• Aucun résultat trouvé

Meson loop effects in the Nambu-Jona-Lasionio model

N/A
N/A
Protected

Academic year: 2021

Partager "Meson loop effects in the Nambu-Jona-Lasionio model"

Copied!
9
0
0

Texte intégral

(1)

HAL Id: in2p3-00010668

http://hal.in2p3.fr/in2p3-00010668

Submitted on 10 Dec 2001

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

Meson loop effects in the Nambu-Jona-Lasionio model

M. Oertel, M. Buballa, J. Wambach

To cite this version:

(2)

M.Oertel

IPNLyon,43,Bvddu 11novembre1918, 69622VilleurbanneCedex, France

M.Buballa GSIDarmstadt

J.Wambach

Institutf urKernphysik,TUDarmstadt,Schlossgartenstr. 9,64289Darmstadt,Germany (December10, 2001)

We comparetwodi erent possibilities to include meson-loopcorrections inthe Nambu{Jona-Lasiniomodel: astrict1=N

c

-expansioninnext-to-leadingorderandanon-perturbativescheme cor-respondingtoaone-meson-loopapproximationtothee ectiveaction. Bothschemesareconsistent withchiralsymmetry,inparticularwiththeGoldstonetheoremandtheGell-Mann{Oakes{Renner relation. Thenumericalpartatzerotemperaturefocusesonthepionandthe-meson. Wealso in-vestigatethetemperaturedependenceofthequarkcondensate. Herewe ndconsistencywithchiral perturbationtheorytolowestorder. Similarities anddi erencesofbothschemesarediscussed.

I. INTRODUCTION

Duringthelast few years oneoftheprincipal goalsin nuclear physicshasbeento explorethephasestructure of QCD.Alongwiththiscomestheinvestigationofhadronpropertiesin thevacuumaswellas inhotordensematter. In principle, all properties of strongly interacting particles should be derived from QCD. However, at least in the low-energy regime, where perturbation theory is notapplicable, this is presently limited to a rather small number of observableswhichcan be studied onthe lattice,while morecomplexprocessescan either be addressedby chiral perturbationtheoryorwithine ectivemodel calculationswhichtryto incorporatetherelevantdegreesoffreedom.

Sofarthe best descriptionsof hadronicspectra,decaysand scatteringprocessesareobtainedwithin phenomeno-logicalhadronicmodels. Forinstancethepionelectromagneticformfactorinthetime-likeregioncanbereproduced ratherwellwithin asimplevectordominancemodelwithadressed-mesonwhichisconstructedbycouplingabare -mesonto atwo-pion intermediatestate [1,2]. Models of this typehave been successfully extended to investigate mediummodi cationsofvectormesonsandtocalculatedileptonproductionratesinhotanddensehadronicmatter [3].

Inthissituationonemightaskhowthephenomenologicallysuccessfulhadronicmodelsemergefromtheunderlying quarkstructure andthesymmetry propertiesof QCD.Since thisquestioncannot beansweredat present from rst principles it has to be addressed within quark models. For light hadrons chiral symmetry and its spontaneous breakinginthephysicalvacuumthroughinstantonsplaysthedecisiveroleindescribingthetwo-pointcorrelators[4] with con nementbeingmuchless important. Thisfeature iscaptured bythe Nambu{Jona-Lasinio (NJL)model in whichthe four-fermioninteractionscanbeviewedasbeinginducedbyinstantons. Furthermore themodel allowsa studyofthechiralphasetransitionaswellastheexaminationofthein uenceof(partial)chiralsymmetryrestoration onthepropertiesoflighthadrons.

The study of hadrons within the NJL model has of course a longhistory. In fact, mesons of various quantum numbershave already beendiscussed in the original papersby Nambuand Jona-Lasinio[5] and by many authors thereafter (forreviews see [6{8]). Inmost of these works quark masses are calculatedin mean- eld approximation (HartreeorHartree-Fock)whilemesonsareconstructedascorrelatedquark-antiquarkstates(RPA).Thiscorresponds to aleading-orderapproximationin 1=N

c

(3)

calculationfortheNJLmodel,althoughthishasbeendonebymanyauthors(seee.g.[7{10]). Inthesecalculationsthe thermodynamicsisentirelydrivenbyunphysicaluncon nedquarksevenat lowtemperaturesanddensities,whereas thephysicaldegreesoffreedom,inparticularthepion,aremissing.

