• Aucun résultat trouvé

Timescales of hydrothermal scavenging in the South Pacific Ocean from 234 Th, 230 Th, and 228 Th

N/A
N/A
Protected

Academic year: 2021

Partager "Timescales of hydrothermal scavenging in the South Pacific Ocean from 234 Th, 230 Th, and 228 Th"

Copied!
12
0
0

Texte intégral

(1)

HAL Id: hal-02511018

https://hal.archives-ouvertes.fr/hal-02511018

Submitted on 18 Mar 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Timescales of hydrothermal scavenging in the South Pacific Ocean from 234 Th, 230 Th, and 228 Th

Frank Pavia, Robert Anderson, Erin Black, Lauren Kipp, Sebastian Vivancos, Martin Fleisher, Matthew Charette, Virginie Sanial, Willard Moore, Mikael

Hult, et al.

To cite this version:

Frank Pavia, Robert Anderson, Erin Black, Lauren Kipp, Sebastian Vivancos, et al.. Timescales

of hydrothermal scavenging in the South Pacific Ocean from 234 Th, 230 Th, and 228 Th. Earth

and Planetary Science Letters, Elsevier, 2019, 506, pp.146 - 156. �10.1016/j.epsl.2018.10.038�. �hal-

02511018�

(2)

Contents lists available atScienceDirect

Earth and Planetary Science Letters

www.elsevier.com/locate/epsl

Timescales of hydrothermal scavenging in the South Pacific Ocean from

234

Th,

230

Th, and

228

Th

FrankJ. Paviaa,b,, RobertF. Andersona,b, ErinE. Blackc,d, LaurenE. Kippc,d,

Sebastian M. Vivancosa,b,Martin Q. Fleishera,Matthew A. Charetted,Virginie Saniale, Willard S. Mooref,Mikael Hultg,Yanbin Luh,Hai Chengh,i, Pu Zhangh,

R. Lawrence Edwardsh

aLamont-DohertyEarthObservatoryofColumbiaUniversity,Palisades,NY,USA

bDepartmentofEarthandEnvironmentalSciences,ColumbiaUniversity,NewYork,NY,USA

cMassachusettsInstituteofTechnology/WoodsHoleOceanographicInstitutionJointPrograminOceanography/AppliedOceanScienceandEngineering,USA dDepartmentofMarineChemistryandGeochemistry,WoodsHoleOceanographicInstitution,WoodsHole,MA02543,USA

eDivisionofMarineScience,UniversityofSouthernMississippi,StennisSpaceCenter,MS39529,USA fDepartmentofEarthandOceanSciences,UniversityofSouthCarolina,Columbia,SC29208,USA gEuropeanCommission,JointResearchCentre,DirectorateforNuclearSafetyandSecurity,Geel,Belgium hDepartmentofEarthSciences,UniversityofMinnesota,Minneapolis,MN,USA

iInstituteofGlobalEnvironmentalChange,Xi’anJiaotongUniversity,Xi’an,China

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received3May2018

Receivedinrevisedform23October2018 Accepted26October2018

Availableonlinexxxx Editor:D.Vance Keywords:

thorium

hydrothermalactivity scavenging GEOTRACES EastPacificRise

Hydrothermalactivityinthedeepoceangeneratesplumesofmetal-richparticlescapableofremoving certaintraceelementsfromseawaterbyadsorptionandsedimentation.Thisremovalprocess,knownas scavenging,canbeprobedusingtheinsolubleradiogenicisotopesofthorium(Th),whichareproduced at a known rate in the water column via the decay of soluble uranium (234Th, 230Th) and radium (228Th) isotopes. We present dissolved andparticulate measurementsofthese threethoriumisotopes in a hydrothermal plume observed in the southeast Pacific Ocean onthe GEOTRACES GP16 section.

