• Aucun résultat trouvé

Field studies of adfreeze uplift forces on foundations in frost heaving soils - Thompson, Manitoba. I. Installation of steel piles - 1972

N/A
N/A
Protected

Academic year: 2021

Partager "Field studies of adfreeze uplift forces on foundations in frost heaving soils - Thompson, Manitoba. I. Installation of steel piles - 1972"

Copied!
22
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Internal Report (National Research Council of Canada. Division of Building

Research), 1973-07-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=97f0f658-4ca9-4c36-b199-aaa451073c3d https://publications-cnrc.canada.ca/fra/voir/objet/?id=97f0f658-4ca9-4c36-b199-aaa451073c3d

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20338256

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Field studies of adfreeze uplift forces on foundations in frost heaving

soils - Thompson, Manitoba. I. Installation of steel piles - 1972

(2)

NATIONAL RESEARCH COUNCIL OF CANADA DIVISION OF BUILDING RESEARCH

FIELD STUDIES OF ADFREEZE UP LIFT FORCES ON

FOUNDATIONS IN FROST HEAVING SOILS - THOMPSON, MANITOBA

I.   INSTALLATION OF STEEL PILES - 1972

by 

E. Penner and G. H. Johnston

Internal Report No. 406 of the

Division of Building Research

OTTAWA July 1973

(3)

FIELD STUDIES OF ADFREEZE UPLIFT FORCES ON

FOUNDATIONS IN FROST HEAVING SOILS - THOMPSON, MANITOBA I. INSTALLATION OF STEEL PILES - 1972

by

E. Penner and G. H. Johnston

PREFACE

Field studies of uplift forces on structures resulting from frost action have been carried out in Ottawa for

some five years. Papers describing the results of this work are available from the Publications Section of the Division of Building Research, National Research Council of Canada.

The installation at Thompson, Manitoba, now described is similar to one at Ottawa and is the first of an expanded program for studying the influence of climate, soil type, and moisture regime. These are thought to be significant factors in the uplift problem.

Ottawa N. B. Hutcheon

(4)

2

-It was decided to do these further studies at Thompson, Manitoba, where the Division of Building Research had established a field station in

1966 to provide support for permafrost investigations in northern Manitoba. Thompson lies within the discontinuous permafrost zone where unfrozen areas separate islands or patches of perennially frozen ground (permafrost). Lacustrine soils are widespread and the climate is significantly more

severe than that of Ottawa. The mean annual air temperature at Thompson is 24.9° F (FI 5300 degree-days) and the mean annual precipitation based on data 1968 -72 is 17. 56 inches (13. Olin. rain, 45. 5 in. snow).

SITE SELECTION AND PREPARATION

Several factors had to be considered in selecting a suitable test area. Power would be required and, as daily visits would have to be made to the site, a power line and a main road should be reasonably c los e to avoid lengthy power and road connections. Bedrock should be no more than 20 to 25 ft below the ground surface to avoid costly drilling and long anchor rods for the reaction frames.

The overburden soils should be reasonably uniform over the site. It was anticipated that the maximum frost penetration might be as much as 10 to 12 ft,  depending on whether the snow cover was removed from the area during the test period and also the thermal influence of the piles on the

ground thermal regime. Therefore the overburden should be a minimum of 12 to 15 ft thick to ensure that the frost line stayed within the mineral soil. It was also desirable that the area be reasonably well drained to avoid water problems during the snow melt period in spring and from rainfall during the

summer. Finally, it was decided to choose a site free of permafrost i. e., subject to seasonal freezing only, so as to avoid the problems created by changes in the ground thermal regime (thawing) and subsidence of the

ground and to reduce the complexity of analysis introduced when rheological behaviour of warm temperature permafrost soils must be taken into account as part of the forces resisting uplift.

In 1971, following preliminary examinations of several potential sites at widely separated locations in the Thompson area, a site about 2 miles south of the town near an already established Division of Building Research permafrost test site was selected. It was adjacent to Provincial Road #391 which is also a power line route.

The test site selected lies within the Plant Site Area of the International Nickel Company of Canada Ltd. (which covers a large area around the mine and Thompson townsite) and permission to use this site

(5)

3

-(about 200 ft square) was obtained from INCO. Auger drilling conducted in October 1971 showed that bedrock underlay the site at depths of from about 12 ft in the N. E. corner to 20 ft in the S. W. corner. The soils are typical of those encountered in the Thompson area (5). A layer of peat from 3 to 12 in. thick covers varved clays (stratified clay and silt layers) that become more silty with depth. These overlie bedrock or 1 to 2 ft of sandy silt containing random pebbles over bedrock.