This and other reasonshavemotivated severalauthors to go beyond thestandard approximationscheme and to include mesonic uctuations. SincethemostimportantfeatureoftheNJLmodelischiralsymmetry,oneshoulduse an approximation scheme which conserves the symmetryproperties, to ensurethe existence of masslessGoldstone bosons. Within the present article we will discuss two di erent approximation schemes and compare the results: A strict (perturbative) expansionin 1=N

c

upto next-to-leadingorder and anon-perturbativesymmetry conserving approximation scheme which has been derived in Ref. [11] using a one-meson-loop approximation (MLA) to the e ectiveactioninabosonizedNJLmodel. Thelatterschemehasbeforebeenpresented,derivedbycompletelyother means,in Ref. [12]. It hasbeenshown[12,11,13]that bothschemesareconsistentwiththeGoldstone theoremand theGell-Mann{Oakes{Rennerrelation,twoofthemostimportantlowenergychiraltheorems.

In vacuum we focus the discussion of our results for the pion and the -meson. The inclusion of meson loop e ectsshouldalsoimprovethethermodynamicsofthemodelconsiderably. A rstinsightonthein uenceofmesonic uctuations upon the thermodynamics can be obtained viathe temperature dependence of the quark condensate. The low-temperaturebehaviorin bothschemes is dominated by pionic degreesof freedom which is aconsiderable improvementoncalculationsinHartreeapproximationwherequarksaretheonlydegreesoffreedom. Theresultsare consistentwiththelowest-orderchiralperturbationtheoryresult[13].

Thisarticleisorganizedasfollows. InSec.IIwebeginwithabriefsummaryofthestandardapproximationscheme used in the NJL model to describe quarks and mesons. Afterwards we present the two possibilities to go beyond the standard scheme. The numerical results at zero temperature will be presented in Sec. III. The temperature dependenceofthequarkcondensatewillbestudied inSec.IV. Finally,wewillsummarizein Sec.V.

II. THEMODEL

AsdiscussedintheIntroduction,wewillemploytwodi erentschemesfordescribingmesonswithintheNJLmodel includingmesonloops: astrict(perturbative)1=N

c

-expansionandthenon-pertubativeone-mesonloopapproximation (MLA).Inthissectionwegiveabriefoutlineoftheseschemes. DetailsoftheformalismcanbefoundinRefs.[13,14]. WeconsideranNJL-typeLagrangianfortwo avorsandthreecolorswithscalar-isoscalarandpseudoscalar-isovector interaction: L =  (i@= m 0 ) + g s [(  ) 2 +(  i 5 ~  ) 2 ] g v [(   ~  ) 2 +(   5 ~ ) 2 ]: (1) Hereg s andg v

aredimensionfulcouplingconstantsoforder1=N c

. Inthelimitm 0

=0theLagrangianissymmetric underSU(2)

L

SU(2) R

transformations.

Starting point of the standard approximation scheme is to solve the gap equation for the quark propagators in Hartreeapproximation. This gap equation is displayed in Fig.1. The mesons are then described in RPA, i.e., by iteratedquark-antiquarkloops,asillustratedinFig.2. TheHartree+RPAapproximationschemecorrespondstothe leadingorderina1=N

c

-expansion.

= +

FIG.1. ThegapequationforthequarkpropagatorinHartreeapproximation(solid). Dashedlinesdenotepropagatorsofbare quarks.

= +

(4)

RPA

FIG.3. Contributionstothemesonpolarizationfunctionsinleading (RPA)andnext-to-leading orderin1=N c

.