Since their half-lives varyfrom days (234Th) to years (228Th) to tens of thousands of years (230Th), the combinationoftheirsignalscanbeused tounderstandscavengingprocessesoccurringonawide rangeoftimescales.Scavengingisamulti-stepprocessinvolvingadsorptionanddesorptionontoparticles, followedbyparticleaggregation,sinking,andeventualsedimentation.Weusethoriumisotopestostudy howhydrothermalactivityaffectsthesesteps.Therateconstantsfornetadsorptionof234Thdetermined herearecomparabletopreviousestimatesfromhydrothermalplumesintheAtlanticandNorthPacific Oceans. Thepartitioning of234Thand230Thbetweenlarge and smallparticlesismore similar inthe hydrothermal plumethan aboveit, indicatingfasteraggregation of particleswithinthe hydrothermal plume atstations nearbythe EastPacificRise thaninwaters outsidetheplume. Inaddition torapid scavenging and aggregation near the ridge axis, we also infer continuous off-axis scavenging from observationsand modelingof228Th/228Ra activityratios. Thedegreeofdepletionofthethreethorium isotopesincreasesinorderofhalf-life,withtotal234Thactivityclosetothatofitsparent238U,but230Th showingnearly70%depletioncomparedtoexpectedvaluesfromreversiblescavenging.Bymodelingthe variationsindepletionforthedifferentisotopes,weshowthatmuchofthe230Thremovalisinherited fromscavengingeventshappeninglongbeforethemostrecenthydrothermalinputs.

©2018ElsevierB.V.Allrightsreserved.

1. Introduction

Submarine hydrothermal vents emit hot, reducing fluids that are highly enriched in trace metals such as iron (Fe) and man-

* Correspondingauthorat:Lamont-DohertyEarthObservatoryofColumbiaUni- versity,Palisades,NY,USA.

E-mailaddress:fpavia@ldeo.columbia.edu(F.J. Pavia).

ganese (Mn) relative to the deep ocean (German and Seyfried, 2014).Upon reactingwithseawater,dissolvedFe andMn precipi- tate toformparticles,withFe initiallyforming sulfidesclosest to theridgeaxis(e.g.Feelyetal.,1987),andbothFeandMnforming oxides overlonger distances(Feelyetal., 1996). Thesemetallifer- ousparticleshavehighlyreactivesurfacesthatcanreadilyremove trace metals,phosphorus, andcarbon fromsolution (Feely etal., https://doi.org/10.1016/j.epsl.2018.10.038

0012-821X/©2018ElsevierB.V.Allrightsreserved.

Fleisher, M. Q., Charette, M. A., Sanial, V., Moore, W. S., Hult, M., Lu, Y., Cheng, H., Zhang, P. and Edwards, R. L.: Timescales of hydrothermal

scavenging in the South Pacific Ocean from 234Th, 230Th, and 228Th, Earth

and Planetary Science Letters, 506, 146–156, doi:10.1016/j.epsl.2018.10.038,

2019.

(3)

1990;Germanetal.,2015; Kadkoetal.,1994),makinghydrother- malsystemsimportantsinksfora widerangeofelements inthe ocean.

The south Pacific was identified as a major locality of hy- drothermal activity by the discovery of volcanic 3He emanating from the East Pacific Rise (EPR) at 2500 m between 15–20S (Lupton and Craig, 1981). In 2013, the GEOTRACES GP16 cruise followedthissouthPacific heliumplume west oftheEPR.In ad- ditionto3He,the plumewas foundtobe highly enrichedindis- solvedmetalslike Fe(dFe) andMn (dMn)over 4000 kmwestof theEPR (Resingetal., 2015).Enrichments inparticulateFe (pFe) andMn (pMn) were alsofoundinthe GP16hydrothermalplume (Fitzsimmonsetal., 2017). WhilepMnanddMnwereboth found tohavepeaks alongthe sameisopycnalas3He,the pFe anddFe peaksdescendedbelow the3He isopycnal, indicatingremoval by sinkingparticles,despitetheapparentconservativebehaviorofdFe previouslyinferredby Resingetal. (2015). Modelingstudieshave shownthat hydrothermalFe,stabilizedinsolutionandcarriedby abyssaloceancirculation,could upwellandsupport newprimary production,particularlyintheSouthernOcean(Resingetal.,2015;

Tagliabue et al., 2010). A better understanding of removal pro- cesses and their associated timescales in hydrothermal plumes couldpotentiallyimprovemodelsofFestabilizationandremoval.

Chemicalscavengingencapsulatesthesumofprocessesrespon- siblefortheremovalofionsfromtheocean byoceanicparticles.