The undisturbed site was covered with a dense growth of spruce. Arrangements were made to have the City of Thompson hand-clear and burn the tree cover and carry out grubbing operations during March 1972. The peat and tree roots were removed by bulldozer and piled in previously selected areas on the edges of the clearing well away from the boundaries of the test site. A 12-in. layer of pit run gravel was placed directly on the clay soil. At the same time, a SOO-ft-long gravel access road was constructed from Provincial Road #391 to the site. A power line approxi-mately 300 ft long was constructed in April.

Auger drilling to determine depths to bedrock and level surveys to obtain surface elevations at nine locations on the test site were carried out in May 1972.

During late July and early August 1972 larger stones in the pit run gravel were removed around each pile location and a 6- to 9-in. layer of select graded sand and gravel was added to the east half of the site. Following compaction of the sand layer this part of the test site was sur-faced with a 3 - to 4-in. layer of asphaltic concrete to provide a good working surface for the heavy equipment used during pile and anchor

in-stallation operations.

The general layout and dimensions of the site, the locations of exploratory boreholes, edge of clearing, paved and unpaved sections are shown in Figure 1. Bedrock elevations are given in Figure 2 properly referenced to BM No. 1 shown in Figure 1. Elevation contours of the

paved surface are given in Figure 3. All elevations are based on an assumed datum of 100.000 ft for permanent BM No. 1. 

INSTALLATION OF STEEL PILES AND INSTRUMENTATION (a) Steel Pipe Piles

All nine steel pipe piles (three 6-in. di a . , three l2-in. dia. and three 18 in.-dia.) were prepared for installation as follows. The outside

(6)

4

-of the piles were sand blasted to remove the surface anti-corrosion

treatment (50 per cent varnish, 50 per cent thinner) which might influence the strength of the bond between the frozen soil and the pile. Both ends of the pile were capped by welding a I-in. steel plate to the upper end and a l/Z-in. steel plate to the lower end (Figure 4a). Pile dimensions are given in Table 1. 

Three of the steel piles (S6A, SIZA and S18A - one of each diameter) were instrumented with ZO -gauge copper -constantan thermo-couple wire to determine depth of frost penetration. The lead wires were placed inside 3/4-in. steel conduits welded to the outside of the piles and at one-ft intervals the thermocouple was embedded with epoxy resin in a 6-in. long x 1/4- x 1/4-in. groove cut on the outside surface of the pile at right angles to its long dimension as shown in Figure 4b. The conduit served to protect the thermocouple wires from damage and to lead the thermocouple wires to the ground surface in an orderly array.

Before installing the piles a circular section of the asphalt pavement about 10 in. larger in diameter than each pile was cut out and

removed. The piles were placed in the centre of machine -augered holes which were 6 in. larger in diameter than the pile (Figures 6 and 7). The piles were centred in the hole and backfilled immediately with the soil removed from the hole to avoid large moisture changes in the soil. The soil was backfilled in layers and well compacted by hand using wooden tampers, but the exact density achieved is not known. The gravel layer was backfilled in the same way. Piles S6A, S18A, SIZA and S6C were installed on Z3 and Z5 August 197Z. The remaining five piles were not installed until 10 October 197Z due to a breakdown of the auger drill. Table Z gives the measured thickness of the asphaltic concrete pavement and the depth of gravel at each pile location. Samples of the gravel at all pile locations were retained for analysis of grain size and moisture content determinations.

(b) Reaction Frames, Anchors and Bench Marks

Each reaction frame was constructed of two 6 I 12.5 steel

beams and tied down at the four corners by 3/4-in. anchor rods and 1 1/4-in. expansion shells placed 18 in. into bedrock as shown in Figure 5. A total of 36 anchors (4 anchors for each of the nine reaction frames) were installed between 16 and 31 August 1972.