The1=N c

-correctiontermstothemesonpolarizationfunctions togetherwiththeleadingorder (RPA)quark anti-quarkloopareshownin Fig.3. Solid linesdenotequarkpropagatorsin Hartreeapproximation,i.e.in leadingorder. ThesediagramscontainmesonpropagatorscalculatedinRPA,asdescribedabove. Toobtainthe\improved"meson propagators,theentirepolarizationfunction,includingthe1=N

c

-correctionterms,isiteratedinthesamemanneras before the RPA polarization function alone. It can be shownanalytically that the pion constructed in this way is againmasslessin thechirallimit[13]. Note thatwedonotuse theimproved mesonpropagatorsforevaluatingthe correctionterms. Such aselfconsistentprocedure,although desirablefrom aphenomenologicalpointof view,spoils the1=N

c

countingforthepolarizationfunctions schemeandleadsto inconsistencieswithchiralsymmetry.

= + +

FIG.4. Extended gapequation(upper part)andcontributions tothemeson polarizationfunctions(lowerpart)intheMLA.

WithintheMLAthegapequationforthequarkpropagatorsismodi edselfconsistentlybyaddingatermcontaining ameson loop. This is illustratedin the upper partof Fig.4. Here thedouble line is constructed in the sameway asamesonpropagatorin RPA(seeFig.2), butstartingfrom quarkswhichemergeassolutionsofthemodi edgap equation itself. The terms contributing to the meson polarization functions are shown in thelowerpart of Fig. 4. Here the solid lines and thedouble lines have thesame meaningas in the upperpart ofthe gure. Toobtainthe mesonpropagatorsthepolarisationfunctionsareiteratedasbefore. Again,itcanbeshownanalyticallythatthepion constructedinthiswayismasslessinthechirallimit[11,?,13].

III. NUMERICAL RESULTS

Anon-renormalizablemodelisincompletewithoutde ninghowtoregularizedivergentloops. Inaddition,itisnot suÆcienttoregularizethedivergentloopsinHartree+RPA,sincenewdivergenciesandhencenewcuto parameters emergeifoneincludes mesonloops

1

. Inourcasewehaveto dealwithtwotypesof di erentdivergentloops: quark and mesonloops. Forexampleletus look at diagram(b) ofFig.3. This diagramcontainsoneintermediatemeson which itself consistsof quarkloops. This intermediatemeson hasto becalculated in a rststep. We arethen left with twoloops: one quarkloop withfour verticesand an integration overthefour-momentum of theintermediate meson. It is quite naturalto regularizethe quarkloop in the same way asthe polarization diagrams which enter into theintermediatemeson. Infact,this isnecessaryinorder to preservechiralsymmetry. Wehavechosentouse Pauli-Villarsregularization withacuto 

q

. However,there is nostringentreason, whythe remainingmesonloop should alsoberegularizedinthis way. WethereforefollowRefs.[12,11]andintroduceanindependentmesoncuto

1

(5)

M

0

1

2

3

0

2

4

6

8

m

π

2

/ (140 MeV)

2

m

0

[MeV]

0

1

2

0

2

4

6

8

m

π

2

/ (140 MeV)

2

m

0

[MeV]

FIG.5. Squaredpionmassasafunctionofthecurrentquarkmassm0 fordi erentmeson-loopcuto s;(left)1=Nc-expansion scheme: 

M

=0MeV(solid),500MeV(dashed),900MeV(dashed-dotted)and1300MeV(dotted);(right)MLA: M

=0MeV (solid),300MeV(dashed),500MeV(dashed-dotted) and700MeV(dotted). The calculated pointsare explicitlymarked.

Let us rst study the in uence of mesonic uctuations onthe NJL pion propagator and related quantities. We beginwith the leadingorder,which corresponds to ameson cuto 

M = 0. With  q =800 MeV,g 2 q =2.9 and m 0

= 6.1 MeV we obtain a reasonable t for the pion mass, the pion decay constant and the quark condensate: m (0)  =140MeV,f (0)  =93.5MeV andh  i (0) =-2(241.1MeV) 3

. Hereand inthefollowingthesuperscript (0)is used todenote quantitieswhich arecalculatedin Hartree+RPA. Theaboveparameterscorrespondto arelatively smallconstituentquarkmassof260MeV.

