector. As expected,

The EcoHealth paradigm, however, takes a broader view of health and links public health to natural resource manage- ment within an ecosystem approach to human health.. EcoHealth is

On pourra passer à la suivante jusqu’à la solution mère sans avoir besoin de rincer à l’eau distillée la sonde pH-métrique.. En effet il est préférable de rincer la sonde

(aq) réagissent avec les ions argent Ag + (aq) en excédent pour donner un précipité rouge orangé de chromate d’argent Ag 2 CrO 4