• Aucun résultat trouvé

Kuan Fang REN Email: fang.ren@coria.fr tel: 02 32 95 37 43

N/A
N/A
Protected

Academic year: 2022

Partager "Kuan Fang REN Email: fang.ren@coria.fr tel: 02 32 95 37 43"

Copied!
52
0
0

Texte intégral

(1)

Metrology of particles

Part 3: measurement techniques

Kuan Fang REN

Email: fang.ren@coria.fr tel: 02 32 95 37 43 UMR 6614/ CORIA

CNRS - INSA & University of Rouen

(2)

Measurement techniques

Measurement of individual particles

▪ LDV and PDA

▪ Rainbow refractometry

▪ Imaging

Measurement of cloud particles

▪ Extinction spectrometry

▪ Refractometry (Malvern)

▪ Global rainbow

(3)

Measurement techniques

Detector Particles Measured parameters

Points CCD

Individual

Cloud V D C T/m x, y, z Time

LDV X X X ? X y

PDA X X X X difficulty possible X y

Rainbow X X X X ? ?

Global rainbow

X X X X ? ?

Extinction spectroscopy

X X X X ? Y

PIV X X X Y

V : velocity D : diameter

C : concentration

T/m : temperature or refraction index x,y,z : positions of particles

Time : temporal evolution

Techniques and measured parameters

(4)

LDV - Laser Doppler Velocimetry

Configuration

particles

(5)

LDV - Laser Doppler Velocimetry

Incidents beam

Interference fringes

f

v

 = =

times

Measurement of velocity:

Tf

Principle of measurement

(6)

LDV - Laser Doppler Velocimetry

Demonstration of the fringe :

1

2

1 0 0

2 0 0

z x

z x

ik z ik x ik r

ik z ik x ik r

E E e E e

E E e E e

+

= =

= =

1 2 0

(

ik z ik xz x ik z ik xz x

) 2

0 ik zz

cos(

x

) E = E + E = E e

+ e

+

= E e k x

2 2

4

0

cos (

x

) I = E k x

The intensity is maximum:

x

sin

k x = kx = p

sin 2sin

p

p p

x k

 

 

= =

f

x xv

 = −

= =

Principle of measurement

(7)

PDA - Phase Doppler Anemometry

Incidents beams

Principle of measurement

particles

(8)

PDA – Model of fringes

f(d,n) < F(D,n)

Df

Df

Principle of measurement

(9)

PDA – Model of geometrical optics

Relation phase difference - diameter:

2 1

2 1

( )

refl refl refl refl

refr rerl refr refr

C D

C m D

  

  

D = − =

D = − =

Relation phase-diameter:

reflection

refraction reference

D m

Principle of measurement

(10)

PDA – model of waves

1

( , , , )

2

( , , , ) E

s

= E d m   + E d m  

 

0

1 cos(2 )

I = I + V  t + f

t I 0

Rigorous simulation

Principle of measurement

(11)

PDA – signal processing

m=1.33, wl=0.633 µm, 2 alpha=5°, offaxis 30°,

-360 -300 -240 -180 -120 -60 0 60 120 180 240 300 360

0 50 100 150 200

Difrence de phase [deg.]

Delda Phi=6°, Reflection Delda Phi=6° Réfraction

DF

PDA signal

filter—FFT

CSD

Principle of measurement

(12)

PDA – trajectory effect

In te ns it é (log )

perpendiculaire

parallèle 100° 40°

Reflection dominant

or refraction dominant

refl

C

refl

D

D =

refr

C

refr

( ) m D

D =

?

p=0

p=1 p=2

p=3

p=0

p=1 p=2

p=3

Effect of scattering mode

(13)

PDA – trajectory effect

refraction dominant

Independent of position

Plane wave or d < w

0

Reflection dominant

Refraction dominant

Dependent on position

Gaussian beam d ~ w

0

or d > w

0

trajectory effect

(14)

PDA – trajectory effect

Reflection dominant

refraction dominant

reflection

refraction

trajectory effect

(15)

ADL and PDA

6

For small particles

(Rayleigh scattering regime):

log( ) 6log( )

IDID

For big particles:

log( ) log( )

IDID

Big particules

Dynamics of measurement

(16)

Rainbow

Natural phenomenon

R

2

m

Incident rays

R

3

(17)