Nowweturn onthemesonic uctuationsbytakinganon-zeromesoncuto  M

. Fig.5displaysthesquaredpion massasafunctionofthecurrentquarkmassm

0

fordi erentvaluesof M

,onthelefthandsideforthe1=N c

-expansion scheme and on the righthand side for the MLA. Obviously allpoints which correspond to the samemeson cuto liealmost onastraightline throughthepoint(m

0 =0;m

2 

=0). Thelatterwas calculatedanalyticallywhereasall other pointsare numericalresults. This demonstratesthe consistencyof ourscheme withchiralsymmetry andthe stabilityofthenumerics.

Ofcourseweshouldnotstaywiththemodelparametersdeterminedinleadingorder,butperformare tofvarious observables includingthe e ect of the mesonloops. Here weproceed in twosteps[14,13]: For various xed values of the meson cuto 

M

we rst x the current quarkmass m 0

, the quark-loopcuto  q

, and the scalarcoupling constantg

s

to tthepionmass,thepiondecayconstantf 

,andthequarkcondensateh  i. f



iscalculatedfromthe one-piontovacuum axialvectormatrixelement, which basicallycorrespondsto evaluating themesonicpolarization diagramscoupledtoanexternalaxialcurrentandtoapion. Thequarkcondensateisgivenbythetraceofthequark propagator: h  i= i Z d 4 p (2) 4 TrS(p): (2) In the 1=N c

-expansion scheme we have to take into account not only the Hartree contribution but also the two contributionstothequarkselfenergyinnext-to-leadingorderwhichareshownin Fig.6.

Inthesecond stepwetrytodeterminethetworemainingparameters,g v

and M

,by ttingthedataforthepion

FIG.6. The1=N c

-correctionterms tothequarkself-energy.

electromagneticform factorin thetime-likeregion. Thisobservableisverywell suitedforthispurpose becauseit is dominatedbythe-mesonwhich, besidesbeingavectorstate,cannotbedescribed reasonablywithoutincluding intermediate pion loops. Inthe 1=N

c

(6)

modelthephenomenologicallyimportanttwo-pionintermediatestateconsistsofRPApions,weareforcedto tm  andnotm



totheempiricalpion massifwedesiretogetthecorrectthresholdbehaviorforthe-meson. However, in mostcaseswe ndthatthedi erencebetweenm

 andm

(0) 

isnotverylarge.

;q   ;q    ;q    ;q    ;q    ;q   

FIG.7. Contributionstothepionelectromagneticformfactorinthe1=N c

-expansionscheme. Thepropagatordenotedbythe curlylinecorresponds tothe1=Nc-correctedrho-meson,whilethedoublelinesindicateRPA pionsandsigmas.

Theparameterspaceis furtherrestrictedbytherequirementthattheunphysicalqq-thresholdmustliewellabove thepeakin the-mesonspectralfunction inorder toobtainarealisticdescriptionofthepionelectromagnetic form factor. Thismeans,theconstituentquarkmasshastobelargerthanabout400MeV.

0

10

20

30

40

50

0.2

0.4

0.6

0.8

|F

π

(s)|

2

s [GeV

2

]

0

30

60

90

120

400

600

800

δ

1

1

√ s [MeV]

FIG.8. Pion electromagnetic form factor (left panel) and the -phaseshifts in thevector-isovector channel(right panel) forM =500MeV(dashed),M =600MeV(solid)aswellasM =700MeV(dotted)inthe1=Nc-expansion scheme. The datapointsare takenfromRefs.[17]and[18],respectively.