Theseindividual processes include adsorption anddesorption re- actions,aggregationanddisaggregationofparticles,andeventually particlesettlingandsedimentationattheseafloor(BaconandAn- derson,1982).Netscavengingratesresponsiblefortheremovalof elementsfromthe ocean integrateacross therates oftheseindi- vidualprocesses.

The radiogenic isotopes of thorium (234Th, 230Th, 228Th) are powerfultoolsforunderstandingthe kineticsofoceanicscaveng- ingprocesses.Thesethoriumisotopesareproducedatwell-known ratesinseawaterby thedecay ofsolubleuranium(238U234Th,

234U230Th)andradium(228Ra228Th).Thoriumishighlyinsol- ubleinseawater,withascavengingresidencetimeontheorderof 10–40 yrinthedeepocean(HendersonandAnderson,2003).Tho- riumadsorbs onto particles that subsequently settle through the watercolumn, generating radioactivedisequilibrium withrespect totheirmoresolubleparents.TherapidremovalofThisapparent fromtheopen oceanactivity ratioof 230Th to its parent 234Uof

0.00002(MooreandSackett,1964).Withrespectivehalf-livesfor

234Th, 230Th, and228Thof 24.1days (Knight andMacklin,1948), 75,587 yr(Chengetal.,2013),and1.91 yr(Kirbyetal.,1956),tho- riumisotopescanconstrainscavengingbehaviorintheoceanona rangeoftimescalesspanningmonthstomillennia.

Pavia et al. (2018) studied hydrothermal scavenging of 230Th and231Pa inthe GP16 hydrothermal plume, finding large deple- tions in totaland dissolved 230Th and231Pa coincidentwith en- richmentsin the particulate phase. The authors determined that this intense scavenging was largely the result of iron and man- ganesecoatingsonparticles,andthat scavengingwas continuous overthe4000 kmextentoftheplume.Inthisstudy,weusecom- binedmeasurementsofdissolvedandparticulate234Th,230Th,and 228Thandtheirparent activitiestostudythekineticsofthe indi- vidualprocessesinvolvedinscavenging, includingadsorptionand desorption, particle aggregation, andthe net scavengingremoval ofthoriumfromthewatercolumn. Weusetheseobservationsto assesstheimportanceoflocalanddistalhydrothermalactivityon 230Th scavengingpreviously observed in the GP16 hydrothermal plume,andtostudythe timescalesoverwhichdifferentscaveng- ingprocessesactinhydrothermalsettings.

Fig. 1.Sitemapofthestudyarea.NetvelocitiesofRAFOSfloatsdeployedalongthe EPR(HautalaandRiser,1993; LuptonandJenkins,2017) areshownassolidwhite arrows.Samplingsitesdiscussedinthispaperaretealdots.Locationsofactivehy- drothermalventsites(http://vents-data.interridge.org)areshownasblackXmarks.

DashedwhitearrowshowsproposedflowpathofwatersenteringtheGP16off-axis hydrothermalplumediscussedinSection4.3.

2. Materialsandmethods 2.1. Cruisesetting

SamplesweretakenonboardtheR.V.ThomasG.Thompsondur- ing the GEOTRACES GP16 cruise (TGT303) between Ecuador and Tahiti from 25 October to 20 December, 2013. We focus on the three sampling locations at or nearest downstream of the EPR:

station 18 atthe EPR and stations 20and 21, lessthan 250 km to the west along 15S latitude (Fig. 1). Since the hydrothermal plume was interrupted by a discontinuity dueto mixingofnon- plumewatersatthenextstationtothewest(Jenkinsetal.,2018;

Lupton and Jenkins, 2017), we restrict our analysis to the three stationsnearesttotheEPR.

2.2. Samplecollectionandanalysis

Dissolved230Thandtotal234ThsamplesweretakenfromNiskin bottles, with230Thcollected frombottleson aconventional steel rosette and deep 234Th samples taken from bottles hung above in-situpumps. Dissolved228Thand 228Ra sampleswere collected bypumpingwaterfilteredat0.8 µmover in-lineQMAandSupor filters using McLane in-situ pumps, and then over MnO2 coated acrylic cartridges (Henderson et al., 2013; Maiti et al., 2015).