Rainbow – geometrical optics

1

cos

2 cos 2 2

go p

p i

p i q

 =

m  −  

 

0

2 , i

1

2( i i ')

 = −   = − −

2 2 ' 2 ' 2 ( 1)

p

p pi i p

 =  −  = − − − 

2 2

avec sin

2

1 p m

i p

= −

2 ' 2 0

d

p

di

di p di

 = − =

2 2 2

2 2 2 2

1 ( 1)

2 arctan 2 arctan 2

go p

m p m

p q

p m p m

=  − −  − 

GO model of rainbow Geometrical optics:

i

i’ i’

i’

i2

1 R 0

R 1 R 2

m

I A

A

0

i-i’

i

i i-i’

(18)

Rainbow – geometrical optics

n 

2

3

486.1 1.3371 138.5° 128.0°

589.3 1.3330 137.9° 129.1°

656.3 1.3311 137.6° 129.6°

R 2

m

Incident rays

R 3

GO model of rainbow

(19)

Rainbow – in the nature

Can we observe personally a whole rainbow?

Why ?

How?

(20)

Rainbow – Airy theory

v

u

Phase difference is:

Amplitude is constant for all emergent rays

Amplitude of scattered field in  direction:

• The version of van de Hulst (1957) permits to predict the profile,

• But the absolute intensity was corrected later.

I G.O.

Airy theory

Airy theory (1838)

(21)

Rainbow – Airy theory

Airy,K I

Peak positions according to Airy theory :

) , (

,i

m d

Airy

Measurement of m et d

2 1/3

,1 ( , ) 1.087376 2

Airy go p m 12

H

 

 

− =  

 

2 1/3 2

, 2

9 1

( , )

4 4

Airy K go

p mK H

 

   

− =      +     

( )

( )

2 / 1

2 3 2 2 2

2 2

1 1





= −

m m p p

H p

A i : constants

A’ A

Interference b/t the rays A et A’

Ref: Wang & van de Hulst

Appl. Opt. 30(1):106-117 (1991).

(22)

Rainbow – Lorenz-Mie theory

p=0

p=2

Lorenz-Mie theory and Debye theory

Scattering diagram

Intensity

1 700 000 1 600 000 1 500 000 1 400 000 1 300 000 1 200 000 1 100 000 1 000 000 900 000 800 000 700 000 600 000 500 000 400 000 300 000 200 000 100 000 0

p=2; internal reflection only

Scattering diagram

Intensity

2 100 000 2 000 000 1 900 000 1 800 000 1 700 000 1 600 000 1 500 000 1 400 000 1 300 000 1 200 000 1 100 000 1 000 000 900 000 800 000 700 000 600 000 500 000 400 000 300 000 200 000 100 000 0

p=2; 0+2

Internal reflection

Int+ext reflections

(23)

Rainbow – GLMT

Ripple:

B+C

Airy:

B

Ondes de surfaceA+Cet

B+D

A B

C D

B A D

C

m d

0.E+00 2.E+06 4.E+06 6.E+06 8.E+06 1.E+07 1.E+07

137 137.5 138 138.5 139 139.5 140

Angle de diffusion

Intensi

FFT

Debye theory/series:

Separation of all the modes - Diffraction

- Reflection

GLMT and Debye theory

(24)

Rainbow – metrology

57

ripple

d =  f

100 700 1300 1900 2500

diameter ( um)

0 9 18 27 36 45

f ri

p p le ( 1/ de g .)

m=1.3324

Relation

diameter- ripple frequency An example of simulation

Typical error: 600 mm ± 2mm

- Does the factor depend-on the configuration?

- Suppose that the number of lobes  , find the relation between f et d.

For you to reply:

Measurement of diameter

(25)

Rainbow – metrology

Measurement of diameter variation

(26)

Rainbow – metrology

CSD

Measurement of diameter variation

(27)

Rainbow – metrology

0 400 800 1200 1600 2000

10 30 50 70 90

Experiment signal

Experimental setup

(28)

Rainbow – metrology

0 6 12 18

frequency (1/deg.)

0 0.2 0.4 0.6 0.8 1

l Fourier Amplitude l e x pe rim e nt

Sim ula tion

Airy

Ripple

Surface wave

Comparison between measured and calculated signals

Experimental results

(29)

Rainbow – metrology

1 4 7 10 13 16 19

103 104

Logarithmic amplitude (a.u.)