It was an important result of the analysis in Ref. [14] that such a set of parameters can be found in the 1=N c

-expansionscheme. Ourresultsforthepionelectromagneticformfactorfor

M

=500;600and700MeV,aredisplayed onthelefthandsideofFig.8. Thevalueofg

v

hasbeenchosensuchthatthepositionofthemaximumcoincideswith thedata. It is obviousthat in uence of thetwo-pionintermediate stateis underestimatedfor

M

=500MeVand overestimatedfor

M

=700MeV.Besides, theresultsfor  M

=500Mev su er from thefact that theconstituent quarkmassof396MeVwhichemergesfromthe tinthepionsectoristoosmalltokeepthequark-antiquarkthreshold well above the peak in the form factor. This is improvedfor larger valuesof 

M , for 

M

=600 MeV wealready obtaina constituentmass of 446MeVand for 

M

=700MeV we nda massof 550MeV. Wecan concludethat theoverallagreementwiththedata fortheform factoris good for

M

=600MeV.This iscon rmed ifwelook at the phase shiftsin the vector-isovectorchannel, which have beencalculated from thedominants-channel -meson exchange. Ourresultsforthesamevaluesofthecuto asbeforeareshownontherighthand sideofFig.8.

Incontrastto the1=N c

-expansionscheme, wedid notsucceedin performingareasonable t fortheMLA. There weencounteredinstabilitiesinthe-mesonpropagatorforvaluesofthemesoncuto 

M

(7)

It is commonly believed that chiral symmetry, which is spontaneously broken in vacuum, gets restored at high temperatures. At zero densities this is con rmed by lattice results, whereas in wide ranges of densities and tem-peraturesthis notionis basedon model calculationsfor lackof fundamental knowledge. Onlyat lowtemperatures and lowdensitiesmodel independentresultscanbeobtainedbyconsidering agasofpions andnucleons. Theseare thedominantdegreesoffreedomin that rangebecausepions arebyfarthelightesthadrons,while nucleonsarethe lightestparticlescarryingnon-zerobaryonnumber. ThisisinstrongcontrasttostandardNJL-modelcalculationsin Hartree(-Fock)approximation(see e.g. [7{10]), where thethermodynamics is entirelydriven by uncon nedquarks, i.e., by unphysical degreesof freedom. Hence, although thefundamental problem of lackof con nementcannot be overcome,wecan hopeto improvethe resultsby introducing mesonic degreesof freedom within anapproximation beyond Hartree + RPA, i.e. in the 1=N

c

-expansion scheme or the MLA. Since both schemes do not contain any nucleons, essential ingredients at nonzero densities, wewill restrictour examinations to nonzero temperatures but zerodensity.

We rst compare the low-temperature behaviorof the quark condensatewith model independent considerations from chiral perturbation theory. Tolowest orderin temperaturethechangeof h



iwith temperaturein thechiral limitisgivenby[19] h  i T =h  i  1 T 2 8f 2  +:::  : (3) Hereh 

idenotesthequarkcondensateatzerotemperature. ThetermproportionaltoT 2

arisesfromapure (mass-less) pion gas. In Hartreeapproximationthis behavioris completely failed since excitations of the massivequarks areexponentiallysupressed. Inthe1=N

c

-expansionschemeaswellasintheMLA, however,theT 2

-behaviorcanbe reproduced. The only di erence is that in these schemes the uctuations consist of RPA pions, and thereforethe coeÆcientcorrespondstotheRPAquantitiesinsteadofthefullones. Thegood agreementofourresultswithafree piongasbehavioratlowtemperaturescanalsobeseeninFig.9,wherethequarkcondensateisshownasafunction oftemperature. ForcomparisonwealsoshowthebehaviorinHartreeapproximation.

0

0.2

0.4

0.6

0.8

1

0

50

100

150

200

250

<

ψψ

>

T

/<

ψψ

>

T [MeV]

0

0.2

0.4

0.6

0.8

1

0

50

100 150 200 250

<

ψψ

>

T

/<

ψψ

>

T [MeV]

FIG. 9. Quark condensate as a function of temperature, normalized to the vacuum value in the chiral limit. Left: 1=N

c

-expansion scheme (solid), pion gas (dotted) and Hartree approximation (dashed), right: MLA (solid), pion gas (dot-ted)andHartreeapproximation(dashed).