Particulatesamplesforall Thisotopeswere collected viabattery- operated McLane in-situ pumps in two size classes: 0.8–51 µm, the smallsize fraction(SSF) and>51 µm, thelarge size fraction (LSF). All data from the GEOTRACES GP16 section presented in thispaperareavailableinthe2017GEOTRACESIntermediateData Product (https://www.bodc.ac.uk/geotraces/data/idp2017/). Much of the data is also archived at the Biological and Chemical OceanographyData Management Office(BCO-DMO),including to- tal 234Th and 238U (https://www.bco-dmo.org/dataset/643213), particulate 234Th (https://www.bco-dmo.org/dataset/643316), dis- solved 230Th (https://www.bco-dmo.org/dataset/643639), particu- late 230Th (https://www.bco-dmo.org/dataset/676231), and 228Ra (https://www.bco-dmo.org/dataset/650340).

2.2.1. 234Th

The methodsfor analyzingGP16samples fortotal andpartic- ulate234Thhavebeensummarizedpreviously(Blacketal., 2018).

Briefly, 4 L samples foranalysis of total 234Th were spiked with 230Thasayieldmonitor,pre-concentratedbyco-precipitationwith MnO2, and collected on Whatman quartz microfiber (QMA) fil- ters. Particulate 234Th samples were taken in two size fractions

(4)

usingin-situpumps.The LSFparticles werecollected onto apre- filter,andrinsedontosilverfilters.SSFparticleswerefilteredonto QMA filters. The activity of 234Th for both total and particulate sampleswasdeterminedusinganti-coincidencebetacountersand correctedforbackgroundradioactivity.Tocomputetheradioactive disequilibrium of 234Th, 238U was predicted for each sample by theU-salinityrelationshipofOwens etal. (2011).Dissolved234Th is calculated as the difference betweenthe total and particulate pools.

2.2.2. 230Th

The 230Th data and methods in this paper have been previ- ouslypublished(Paviaetal.,2018).Seawatersamples(5 L)were filtered over 0.45 µm Acropak capsule filters at sea and acidi- fiedto pH= 2 usingredistilled6M hydrochloricacidforstorage andon-shoreanalysis. Size-fractionatedparticulate230Th samples were taken using in-situ pumps, with LSF particles collected on a Sefar polyester mesh prefilter, and SSF particles collected on paired 0.8 µmSupor filters.Dissolved sampleswere spiked with 229Th,co-precipitated usingiron oxyhydroxide, then digested us- ing HF, HNO3, and HClO4. Particulate samples were spiked with 229Thanddissolved usingHNO3 andHClO4,followedbyiron co- precipitationandsubsequentredissolution.Forbothdissolvedand particulate samples,thorium isotopes were then separatedusing anionexchange chromatography(BioRad AG1-X8).Concentrations of230ThweredeterminedonaThermoELEMENTXRsinglecollec- torinductively-coupledplasmamassspectrometerinpeakjumping mode.Dissolved230Thdatapresentedherehavebeencorrectedfor detrital230Thpresentinthedissolvedpoolfromthedissolutionof continentalmaterial (e.g.Roy-Barman etal., 2009), andingrowth from234Udecayduring samplestorage.The 234Uactivityineach sample was computed by multiplying the 238U-salinity relation- ship(Owensetal.,2011) bytheoceanic234U/238Uactivityratioof 1.1468(Andersenetal.,2010).

2.2.3. 228Thand228Ra

Filteredseawaterwas pumpedover MnO2-coated cellulosefil- tersbyMcLanein-situpumpstocollectdissolved228Thand228Ra samples.Typically,1500–1700Lofseawaterwasfilteredatanav- erageflowrateof6.5Lmin1 withanaveragecartridgecollection efficiency of66±17%. Particulate samples were collected in the SSF on QMA filters via the same in-situ pumps. Full procedures fortheanalysisof228RaontheGP16sectionhavebeenpublished (Kipp et al., 2018b). The MnO2 cartridges and QMA filters were countedfor228Thvia220RnemanationwiththeRaDeCCalphade- layedcoincidencesystem(Charetteetal.,2015; Maitietal., 2015;