0 5 1 0 1 5 2 0 2 5

distance from orifice (mm)

510 520 530 540 550 560 570 580 590 600

diameter (mm)

experiment prediction of BRUN flat model

Arrival of water

flowmeter

Cont ainer

alimentation

Heating

Ripples toward to the Alexandre band

1

st

: 

2

nd

: 

Experimental results

(30)

Rainbow – metrology

126.5 128.5 130.5 132.5 134.5 136.5 138.5 0E+0

2E+6 4E+6 6E+6 8E+6 1E+7 1E+7

sca tt er in g in ten si ty ( a. u .) m=1.3216 b=-3

b=0 (linear) b=6

m=1.3316 (20°C)

(80°C) (80 ° C)

0 0.2 0.4 0.6 0.8 1

relative radius(x=r/r p) 1.321

1.324 1.327 1.33 1.333

refractive indice

b= 6 b= 0

m= 1.3316

m= 1.3216

b= -3

Measurement of temperature gradient

(31)

Rainbow – metrology

0 100 200 300 400 500

45 50 55 60

Angle de diffusion

Intensité diffusée

Ripple frequency : Dd ~ 0,1 µm Phase difference: Dd < 0,01 µm

FFT & CSD

Variant of rainbow refractometry

(32)

Rainbow – metrology

0.E+00 2.E+06 4.E+06 6.E+06 8.E+06 1.E+07 1.E+07

137 137.5 138 138.5 139 139.5 140

Angle de diffusion

Intensité

m D

f

rip

→d

(600 µm)

d < 5 µm

FFT

D f →Dd

< 10 nm CSD

➢Refraction index

➢Particle size

✓Gradient of refraction index or of temperature

✓Precise size and sphericity

0.E+00 2.E+06 4.E+06 6.E+06 8.E+06 1.E+07 1.E+07

137 137.5 138 138.5 139 139.5 140

Angle de diffusion

Intensité

m D

Summary of rainbow refractometry

(33)

Rainbow – metrology

Profile of liquid jet

Experimental scattering patterns.

Rainbow of a real liquid jet

(34)

Rainbow – metrology

Rainbow of a real liquid jet

Scattering patterns simulated with VCRM:

- A real jet illuminated by an elliptical gaussian beam.

- Tilt ripple fringes depend on the

vertical curvature of the jet.

(35)

Imaging technique – principle

TLMG/TLM Phase function

of the lens Huygens-Fresnel integration

Optical imaging system:

lens

Theoretical principle

(36)

Imaging technique – principle

Imaging (SDV) Digital holography

lens

particle Incident

beam Image

out of focus

Imaging in different stages

(37)

Imaging technique

Image of a hole by TLMG:

Effect of diffraction

(38)

Imaging technique

Out of focus Imaging

(39)

Measurement techniques - 2

Measurement of individual particles

▪ LDV and PDA

▪ Rainbow

▪ Imaging technique

Measurement of cloud particles

▪ Extinction spectrometry

▪ Refractometer (Malvern)

▪ Global rainbow

(40)

Extinction spectroscopy - Principle

Balance of energy:

Beer-Lambert law: I = I exp L

C ( , ) ( ) r n r dr

( ) ext ( , ) dI = − I n r C rdx

I 0 I

dx

Beer-Lambert law

(41)

Extinction spectroscopy

4 2

, d

 

Extinction factor behaviors

m=1.33

(42)

Extinction spectroscopy

Mono-dispersed particles :

) exp(

0 LC N

I

I = − ext LC ext N = ln( I 0 / I )

LC

ext

I N = ln( I

0

/ )

Poly-dispersed particles :

 

 

= 

C ( r , ) N ( r ) L 1 ln I ( I

0

j )

i

i j

i

ext

 

Inversion problem :

) ( )

( ) ,

0 A ( rn r dr = s

Inversion problem

(43)

Extinction spectroscopy

reference:

measured:

I

0

( )  I ( ) 

lumière blanche

spectrometer

 

 −

= I 0 exp L  0 C ( r , ) N ( r ) dr

I extRINVERSE: N(r)

Inversion problem

(44)

Extinction spectroscopy

0 0.5 1 1.5 2

0.5 0.6 0.7 0.8 0.9

Longueur d'onde

Indice de réfraction

partie réelle

partie imaginaire avec ligne chauffée

Radius (µm)

0.01 0.1 1.0

Relative number distribution (%)

7

6

5

4

3

2

1

0

Measured Verified

Ln(I0/I)

0.26 0.24 0.22 0.2 0.18 0.16 0.14 0.12 0.1 0.08

Measurement of soot emitted by a motor (CERTAM)

(45)

Extinction spectroscopy

1.E+05 1.E+06 1.E+07 1.E+08 1.E+09

10 100 1000 10000

diam ètre [nm ]

dN/d(log(D)) [part/cm3]

SMPS ELPI Exinction spect.