The procedure followed was to set EW casing with a drill rig

(7)

5

-then drill with an XRP (1 1/4 in. aD) diamond set core bit and reaming shell to a depth of about 18-in. into the igneous bedrock. The anchor bolt assembly was then lowered to the bottom of the hole and tightened to refusal by hand with a 24-in. pipe wrench. Each expansion shell was threaded on the end of an 8 ­ft length of high strength steel (100, 000 psi tensile strength) anchor rod. The 3/4-in. dia. extension rods were 8-, 10- or 12-ft lengths of cold rolled 3/4-in. steel A131. Bl1l2 (62.500 psi) threaded for 2 in. on each end. Standard "S" type expansion shells and couplings manufactured by Stelco were used throughout.

The rock bolts were cut off about one foot above the pavement surface and threaded. Three-ft lengths of 3/4-in. dia. rod (cold rolled steel) threaded full length were used as extensions above ground for positioning the reaction frames over each pile. Table 3 gives the depth to bedrock and depth of the anchor hole into bedrock for all the anchors installed. Two bench marks were also installed at locations shown in Figure 1. Both consisted of anchor rod assemblies set in bedrock in an identical manner to the reaction frame rock anchors. A 10- to 15-ft length of 1 -in. dia. plastic pipe was placed over each BM. The datum point consisted of a ball bearing welded to a coupling screwed on the top end of the rod.

(c) Ground Temperatures

One pile of each diameter (S6A. S12A and S18A) was instrumented with thermocouples as previously described. To determine the thermal influence of the steel pile on the adjacent ground temperature regime multi-conductor thermocouple cables were installed at distances of O. 5, 1, 2, 4 and 10 feet from each of the three piles. The position of the cables and the depths of the thermocouple points are shown in Figures 1 and 4.

The cables were installed with a drill in holes made by rotating or pushing, or both, an A-cross chopping bit to within 6 in. of the desired depth. The lower end of the cables was then temporarily attached to a 3/4-in. dia. rod, pushed to the required depth and the rod withdrawn. The hole was backfilled with fine grained slag from the INCa mine.

To measure pavement temperatures a 1- x It-ft section was cut out at about the centre of the paved area and a thermocouple fixed to both surfaces. The block of pavement was then replaced and the cracks filled with a sealing compound.

(8)

6

-(d) Surface Heave Points

The snow cover was not to be removed from the test site. To survey movements of the pavem ent in the vicinity of piles S6A, S 12A and S 18A without disturbing the snow cover 1 -in. dia. x 2 -ft long hardwood dowels were fixed to the pavement surface with 3i-in di a , pipe flanges (Figure 8). The dowels were placed at one-ft intervals to 14 ft on either side of each of the instrumented piles (Figure 9).

(e) Other Instrumentation and Installations

Dillon force gauges placed between the top of each pile and the bottom of the reaction frame were used to measure the uplift forces. In cases where the heave forces were expected to exceed the capacity of a single gauge, two gauges of equal capacity were placed side by side. Details of the gauges and their locations are given in Table 4.

Movement of the piles and reaction frames during active periods of heaving must be known since maximum heave forces developed are dependent on the strain permitted. A survey point consisting of a 1/4-in. long 8 -32 self -tapping screw was installed in the centre of the top member of the reaction fram e and on the top of each pile cover plate. A completed test installation with a reaction frame over a pile is shown in Figure 10.

It is expected that a satisfactory depth of frost penetration will occur without the removal of the snow cover. Disturbance of the snow cover and hence the ground thermal regime is to be kept at a minimum. To assist in achieving this, an elevated catwalk was constructed along the east row of piles upon which the survey rodman can walk during the weekly level surveys.

OBSERVATION PROGRAM

Observations were begun in late October 1972. Temperatures on the piles and top and bottom of the pavement are recorded every 2

hours on a multipoint Land N Speedomax Recorder. Ground temperatures adjacent to the three piles are read daily either with the Land N recorder or a digital voltmeter. All EMF signals are preamplified 5 or 10 times, depending on the output level. The temperature measuring instruments were calibrated and are checked weekly for accuracy. The over -all accuracy including instrument error, error of thermocouple placement

0

and general electrical interference are believed to be within ± 1/4 C. The force gauges are read at least once a day and occasionally twice.

(9)

...  

7

-Level  surveys  are made  frequently  (weekly  or  bi­monthly)   to  determine  elevations  and  thus  movement  of the  surface heave  gauges.  

reaction  frames  and  piles.  Survey  instruments  are  read to  0.001  ft   with  an  expected  accuracy  of 

±

O. 002  ft.  

A  number  of points  were  establis.hed  on the  asphalt  surface to   ascertain the  general heaving  characteristics  of the test  site.  

