• Aucun résultat trouvé

Review of the DBR/NRC studies on control of smoke from a fire in high buildings

N/A
N/A
Protected

Academic year: 2021

Partager "Review of the DBR/NRC studies on control of smoke from a fire in high buildings"

Copied!
25
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

ASHRAE Transactions, 89, 1B, pp. 341-361, 1983

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Review of the DBR/NRC studies on control of smoke from a fire in high

buildings

Tamura, G. T.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=52c513a0-15ba-4e62-8f02-3dfcaa5293e7

https://publications-cnrc.canada.ca/fra/voir/objet/?id=52c513a0-15ba-4e62-8f02-3dfcaa5293e7

(2)

National Research Conseil national

I

*

Council Canada

de recherches Canada

REVIEW OF THE DBRINRC STUDIES ON CONTROL

OF SMOKE FROM A FIRE I N HIGH BUILDINGS

by

G.T. Tamura

Reprinted from

ASHRAE Transactions 1983

Vol. 89, Part 1B, p. 341 - 361

DBR Paper No. 1164

Division of Building Research

(3)

En c a s d ' i n c e n d i e , l a p r o p a g a t i o n d e s f m 6 e s t o x i q u e s r i s q u e d e menacer l a v i e d e s occupants d e b a t i m e n t s d e grande hauteur. Les r e c h e r c h e s pr'esentes e t p a s s k s s u r les mouvements de l a fumse e t l e dBsenfumage B t a i e n t b a s k s s u r d e s mod3les math'ematiques e t d e s e t u d e s dans les b l t i m e n t s pour d v a l u e r l e s r l s q u e s que pr'esente l a fumse dans d l v e r s e s c o n d i t i o n s d ' l n c e n d i e . Des t e c h n i q u e s d e dBsenfmage o n t 'et6 mises au p o i n t pour s ' a s s u r e r que

les

i s s u e s d e s e c o u r s e t l e s a i r e s d e r e f u g e s o n t

B

l ' a b r i de l a fumse. Des t r a v a u x d e r e c h e r c h e a d d i t i o n n e l s dans l a t o u r e x p k i m e n t a l e de l a D i v i s i o n d e s r e c h e r c h e s e n batiment p o r t e n t s u r l e s e f f e t s d e l a temp'erature d e l ' i n c e n d i e s u r l e s mouvements d e l a fumee e t s u r l 1 e f f i c a c l t 6 des t e c h n i q u e s de dssenfumage.

(4)

Review of the DBRlNRC Studies on Control

of Smoke from

a

Fire in High Buildings

G.T. Tamura

ASHRA E Member

ABSTRACT

Occupants of h i g h r i s e b u i l d i n g s a r e s e r i o u s l y endangered by t h e spread of t o x i c smoke i n t h e e v e n t of a f i r e . Both p a s t and c o n t i n u i n g r e s e a r c h s t u d i e s on smoke movement and c o n t r o l used mathematical models and f i e l d s t u d i e s conducted i n b u i l d i n g s t o a s s e s s t h e smoke hazard under v a r i o u s f i r e c o n d i t i o n s . Techniques of smoke c o n t r o l have been developed t o p r o v i d e s a f e escape r o u t e s and refuge a r e a s . F u r t h e r i n v e s t i g a t i o n a t t h e DBR experimental f i r e tower w i l l examine t h e e f f e c t of f i r e temperature on smoke movement and t h e e f f e c t i v e n e s s of smoke c o n t r o l techniques.