MooreandArnold,1996).Thismethoddetectsadsorbed228Thca- pable ofreleasing 220Rn; the resultingparticulate activityshould thereforebeconsidered alower limit,astheremaybeadditional 228Thin phasesthat trap its 220Rn frombeing released.Fordis- solvedsamples,afterRaDeCCanalysis,theMnO2-coatedcartridges wereashed andgammacountedfor234Thand226Raonhighpu- rity,well-typegermaniumdetectors.Thecartridge-based234Thand 226Rameasurementswere comparedtosmall-volume(4 L) beta countingmeasurements of234Thand226RacollectedfromNiskin bottleshung atthedepth ofeach sample,andthe ratioof 234Th and 226Rameasured on the small-volume samples to that mea- sured on the MnO2-coated cartridges was used to calculate the collectionefficiencyof228Thand228Raonthecartridges(Maitiet al.,2015).

228Raactivitiesweremeasuredongammadetectorslocatedun- dergroundattheLaboratoire SouterraindeModaneinFranceand the HADES laboratory in Belgium. The underground location of these laboratories serves to minimize the amount of cosmic ra- diationreachingthedetectors,reducingthedetectionlimits.

3. Results

At stations 18 and20there is a clearsignature of hydrother- mal scavengingobserved intheprofiles of all threethorium iso- topes below 2200 m (Fig. 2). The most distinct signal for the shorter lived 234Th and 228Th is enrichment in the particulate phase. In background,non-plume influenced deepwaters, partic- ulate234Thmakes up lessthan5% ofthe total234Th,withactiv- ities of1.4–1.8 mBq/kg.In thehydrothermalplume atstations18 and20,particulate234Threaches apeak of32% ofthetotal pool and consistently has activities of 9–12 mBq/kg. Particulate 230Th increases from background values near 2 µBq/kg to more than 4 µBq/kg,reaching57%ofthetotalpool.Particulate228Thincreases from0.1–0.5 µBq/kginnon-plumewatersto3.5–4.5 µBq/kgwithin the plume,peakingat36%ofthetotal 228Th.Atstation 21,there isa slightenrichmentinparticulate234Th to3.97 mBq/kgandin particulate228Thto1.76 µBq/kg.

There is little sign of significant excess in or deficit of total 234Threlativetoitsparent238U.Asteadystatemassbalancemodel of234Thcanbeusedtodeterminescavengingandremovalratesof 234Thinhydrothermalplumes(Kadko,1996).Themassbudgetfor dissolved234Thcanbewritten:

234Thdiss

t =!238

U−234Thdiss"

λ− JTh (1)

where238Uisthedissolved238Uinventory(Bq/m2)intheplume, defined here as the depth interval between 2200 and 3000 m, 234Thdiss isdissolved 234Th inventory (Bq/m2) in the plume, λ is the decay constant of 234Th in yr1 and JTh is the net rate at which dissolved 234Th isadsorbed ontoparticles in Bq m2yr1. Assumingsteadystate,wecansolvefor JTh,thenthenetadsorp- tion rate constant of 234Th in the plume (k1, in units yr1) by dividingthescavengingratebythedissolved234Thinventory:

k1=234JThTh

diss (2)

At station18, we derive JTh=106±16 Bq m2 day1 andk1= 2.99±0.47 yr1. At station20, we find JTh=147±31 Bq m2 day1andk1=2.32±0.51 yr1.Atstation21, JThandk1decrease to35.5±17 Bq m2 day1 and1.21±0.58 yr1 respectively.Our estimatesof JTharecomparabletopreviousvaluesof152 Bq m2 day1 foundbyOwens etal. (2015) attheMid-AtlanticRidgeand 81.6–202 Bq m2 day1 foundby Kadko etal. (1994) atthe Juan deFucaRidge.