The  air  temperature  is  recorded  continuously  on  a  thermograph.  In  addition.  standard  meteorological  maximum  and  minimum  thermometers  located  in  a  Stephenson  screen on the  site are  read  weekly.  The  air 

temperature  is  also  measured  by  a  20­gauge  copper­constantan  thermo-couple  located  in  the  screen and  recorded  every 2  hours  with  the  other  . temperature  data.  Snow  depth  and  snow  densities  are also  measured 

frequently. 

Views  of the  completed  site  taken  in  mid  October  1972  are  shown  in  Figures 11 and  12.  Water  running  across  the pavem ent  surface  resulted  from  the  melting  of  snow that had  accumulated  in the  NW  corner  of  the  site  during the  final  installation phase. 

FUTURE  WORK 

DBR plans  to  pave  the  rest  of  the  site  and  install  9  concrete  and   9  wood  piles.  possibly in  1973.  Continuous  sampling  down  to  bedrock   will  be  carried out  at  2  or  3  locations  on  the  site  at  that  time.  Several   piezometers  and  observation wells  will  also  be  installed to  determine  

(10)

­ 8 

-References 

(1)   Penner,  E.  and  Irwin,  W. W.  Adfreezingof  Leda  Clay to  Anchored  Footing  Colurnrrs ,  Canadian Geotechnical  Journal,  Vol.  VI,  No.3,  1969,  p.  327 ­337. 

(2)   Penner,  E.  and  Gold,  L. W.  Transfer  of  Heaving  Forces  by  Adfreezing  to  Colurrm s  and  Foundation  Walls  in  Frost Susceptible  Soils.  Canadian Geotechnical  Journal,  Vol.  VIII.  No.4, 

1971,  p.  514­526. 

(3)   Penner,  E.  Frost  Heaving  Forces  in  Leda  Clay.  Canadian  Geotechnical  Journal,  Vol.  VII.  No.  I,  1970,  p.  8­16.  (4)   Penner,  E.  Unpublished  results,  1972. 

(5)   Johnston,  G. H.,  Brown,  R. J. E.  and  Pickersgill,  D.  Permafrost  Investigations  at  Thompson,  Manitoba,  Terrain Studies. 

National  Research Council  of Canada,  Division  of  Building  Research,  NRC  7568,  October  1963. 

(11)

TABLE  1 

STEEL  PILE  DIMENSIONS 

Wall 

Nominal  Total l  Thickness 

Diameter  Code  Length  O.D.  (in. ) 

6"   S6A  11' 

­

0  1/2"  6.647"  0.292  S6B  11' 

­

0  1/2"  S6C  11' 

­

0  3/4"  12"   S12A  10' 

­

10  1/2"  12.730"  0.377  S12B  10 ' 

­

11  1/4"  S12C  10' 

­

10  1/4"  18"   S18A  10' 

­

10"  18.040"  0.379  S18B  10' 

­

10 "  S 18C  10' 

­

9  3/4" 

(12)

セM

TABLE  2  

PAVEMENT  THICKNESS  AND  DEPTH  OF  GRAVEL   AT  EACH  PILE  LOCATION  

Pipe  Pile  Pavement  Thickness  Gravel  Layer  Thickness 

(in. )  (in. )  S6A  4  21 

6"  peat  S6B  3  17  S6C  4  14  S12A  4  20  S12B  3  18  S12C  3  18  S18A  4  16  S18B  3  19  S18C  3  17 

(13)

TABLE  3  

THICKNESS  OF  OVERBURDEN  AT  THE  REACTION   FRAMES  AND  DEPTH  OF  ANCHOR  HOLE  INTO  BEDROCK 

Pile  Depth  to  Bedrock 1  Depth  into  Bedrock 

S6A  l .   N.E.  13'

­

2"  1 ' 

­

7"  2 .  S . E .  13 ' 

­

8 1/2"  1 ' 

­

6 1/2"  3.  N.W.  13' 

­

2 1/2"  l '  

­

8"  4.  S.W.  13'

­

5 1/2"  l '  

­

6"  S6B  l .   N.E.  12 ' 

­

3 1/2"  l '  

­

5"  2 .  S . E .  11'

­

9 1/2"  l '  

­

6"  3.  N. W.  12 '

­

0"  l '   ­ 6"  4. 

s.w. 