INTRODUCTION

Smoke r a t h e r than h e a t i s t h e main cause of c a s u a l t i e s d u r i n g a f i r e , because smoke i s t o x i c both w i t h i n and beyond t h e f i r e region, and c a n t r a p occupants due t o l o s s of v i s i b i l i t y . The time a v a i l a b l e f o r t o t a l evacuation b e f o r e escape r o u t e s a r e f i l l e d with smoke i s , t h e r e f o r e , c r i t i c a l t o l i f e s a f e t y .l *2 I n t h i s c o n t e x t , a high b u i l d i n g can be d e f i n e d a s any b u i l d i n g i n which e v a c u a t i o n t i m e , which depends on t h e n a t u r e of occupancy and b u i l d i n g h e i g h t , i s considered excessive. L i f e s a f e t y depends n o t o n l y on s a f e t y p r o v i s i o n s i n a b u i l d i n g b u t a l s o on how quickly t h e f i r e i s brought under c o n t r o l . F i r e f i g h t i n g i s more d i f f i c u l t i n high b u i l d i n g s than i n low b u i l d i n g s , because a d d i t i o n a l time i s r e q u i r e d t o reach t h e f i r e r e g i o n , occupancy l o a d i s g r e a t e r , and v e n t i n g of h e a t and smoke i s more d i f f i c u l t t o achieve i n a s a f e and e f f e c t i v e manner.

Because of t h e s e f a c t o r s , t o g e t h e r with t h e i n c r e a s i n g number of m u l t i s t o r y b u i l d i n g s being c o n s t r u c t e d i n Canadian c i t i e s , a d d i t i o n a l requirements f o r t h e p r o v i s i o n of safeguards a g a i n s t smoke hazard i n high b u i l d i n g s were introduced i n t h e 1970 e d i t i o n of t h e N a t i o n a l Building Code of Canada. They have been reviewed and r e v i s e d i n subsequent e d i t i o n s , t h e l a t e s t i n 1980.j Recommended measures f o r smoke c o n t r o l a r e d e s c r i b e d i n c h a p t e r 3 of

The

Supplement t o t h e National Building Code of Canada 1980 .4

Mathematical models were used and f i e l d s t u d i e s i n b u i l d i n g s were conducted t o study t h e causes and n a t u r e of smoke movement i n b u i l d i n g s and t o d e v i s e and develop v a r i o u s techniques of c o n t r o l l i n g smoke movement. Recently, an experimental f i r e tower was c o n s t r u c t e d t o permit f u r t h e r i n v e s t i g a t i o n i n t o t h e movement of smoke and t h e o p e r a t i o n of smoke c o n t r o l systems under r e a l i s t i c f i r e c o n d i t i o n s . This paper p r e s e n t s t h e r e s u l t s of p a s t r e s e a r c h s t u d i e s conducted by DBR/NRC w i t h mathematical models and i n m u l t i s t o r y b u i l d i n g s , followed by a b r i e f d e s c r i p t i o n of t h e f a c i l i t i e s i n t h e experimental tower and t h e p r o j e c t e d r e s e a r c h program t o be conducted there.

SMOKE FLOW PHENOMENON

Although a f i r e may be confined w i t h i n a f i r e - r e s i s t a n t compartment, smoke generated by i t can e a s i l y spread t o a d j a c e n t a r e a s through such openings i n t h e e n c l o s u r e a s c r a c k s i n t h e w a l l s , f l o o r , and c e i l i n g and around p i p e s , d u c t s , and doors. These leakage openings permit a s u b s t a n t i a l flow of smoke when p r e s s u r e i n t h e f i r e compartment i s g r e a t e r t h a n i n a d j a c e n t spaces.

George T. Tamura, S e n i o r Research O f f i c e r , D i v i s i o n of B u i l d i n g Research, N a t i o n a l Research Council of Canada, Ottawa, O n t a r i o , Canada KIA ORh.