Unlike 234Th, there is a large deficitof total 230Thin the hy- drothermal plume atstations18–21 relativeto theconcentration profiles expectedforremovalby reversible scavenging.Reversible scavengingshoulddrivedissolved, particulate,andtotal230Thac- tivitiesto linearlyincrease withdepth throughoutthe watercol- umn (BaconandAnderson,1982).Abovethehydrothermalplume this is the case along GP16 (Pavia et al., 2018); however, be- low 2200 mat stations 18–21, total 230Th sharplydeclines from 15–17 µBq/kg to lessthan 5 µBq/kg (Fig. 2). A similar signal is seen in the dissolved phase, andthe depletion ofboth total and dissolved 230Thinthehydrothermalplumeisroughly similar be- tween the three stations. Whereas the imprint of hydrothermal scavengingsignalson234Thessentiallydisappeared bystation 21, roughly 250 kmfromtheEPR,thehydrothermaldepletionofdis- solvedandtotal230Thandenrichmentofparticulate230Thextends over4000 kmfromtheridgeaxis(Paviaetal.,2018).

(5)

Fig. 2.Profilesofatstation18(toprow),station20(middlerow),andstation21(bottomrow)ofthoriumisotopesandtheirparentactivitiesfromtheGP16section.Dissolved 238U,andtotal,particulate,anddissolved234ThareshowninpanelsA,D,andG.Dissolved,particulate,andtotal230ThareshowninpanelsB,E,andH.Dissolved228Ra,and dissolved,particulate,andtotal228ThareshowninpanelsC,F,and I.Errorbarsrepresent1-sigmauncertainty,andaresmallerthanthesymbolsizewherenotvisible.

4. Discussion

4.1.Sizepartitioningof234Thand230Th

Theisotopesofthoriumareexpectedtohaveidenticalchemical scavengingbehavior.Differencesinobservedscavengingintensities ofthedifferentisotopescan thereforebe attributedto thediffer- enttimescalesoverwhichtheyintegrate,whicharerelatedtotheir half-lives.One ofthe keyvariablesindeterminingthe scavenging ratesand sinking fluxesof particles istheir size (Burdand Jack- son, 2009). Smaller particles typically have a larger surface area tovolume ratio,allowing forgreateradsorption per unit massof particles(HoneymanandSantschi,1989),whilelargerparticlesare exportedfasterby gravitationalsettling (BurdandJackson,2009).

Measuringthoriumisotopes withvaryinghalflivesinparticlesof differentsize classescan beused to constrainthe aggregationof

small particles, withlarge surface area to mass ratios,into large particlesthatsettlemorerapidly.

On the GP16 section, particulate 234Th measurements were madeonboththeLSFandSSFthroughoutthewatercolumn. Par- ticulate 230Th was mostly measured in theSSF, butthere are 44 LSFmeasurements,including17inthehydrothermalplumeatsta- tions 18–21that permit comparison with 234Th. 228Th was only measured inthe SSF,so we canonly comparethe sizepartition- ingof234Thand230Th.Todothis,weusethefractionofthorium activityfoundinthelargesizefractionrelativetothetotalpartic- ulateactivity(Leeetal.,2018):

fLSF= [pTh]LSF

([pTh]LSF+ [pTh]SSF) (3)

where [pTh] is the particulate activity of thorium. For the data availableoutsidethehydrothermalplume,aslightlyhigherfraction

Références

Documents relatifs

In single crystals, great care has to be taken and both the depth and the time-depen- dence of tracer penetration should be measured in order to avoid erroneous results

A l’exception de deux articles de Rosenblatt [62] et de Giraitis [25] ainsi qu’un article récent d’Arcones [3] qui seront discutés dans la suite de cette thèse, tous les

Nous avons cherché à savoir si les observations microphysiques in-situ réalisées durant cette campagne (avec des sondes de dernière génération et un radar embarqué à bord du Falcon

In summary, this work introduces ion mobility spectrometry coupled with mass spectrometry analysis for the structural study of soluble organic matter by presenting

To decompress these measurements, we developed the novel Composite In Situ Imaging (CISI) algorithm [ 9 ]. The first portion of the algorithm involves parsing signal from the

Building on developed safety control structures and the associated safety constraints, the proposed method can be used to develop both technical and

We measured the concentration of dissolved cobalt and labile dissolved cobalt in over 750 samples collected onboard the 2013 US GEOTRACES GP16 expedition across the South Pacific

OverCite distributes the storage and network requirements of CiteSeer among a collection of participating organizations (the current CiteSeer is maintained at a