11'  ­ 7 1/2"  l '  

­

6 1/2"  S6C  l .  N.E.  14'

­

11"  l '

­

7"  2.  S. E.  15 '

­

1"  l '

­

6 1/2 "  3.  N.W.  14 '

­

8"  l '  

­

6"  4 .  S. W.  14 ' 

­

7"  l '

­

6"  S12A  l .  N.E.  15' 

­

4"  l '  

­

9"  2.  S . E .  15' 

­

1"  l '  

­

6"  3.  N.W.  14 ' 

­

5"  l '  

­

7"  4.  S.W.  13' 

­

7  1/2"  1 ' 

­

5  1/2"  S12B  l .  N.E.  15'

­

0"  l '  

­

7 1/2"  2.  S. E.  14 ' 

­

3 1/2"  l '  

­

6 1/2"  3.  N.W.  14 '

­

3 1/2"  l '  

­

6"  4 .  S.W.  14 ' 

­

5 1/2"  l '  

­

1 1/2"  S12C  l .   N.E.  13 '

­

4 1/2"  l '

­

7"  2.  S . E .  14 '  ­ 2 1/2"  l '

­

7 1/2"  3.  N.W.  13 '

­

4 1/2"  l '  

­

8"  4.  S.W.  13'

­

3"  l '   ­ 6"  S18A  l .   N.E.  15'

­

3"  2 '  0"  2 .  S. E.  14 '

­

9"  l '  

­

3"  3.  N.W.  14 ' 

­

2"  l '

­

10"  4. S.W.  14 '

­

8"  2 ' 

­

0"  S 18B  l .   N . E .  14 '

­

0"  l '

­

6"  2.  S . E .  13 ' 

­

5"  l '

­

10"  3.  N.W.  14 ' 

­

a

1/2"  l '  

­

5 1/2"  4.  S.W.  13 '

­

9 1/2"  l '  

­

5"  S18C  l .   N . E .  16' 

­

8 1/2"  2' 

­

4"  2 .  S. E.  16'

­

3 1/2"  l '

­

10"  3 .  N.W.  16'  9  1/2"  2' 

­

3  1/2"  4.  S.W.  16'

­

9 1/2"  l '

­

5 1/2"  S . E .  112 ­+  +­ S. W.  114 N.E.  111 ­+  +­ N.W.  113

(14)

TABLE  4  

DILLON  FORCE  GAUGES  INSTALLED  ON  STEEL  PILES  

Pile 

Gauge 

Serial  No.  Gauge  Range 

Calibration  Factor  S6A  18157  0 

­

25000  0.9217  S6B  19362  19361  III 112

­

­

10000 10000  0.9756  0.9412  S6C  18156  0 

­

25000  0.9217  S12A  18155  18158  III 112 ­ ­ 25000  25000  0.9302  0.9050  S12B  19359  19360  III 112

­

­

25000  25000  0.8658  0.8639  S12C  18382  0 

­

50000  0.8824  S18A  18366  18369  III 112 ­

­

50000 50000  0.9852  0.9390  S18B  18367  15029  III 112

­

­

50000 50000  0.9756  S18C  19358  18368  III 112 ­ ­ 50000  50000  0.9917  0.9828 

(15)

Edge of  clearing 

30  tram  pavement  1+ 50T  edge 

______­­­­­­­"" 

 

\

Approximate  edge of  \  

""'[(("".««,.,..."

­ ­ ­ ­ ­ , l- -...

­",,"'m»A  cleared  area セ  

\  "'­ Pavement  edge  3  ".."  

/­­¢-(Surface  heave  gauges  /

Gセセエ  I'  lntervnls  ! 

I

Grid  points  for  future  pile  installations  (18) 

=

S6A(T) / 

Nセ  

­­<>-MMイセセB

:§ 

Thermocouple strings  on (Tl piles I 

Zセ   and  at  distances  of  0.5,1,2,4 &10' 

'=

,= •

:§ 

2

1= 

1=  S6B

,= 

SI2A(T)  SI8B  ­ ­セセNM

­.­­­-

)( 

x­­-

'-1=

,= 

セm  I   セセ   」セセセウセョ   screen

1= 

セtィ・イュッ」ッオーャ・ウ   above  Zセ   &  below  3"payement 

Temporary  ⦅セセiNセセHtI  

)(S12 C  セsiXc  

Zセ   "­­­­Installed  steel  piles 

:11  

,  _.  mocouple  leads  in  tray 

:  beneath  elevated  walkway 

,

:X 

S6 C  )(SI2B 

セ   

セM⦅|

 