InbothschemesdeviationsfromthepurepiongasbehaviorbecomevisibleatT > 

100MeV.Thesedeviationsarise from quarke ects which could be tolerated only close to the phase transition. In contrast to the 1=N

c

-expansion schemeanexamination ofthephasetransitionispossiblein theMLA. Thepresentparametersetleadsto acritical temperatureofT

c

=164:5MeV.Hencequarke ectsceasetobenegligibleatatemperatureofabout:6T c

,whereone cannotavoidadmittingthat theyarecompletely unphysical.

In accordance with the ndings in Ref. [20] the phase transition is of rst order whereas it is of second order in Hartreeapproximation. This is already indicated by the jump in the order parameterat T = T

c

(8)

four(atT c

massless)bosonicdegreesoffreedomandthatQCDthereforeliesinthesameuniversalityclassastheO(4) model which isknown to exhibit asecond order phasetransition. The sameargumentscanbeapplied tothe NJL model, which hasthesameunderlying symmetryasQCDwithtwomassless avors. However,one oftheobjections onemightraiseagainsttheabovehypothesis isthat atheorywith compositeboson elds notnecessarilybelongsto thesameuniversalityclassastheO(4)model[23]. ThisobjectionisamongothersvalidfortheNJLmodel.

V.SUMMARY

We have investigated quarkand meson properties within the Nambu{Jona-Lasiniomodel, including meson-loop corrections. These have been generated in two di erent ways. The rst method is a systematic expansion of the self-energies in powers of 1=N

c

up to next-to-leading order [12,24,14,13]. In the second scheme, a local correction termto thestandardHartreeself-energyisself-consistentlyincludedin thegapequation [12,11]. Bothschemes,the 1=N

c

-expansion scheme and the MLA, are consistent withchiral symmetry, leadingto massless pions in the chiral limit.

The relative importance of the mesonic uctuations is controlled by aparameter  M

, which cuts o the three-momentaofthemesonloops. Thevalueof

M

,hastobedetermined,togetherwiththeotherparameters,by tting physicalobservables. The-mesonandrelatedquantitiesareverywellsuitedforthispurpose,sincethemesonloops areabsolutelycrucialinordertoincludethedominant!-decaychannel,whiletheHartree+RPAapproximation containsonlyunphysicalqq-decaychannels. Of course,aprioriitis notclearto whatextenttheseunphysical decay modes, which are an unavoidable consequence of the missing con nement mechanism in the NJL model, are still presentin theregionofthe-mesonpeak.

For the 1=N c

-expansionscheme weobtain areasonable t of f 

, h 

i and the pion electromagnetic form factor with aconstituent quarkmass of m= 446MeV. This means, theunphysical qq-decay channel opens at 892 MeV, about120MeV abovethemaximumof the-mesonpeak. Unfortunatelywedidnotsucceed to obtainasimilar t within theMLA [13]. Since in thisscheme themeson-loope ects lowertheconstituent quarkmass ascompared to theHartreemass,itismuchmorediÆculttoevadetheproblemofunphysicalqq-decaychannelsinthevicinityofthe -mesonpeak.

Inthelastpartofthisarticlewehaveinvestigatedthetemperaturedependence ofthequarkcondensate. Inboth schemesthelow-temperaturebehaviorisconsistentwithlowest-orderchiralperturbationtheory,i.e.,thetemperature dependence arisingfrom a freepion gas. This isa considerableimprovementoverthemean- eld result,where the temperaturedependenceisentirelydue tothermallyexcitedquarks,i.e.,unphysicaldegreesoffreedom.

Athighertemperatures,however,thermalquarke ectsalsobecomevisibleinthetwoextendedschemes. Weargued thatthiscouldbetolerableonlynearthechiralphaseboundary. Whereastheperturbativetreatmentofthemesonic uctuationswithin the1=N

c

-expansionschemedoes notallowanexamination ofthe chiralphasetransition,this is possibleintheMLA.Forourmodelparametersetwefoundacriticaltemperatureof164.5MeV.Ontheotherhand, quarke ects arevisiblealreadyatatemperatureof 100MeV.Obviouslythisisstilltooearlytoberealistic.