(5)

The p h y s i c a l p r o p e r t i e s of a smoky atmosphere a r e s i m i l a r t o t h o s e of normal

atmosphere

-

t h e main c o n s t i t u e n t f o r both i s nitrogen. Oxygen and carbon d i o x i d e may vary about 10 p e r c e n t from normal amounts w i t h o u t s u b s t a n t i a l l y a f f e c t i n g t h e p h y s i c a l p r o p e r t i e s of t h e atmosphere. The c o n c e n t r a t i o n of p a r t i c u l a t e smoke, even under c o n d i t i o n s of low v i s i b i l i t y , does n o t a l t e r t h e c h a r a c t e r i s t i c s of a n atmosphere enough t o a f f e c t i t s

movement. It can be assumed, t h e r e f o r e , t h a t smoke w i l l f o l l o w t h e o v e r a l l a i r movement w i t h i n a building.

The following equation r e p r e s e n t s t h e r a t e of mass flow a t s t a n d a r d c o n d i t i o n s through a b u i l d i n g element. where F = mass flow r a t e C = f l w c o e f f i c i e n t 6P = p r e s s u r e d i f f e r e n c e n = f l w exponent

Eq 1 i s t h e b a s i c equation from which a i r f l o w and smoke c o n c e n t r a t i o n p a t t e r n s of a b u i l d i n g can be determined and smoke c o n t r o l measures i n v o l v i n g p r e s s u r i z a t i o n and smoke exhaust can be designed. A number of compartments formed by b u i l d i n g elements c o n t a i n leakage openings and, hence, a number of f l w e q u a t i o n s a r e involved i n d e s c r i b i n g t h e a i r 'and smoke flow p a t t e r n i n a building. Evaluation of Eq 1 r e q u i r e s a knowledge of 6P, which

i s

t h e p r e s a u r e d i f f e r e n c e a c r o s s t h e b u i l d i n g element, and of C and n, which d e s c r i b e t h e air-leakage c h a r a c t e r i s t i c s of t h e element.

P r e s s u r e D i f f e r e n c e s a c r o s s Building Elements

The c a l c u l a t i o n of a i r f l o w r a t e s according t o Eq 1 would r e q u i r e values of 6P, a s

w e l l

a s v a l u e s of t h e a i r - l e a k a g e c h a r a c t e r i s t i c s of b u i l d i n g elements. The p r i n c i p a l f a c t o r s t h a t cause p r e s s u r e d i f f e r e n c e s , hence, a i r and smoke movement, a c r o s s t h e b u i l d i n g s e p a r a t i o n s are:

1. E f f e c t of f i r e temperature;

2. Weather c o n d i t i o n s , p a r t i c u l a r l y wind and temperature; and

3. Mechanical air-handling systems.

Heat generated by f i r e r e s u l t s i n i n c r e a s e d gas temperature, which causes p r e s s u r e d i f f e r e n c e s by thermal expansion and by s t a c k action. The gas volume i n c r e a s e s approximately i n proportion t o t h e a b s o l u t e temperature, r e s u l t i n g i n a buildup of p r e s s u r e i n t h e f i r e compartment a s long a s t h e temperature i s r i s i n g . When t h e f i r e temperature reaches a steady value, however, t h e gas i s no longer expanding; then t h e p r i n c i p a l mechanism t h a t causes p r e s s u r e d i f f e r e n t i a l i s s t a c k a c t i o n due t o t h e temperature d i f f e r e n c e between g a s e s i n t h e f i r e compartment and i n a d j a c e n t spaces a t t h e same l e v e l . With f i r e i n a s i n g l e - f l o o r a r e a , s t a c k a c t i o n a c t s over one f l o o r height. With a f i r e i n a v e r t i c a l s h a f t , such a s a n

e l e v a t o r s h a f t o r s t a i r w e l l , s t a c k a c t i o n involves t h e whole h e i g h t of t h e s h a f t . Stack a c t i o n a s s o c i a t e d w i t h h e a t i n g d u r i n g c o l d weather i s a n o t h e r mechanism by which p r e s s u r e d i f f e r e n c e s a r e induced a c r o s s t h e b u i l d i n g s e p a r a t i o n . The t h e o r e t i c a l p r e s s u r e d i f f e r e n c e due t o s t a c k a c t i o n can be c a l c u l a t e d a s f o l l w s : where h

-

v e r t i c a l d i s t a n c e from t h e n e u t r a l p r e s s u r e l e v e l g = dimensional c o n s t a n t p i = d e n s i t y of a i r i n s i d e f i r e compartment o r b u i l d i n g p o = d e n s i t y of a i r o u t s i d e f i r e compartment o r b u i l d i n g

A s the gas d e n s i t y v a r i e s i n v e r s e l y w i t h t h e a b s o l u t e temperature, t h e value of P C depends on the i n s i d e and o u t s i d e temperature.