セM aーGーイッセゥュ。エ・

.  4

セ  

­o-5  I  I 

Fill  to  be  brought  to 

grade  as required  and  I 

to  be  paved  with  asphaltic  concrete 

.­.0­  ­ ­9­­'"

iMセ  

Locat ions  of  exploratory  drilling  to  determine  depth  to  bedrock: 

Total  no. of  9 holes  Depth  of  oyer  burden  12'­20' / 

9  ­ ­ ­ ­ ( > ­ I  . ",.  o­ 6  i 

...  Samp!e hole  ­0  ­o Mセ   8

___ NMiMM⦅MMMK⦅NセM⦅⦅K   ­­セ  ­­­+­.  I I ­+­­ ­­+-. , ' T   " ­ ­ ­ ­ 1+50 0+50  LLセL   セ   セMMMMMMセ   edge  of 

セ   6  ­12  thick  gravel  fill 

..

Edge of  tree  cleared  area 

,

セ 

N. 

セ  

base  line 

セ  

<,   4 0'  to  edge  af  clearing 

Meter  Road  to  Pavement  edge  

from  graYel  pad  P. R.#391 

Instrument 

trailer  8'xI2' 

o  20  40  60 

 

I

FIGURE  I  FROST  HEAVE  TEST  SITE,  THOMPSON  MANITOBA

SCALE,  FT. 

(16)

­­­­­­­­­­­­­­

---­­­­

---­­­­­

­­

---

­­

85. 00 .­­­­­­­r­­­r­­.,....­­­­r­­­r­­­.­­­­­­­r­­­r­­­­­­r­...,....­....­­­­­­­r­...­....­­­­­­,.­....,...­.­­­­...,   80.00  I ­

u.-­

Z  0  I - 75.00 e( > u.J  ­J  u.J  70.00 3 2  ­ ­ ­ ­ -セMMMMMMM ­­­­..­­.,­ ­ ­ ­ _ 8  GzNセ  

セ   NUMBERS REFER TO BOREHOLE LOCATIONS ON FIG.

__ ---.-..-.7

5­­­­­­­­­­­­­­­­­­­­-6 

1+50 1+00 0+50

TEMPORARY N-S BASELINE

(a) NORTH-SOUTH BEDROCK PROFILE

85. 00 .­­­­­,.­­­r­­,­­,.­­­r­­­.­­­­­­­,­­­r­­­­­­r­­­­,­­....­­­­­­­r­...­....­­­­­­,.­...,...­,­­­­, 

3 I I I

2... NUMBERS REFER TO BOREHOLE LOCATIONS ON FIG.

1­_  ....

"---=--_

80.00 セ   ...  ...:::... 

-...

...

---

... 

I -

-

-

_

...

u.--

­ ­ ­ _   4 ....セG  .... Z

--Lセ 0 75.00 f - XMM⦅NNNNNNZセセ l -e( >

LJ.J ELEVATIONS ARE WITH REFERENCE TャャエセZZZGM⦅W

- ' LJ.J TO BMI TAKEN AS 100:00 ... ::::::::5_ 70.00 I--6 I I I 0+50 1+00 1+50 W

TEMPORARY E-W BASELINE (b) EAST-WEST BEDROCK PROFILE

FIGURE 2

BEDROCK ELEVATIONS AT THE FROST HEAVE TEST SITE - THOMPSON, MANITOBA

(17)

1+50  UNPAVED  AREA PAVE D  A REA  12B  NOTE:  ELEVATION  CONTOURS LJ.J  REFERENCED  TO z  ­ BMl  =  100.000 ...  LJ.J   V)   «  eo  V)  I  IDENTIFICATION  NUMBER  1+00  Z 

OF  SURVEY  POINT  ON

>- PAVEMENT  SURFACE ""  «  ""  0  o,  ::E  LJ.J  I-SI2A(T) BM1=  100.000  0+50  o 107  0+00  0 133  E­W  ROAD  TO  TO  P.R.  391  FIGURE

3

ELEVATION CONTOURS OF PAVED SECTION FROST HEAVE TEST SITE-THOMPSON MANITOBA, OCT. 72

(18)