In agreementwith Ref. [20] wefound a rst-orderphase transition in that scheme. This contradicts the general belief that the non-zerotemperature chiral phase transition in a model with two light avors should be of second orderandisprobablyanartifactof theapproximation.

ACKNOWLEDGMENTS

We are indebted to G.J. van Oldenborgh for his assistance in questions related to his program package FF (see http://www.xs4all.nl/gjvo/FF.h tml),whichwasusedinpartsofournumericalcalculations. WealsothankG.Ripka, B.-J.Schaeferand M.Urbanforilluminatingdiscussions. Thisworkwassupportedin partby theBMBFand NSF grantNSF-PHY98-00978.

[1] G.E.Brown,Nucl.Phys.A446,12c(1985);

G.E.Brown,M.RhoandW.Weise,Nucl.Phys.A454,669(1986).

(9)

[4] T.SchaferandE.V.Shuryak,Rev.Mod.Phys.70,323(1998).

[5] Y.NambuandG.Jona-Lasinio,Phys.Rev.122,345(1961);124,246(1961). [6] U.VoglandW.Weise, Progr.Part.andNucl.Phys.27,195(1991).

[7] S.P.Klevansky,Rev.Mod.Phys.64,3(1992).

[8] T.HatsudaandT.Kunihiro,Phys.Rep.247,221(1994). [9] S.Klimt,M.Lutz,W.Weise,Phys.Lett.B249,386(1990). [10] M.Lutz,S.Klimt,W.Weise,Nucl.Phys.A542,521(1992).

[11] E.N.Nikolov,W.Broniowski, C.V.Christov,G.Ripka,andK.Goeke,Nucl.Phys.A608,411(1996). [12] V.Dmitrasinovic,H.-J.Schulze,R.Tegen,andR.H.Lemmer,Ann.Phys.(NY)238,332(1995). [13] M.Oertel,M.BuballaandJ.Wambach,Phys.Atom.Nucl.64(2001)757.

[14] M.Oertel,M.BuballaandJ.Wambach,Nucl.Phys.A676,247(2000). [15] G.Ripka,theseproceedings,Nucl.Phys.A683(2001)463.

[16] R.S.PlantandM.C.Birse,preprinthep-ph/0007340.

[17] L.M.Barkovetal.,Nucl.Phys.B256,365(1985);S.R.Amendoliaetal.,Phys.Lett.B138,454(1984). [18] C.D.Frogatt,J.L.Petersen,Nucl.Phys.B129,89(1977).

[19] J.Gasser,H.Leutwyler,Phys.Lett.B184,83(1987);Phys.Lett.B188,477(1987);Nucl.Phys.B307,763(1988). [20] W.Florkowski,W.Broniowski, Phys.Lett.B386,62(1996).

[21] R.D.PisarskiandF.Wilczek,Phys.Rev.D29,338(1984).

Références

Documents relatifs

Syen nessufev-d seg-sent tulmisin yellan d tilsasiyin i vef bnant am : tafyirt n tazwara d taggara, tutlayt, adeg, akud, iwudam, tigawin, tadiwennit akked uglam. Propp, i

If the transmitted message is uniquely deter- mined, the equations have a unique solution. If there are several possible transmitted messages that could have given

Second Level - Install second door in entry to family room to enclose separate dwelling; Install range and refrigerator; Install door at landing of primary

solvaté stable, la réaction 7 peut être considérée comme lente même pour des concen-.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

In the framework of the NRQM concerning the meson wave function, and based on a field approach for the electromagnetic quark current operator, I study in this paper two different effects

Assuming the validity of the Standard Model and taking as an input the indirect determination of α from the global CKM fit, we used the observables in B → ππ, B → ρπ and B →

From the results presented in the Table 2, we can see that a simple classifica- tion scheme based on computing the sum of the feature scores according to the classification