(6)

The p r e s s u r e caused by wind on t h e o u t s i d e s u r f a c e of a b u i l d i n g , r e f e r e n c e d t o t h a t of t h e f r e e a i r s t r e a m , i s given by where

-

Cv = wind p r e s s u r e c o e f f i c i e n t V = wind v e l o c i t y a t roof l e v e l

The d i s t r i b u t i o n of wind p r e s s u r e c o e f f i c i e n t s on t h e s u r f a c e of a b u i l d i n g f o r v a r i o u s wind a n g l e s

i s

a v a i l a b l e from wind t u n n e l t e s t data.

The supply and exhaust f a n s of a v e n t i l a t i n g system supply a i r t o and exhaust a i r from t h e v a r i o u s compartments of a building. The amount of p r e s s u r e d i f f e r e n c e induced a c r o s s t h e s e p a r a t i o n s depends on t h e a i r - l e a k a g e c h a r a c t e r i s t i c of t h e e n c l o s u r e and on t h e balance between t h e r a t e s of a i r s u p p l i e d and exhausted.

Air-Leakage C h a r a c t e r i s t i c s of B u i l d i n g Elements

F i e l d measurements were conducted t o determine t h e a i r - l e a k a g e c h a r a c t e r i s t i c s of major b u i l d i n g elements t h a t form t h e e n c l o s u r e of conpartments i n a building. They were c a r r i e d o u t i n m u l t i s t o r y b u i l d i n g s b u i l t d u r i n g t h e s i x t i e s and e a r l y s e v e n t i e s . The a i r - l e a k a g e c h a r a c t e r i s t i c s of t h e e x t e r i o r w a l l s were determined by p r e s s u r i z i n g a l l t y p i c a l f l o o r spaces between t h e ground f l o o r and t h e t o p mechanical f l o o r , u s i n g l O O X outdoor a i r f o r t h e c e n t r a l supply a i r systems, w i t h r e t u r n and e x h a u s t systems s h u t d a m (Fig. 1). Supply a i r r a t e s were v a r i e d , and t h e concomitant p r e s s u r e d i f f e r e n c e s a c r o s s t h e p r e s s u r i z e d e n c l o s u r e s were recorded. From t h e s e r e a d i n g s , a i r leakage through t h e e x t e r i o r w a l l s was s e p a r a t e d a n a l y t i c a l l y from t h e remainder of t h e e n c l o s u r e . The a i r - l e a k a g e r a t e s of e i g h t t e s t b u i l d i n g s v a r i e d c o n s i d e r a b l y ;= v a l u e s were above t h a t s p e c i f i e d by a n i n d u s t r y s t a n d a r d and t h e average value was comparable t o t h a t of a 13-inch (33 cm) p l a i n b r i c k w a l l measured i n a l a b ~ r a t o r y . ~ Three t e s t b u i l d i n g s had e x t e r i o r f a c a d e s of metal panels and t h e remainder, of p r e c a s t c o n c r e t e panels; a l l had s e a l e d double-glazing u n i t s . A s t h e w a l l m a t e r i a l s were r e l a t i v e l y impermeable t o a i r , i t i s probable t h a t t h e a i r - l e a k a g e r a t e s depended p r i m a r i l y on t h e design and c o n s t r u c t i o n of w a l l j o i n t s . Two b u i l d i n g s t h a t were c o n s t r u c t e d w i t h c l o s e s u p e r v i s i o n of workmanship i n w a l l j o i n t i n g t o minimize a i r i n f i l t r a t i o n , and where remedial measures were taken when j o i n t s e a l s appeared i n a d e q u a t e , gave t h e lowest a i r - leakage r a t e s .

