• Aucun résultat trouvé

Drought responses in Populus euphratica: effects on water relations, growth, hydraulic properties and gas exchange

N/A
N/A
Protected

Academic year: 2021

Partager "Drought responses in Populus euphratica: effects on water relations, growth, hydraulic properties and gas exchange"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01191054

https://hal.archives-ouvertes.fr/hal-01191054

Submitted on 7 Jun 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Drought responses in Populus euphratica: effects on

water relations, growth, hydraulic properties and gas

exchange

Marie-Béatrice Bogeat-Triboulot, Didier Le Thiec, David Hukin, Hervé

Cochard, Erwin Dreyer

To cite this version:

Marie-Béatrice Bogeat-Triboulot, Didier Le Thiec, David Hukin, Hervé Cochard, Erwin Dreyer.

Drought responses in Populus euphratica: effects on water relations, growth, hydraulic properties

and gas exchange. Impacts of the Drought and Heat in 2003 on Forests, Nov 2004, Freiburg,

Ger-many. �hal-01191054�

(2)

44 Impacts of the Drought and Heat in 2003 on Forests

2.4.5 Drought responses in Populus euphratica: effects on water relations, growth, hydraulic properties and gas exchange

Marie-Béatrice Bogeat-Triboulot1, Didier Le Thiec, David Hukin1, Hervé Cochard2 , Erwin Dreyer1

1 UMR INRA-UHP Ecologie and Ecophysiologie Forestières, INRA, F-54280

Champenoux, France

2 UMR-PIAF, INRA UBP, Site de Crouelle, 234 Avenue du Brézet, F-63039

Clermont-Ferrand, France

Populus euphratica species is famous for its ability to cope with high salinity. Moreover, its distribution area comprises deserts with very hot and dry summers (and very cold winters). All species of the Populus genus are know to be drought sensitive and a phreatophytic be-haviour of P. euphratica may explain its ability to grow in such dry areas. In this experiment, we studied the ecophysiological responses of P. euphratica to an increasing drought stress. Plantlets of P. euphratica were obtained by in vitro culture (from Ein Avdat natural park, Israel). After ex vitro acclimation, they were transferred and acclimated to Nancy's green-house. Climatic conditions depended on outside weather but temperature was regulated between 15 and 32°C.

A moderate, increasing drought stress was applied and controlled for 6 weeks. Soil volu-metric water content was measured one to two times a day depending on the intensity of the stress (TDR and weighting). Plantlets were progressively brought to 5 stress levels: 10%, 7.5%, 5%, 3% HV and back to fully available water. Although soil water content decreased down to as 3.5%, predawn and minimum water potentials remained above –0.8 and – 1.1 MPa, respectively. At this stage, relative leaf water content had declined from 96 to 89% and severe stress symptoms such as leaf yellowing, wilting and shedding were observed. Diameter growth significantly decreased as soon as soil volumetric water content (SWC) reached 16% and then very rapidly stopped. Height growth was affected at SWC around 12%, but reached 0 only when SWC has dropped to 6%. Leaf emission rate was affected 4 days after diameter growth reduction. Stomatal conductance (gs) decreased very early, as soon as soil moisture was less than 10%. Net CO2 assimilation decreased later than gs, only

when SWC reached 7-8%. A complete recovery of net CO2 assimilation occurred about 5-6

days after rewatering but stomatal conductance did not completely recover even after 11 days. Water stress had no effect on total chlorophyll content. Soil-to-leaf hydraulic conduc-tance (gL) decreased with drought. Embolism developed early, when drought was rather weak and progressed with increasing stress to 60% PLC. For a given stress level, roots were less embolised than stem.

Although P. euphratica is tolerant to salinity, our results demonstrate that it is definitely a drought sensitive species; trees may grow and survive only when the access to a water source such as a water table is possible. This clearly explains why this species is mostly confined to river banks in arid zones.

Références

Documents relatifs

The control of oscillation amplitude of root hydraulic conductance may therefore have a role in stress avoidance because it restricts leaf growth in water deficit, thereby

Drought markedly decreased water contents in rooting medium and plants, and leaf chlorophyll fluorescence, and stimulated the root growth, concentrations of soluble sugars

The transpiration rate evolution from June to July and the high water availability (water regime supply R1) make evident that Iberian provenances adopt a “water saving strategy” to

¾ Question : gènes impliqués dans la réponse à la sécheresse de Populus euphratica. ƒ chronologie des

These include the Liveness Problem (e. can a given system reach a deadlocked state?), the single-place reachability problem (can a given buffer ever be emptied?),

The responses of sapflow-derived canopy conductance, leaf area (Al), sapwood area (As), leaf-specific hydraulic conductance and soil–leaf water potential gradient to height growth

In this context, the evaluation of the effects of fertilization with potassium and sodium in interaction with water availability on the growth of Eucalyptus

In this paper, we present HydroShoot, a functional-structural plant model which allows simulating the hydraulic structure, energy budget and gas-exchange fluxes of complex