,,  5 6A  ­ 2  S12A­2  S18A­2  S6A ­3  S12A­3  S18A­3  S6A ­I  S6A ­4  1"   we  l d e d  plate  Self  topping  screw  (Survey  po i n r )  asphaltic  Backfill  concrete  ::::18"  grovel  t b i c k n e  s s  text  for ­4  S6A ­5  S12A­5  S18A­5  1  51 2 A  ­4  5  I 8A  ­4  51  2A­1  51  8A­1  セセZZZZZZ]Z[Z]Z]]]]セセ   (exoct  given  in  each  pile)  4' 

NlMセセセMMKMMXM

!  I  セ   _  I  i  <1  ᄋᄋセMiHス   I  I I  ,"  

NOTE,  Coding  Example (SI2A­1­1)

­ - S  ­ Pi  l e  material  s t e e  I  12  Pile  diameter,  inches 

A  ­ Pile  identity,  three  for  each  diameter  A,  B &  C

MイMセ⦅Z

 

__-

Thermocouple  string  number  ­ Thermocouple  point  number 

­

T.C.  spaced  MMMKMMMセMY  セ⦅セ⦅Nセセ⦅セエ・イカッャウ   •   LC.  on  pile  duplex  wire II.  o   r.c  odjo c e n t  to  pile,  12  pr  cab It's  10 '  o  1  ...  wi 

Scale  in  fee!  4 (0)  Thermocouple  positions  on  6",  12"  and  18"  temperature  instrumented  steel  piles  and 

locations  of  thermocouple  strings  at  various  distances  from  the  pile  and  i d e  n ti Li c o ti or  sys I e  m  Drow i n9  s how s  1 2"  pi  I e 

Grooves  cut  in  steel  shell  6 11   ll 

)(  セB   for  20  gauge 

duplex  thermocouple  wire  Embedment  of  T.C.  with  epoxy  resin 

1"  Conduit  welded  to  pile  for  T.C.  wires 

_

12" 

4  (h)  ln s t aII a I i ()n  0f  ! h t­r moe a up  l c s o n  S, t.' (' I pip  P i l c 

FIGURE  4  PILE  AND  THERMOCOUPLE  INSTALLATION 

(19)

FIG.  6.  Augering  24­in.  hole  for  18­in.  diam.eter  pile 

(20)

SPIKE  THREADED  WOOD  DOWEL  PIPE  FLANGE  PLAN 

1" 

HARDWOOD  DOWEL

­

N  THREADED  SECTION  PIPE  FLAI\JGE  \  ASPHALT 5"  "'­SURFACE 16  SPIKE  SECTION  

(21)

FIG.  10.  Eighteen­in.  diameter  pile  with force  gauge  and 

(22)

FIG.  11.  Elevated  walkway  to  prevent  snow disturbance  during  weekly  level  surveys 

FIG.  12.  View  of  installed  pile  and  thermocouple  installations  at various  distances  from  pile 

Figure

FIGURE  4  PILE  AND  THERMOCOUPLE  INSTALLATION 
FIG.  7.  Centering  the  steel pile  in  the  m.achine­augered  hole 
FIGURE  8  SURFACE  HEAVE  GAUGE  BRS036.  - 4
FIG.  10.  Eighteen­in.  diameter  pile  with force  gauge  and  reaction frame  in place 
+2

Références

Documents relatifs

Here, these tests revealed that the observed fertility reduction in some individuals of meat-type roosters was mainly associated with a decrease of mass motility, whereas the

Consistent with the lignin being unaffected in the vessel secondary cell walls, we did not observe collapsed xylem vessels in the Brachypodium lac5 lac8 mutant (Fig.  5 g),

the aqueous biphasic hydroformylation of 1-octene using the Rh/TPPTS complex, an increase in olefin concentration will increase the concentration of acyl complex and hence the rate

Chaskey comes with a proof of security, based on the security of an underlying Even-Mansour block cipher.. The proof states that if an at- tacker obtains D message blocks in

Completely novel elements include: the stability with near- optimal sequences of inputs, the analysis of reverse-discounted case and the relationship between the optimal value

Vidal, Paul-Etienne and Medjahed, Hassen and Dienot, Jean-Marc and Nogarède, Bertrand Mechanical stress induced by electromagnetic forces. on wire bonds of high

Also, this thesis could help real estate companies in the United States to know more about Chinese institutional investors, and to better cooperate with them

Second, based on the generic modeling language of Unified Cubes, we propose a two-stage process to (a) transform various schemas into a generic conceptual representation