D moyen (nm) 86 111 101

Dmodal (nm) 68 71 101

f v 1.07E-8 1.62E-7 6.07E-8

Measurement of soot emitted by a motor (CERTAM)

(46)

Extinction spectroscopy

I 0 I

L Ld

N(r) d

N(r)L must not be too small (measurement noise) neither too big (multiple broadcast),

d/Ld must be small enough.

Caution for a dense medium

(47)

Refractometry

Mono-dispersed particles :

2 1

0

sin

) sin ) (

( 

 

=   

ka

ka I J

I

Poly-dispersed particles :

Inversion problem :

) ( )

( ) ,

0 A ( rn r dr = I

=

i i

i

i

kr

kr r J

N I

I

2 1

)

0

sin

) sin ( (

)

(   

General inversion problem

(48)

Refractometry

Principle of refractometer (Malvern)

(49)

Global rainbow

Mono-dispersed Particles :

) , , ( m r

I

Poly-dispersed Particles

Inversion problem:

) ( )

( ) ,

0 I ( rn r dr = I t

=

i

i i

t

I N r I r

I (  )

0

( ) ( ,  )

f ~ r, Df~D r, airy ~ m

Principle of global rainbow

(50)

Inversion problem

Fredholm equation of the first kind ) ( )

( ) ,

0

K ( x y f y dy = g x

= +

i

i j i j i

i w K f

g,

Discretization:

i – measurement error, w i – discretization weight.

Usually this is an ill conditioned equation.

Regularization:

B g

Af

M = − 2 +

Algorithm of inversion problem

(51)

Inversion problem

Phillips-Twomey :

( A A T +  H f ) = A g T

( ) 0

( 0) 0

( ) 0

'( 0) 0 n r

f r f r

f r

= =

→  =

= =

Physical constraints:

Algorithm NNLS (Lawson, SVD, …)

Algorithm of inversion problem

(52)

Rainbow

Fig (a) presents the scattering diagram of a water droplet illuminated by a plane wave and Fig (b) a schema of rays around the rainbow angles.

1. Explain the formation of the ripple structure (high frequency) and the Airy structure in Fig. (a) with help of the Fig. (b).

2. Estimate the radius of the particle from the Fig. (a).

1. The ripple structure (high frequency) is formed by the interference of rays external reflected rays B and the internal reflected rays and A’. The Airy structure is formed by the rays around A, i. e. rays of types represented by solid and dashed red lines.

We have 35 ripple peaks over 5°, i.e. the peak number over 180° is N=35*180/5=1260 ~ . So the

Références

Documents relatifs

From measurements of cosmic rays in the stratosphere at high latitudes covering several solar maxima and minima (Neher, 1971) it is possible to deduce the

To estimate the change of ice composition and the depth down to which the cometary ice is chemically altered by cosmic rays, we compute the amount of the main secondary species ( the

The crystal wave is calculated in a thin film of rectangular form(Fig. 1) made, of a perfect silicon crystal by using the dynamical theory of diffraction developed by Takagi/1/.

In the general case, under conditions of the hyperfine splitting of the nuclear resonant line the change of the electromagnetic field polarization (the Faraday nuclear

Knowing the abundances of the various kinds of secondary nuclei, produced via spallation while propagating through the interstellar medium, we can determine several parameters of

This shows that the influence of the CE deceleration for the high speed wind is probably not so impor- tant, despite the large speeds of the corresponding PUIs and the

The second characteristic feature of the variational theory of complex rays is the use of two-scale approximations with strong mechanical content by differentiating three zones:

In [17, Table 1] the list of possible minimal zero support sets of an exceptional extremal matrix A ∈ COP 6 with positive diagonal has been narrowed down to 44 index sets, up to