The air-leakage c h a r a c t e r i s t i c s of f l o o r c o n s t r u c t i o n s were measured i n t h r e e t e s t b u i l d i n g s ( t h e t e s t arrangement i s shown i n Fig. 2). The a i r was exhausted w i t h a 50 000 cfm

(23.5 m3/s) vane a x i a l f a n from two a d j a c e n t f l o o r s , b o t h s e p a r a t e l y and i n combination. When t e s t i n g i n combination, b o t h f l o o r s were exhausted a t t h e same time by opening t h e doors of t h e s t a i r w e l l connected t o t h e exhaust fan. For a g i v e n p r e s s u r e d i f f e r e n t i a l a c r o s s t h e t e s t f l o o r e n c l o s u r e , t h e sun of t h e e x h a u s t r a t e s of t h e two f l o o r s measured i n d i v i d u a l l y

w i l l be g r e a t e r than t h a t measured i n combination, because t h e former would have two

a d d i t i o n a l f l o o r c o n s t r u c t i o n s f o r a i r t o l e a k through. One-half of t h e d i f f e r e n c e between t h e two exhaust r a t e s , t h e r e f o r e , r e p r e s e n t e d t h e average leakage r a t e through t h e one-floor c o n s t r u c t i o n . Equivalent o r i f i c e a r e a s of leakage openings i n t h e f l o o r c o n s t r u c t i o n v a r i e d from 0.65 t o 1.40 f t 2 (0.06 t o 0.13 m2) f o r t h e t h r e e t e s t buildings.7 With t h e c e n t r a l a i r - handling s y s t e m s h u t down, t h e a i r d u c t s p e n e t r a t i n g t h e f l o o r c o n s t r u c t i o n r e p r e s e n t e d a d d i t i o n a l leakage openings, which v a r i e d i n s i z e from 4.41 t o 7.64 f t 2 (0.41 t o 0.71 m2 ).

The a i r - l e a k a g e c h a r a c t e r i s t i c s of t h e e l e v a t o r s h a f t and s t a i r w e l l were measured i n e i g h t m l t i s t o r y buildings.8 The same t e s t f a n a s f o r t h e f l o o r l e a k a g e t e s t s was used t o conduct t h e s h a f t a i r - l e a k a g e t e s t s (Fig. 3). The d i s c h a r g e s i d e of t h i s f a n was connected t o t h e door opening of t h e s h a f t t o be t e s t e d by 3.0 f t (0.914 m) diameter aluminum ducts. The air-leakage measurements of each s h a f t were conducted i n two s t e p s ; f i r s t w i t h a l l door c r a c k s s e a l e d w i t h t a p e and t h e n w i t h a l l t a p e removed. Each s t e p involved p r e s s u r i z i n g t h e s h a f t w i t h t h e t e s t f a n and r e c o r d i n g t h e r e s u l t a n t p r e s s u r e d i f f e r e n c e s a c r o s s t h e s h a f t w a l l a t s e v e r a l l e v e l s , t o g e t h e r w i t h t h e concomitant supply a i r r a t e s . The a i r - l e a k a g e measurements w.ith a l l door cracks s e a l e d gave t h e a i r - l e a k a g e c h a r a c t e r i s t i c s of t h e s h a f t w a l l c o n s t r u c t i o n and, w i t h t h e door s e a l s removed, gave t h e o v e r a l l a i r l e a k a g e

c h a r a c t e r i s t i c s of t h e s h a f t enclosure. The d i f f e r e n c e between t h e two r e p r e s e n t e d t h e leakage r a t e of t h e doors.

(7)

The a i r l e a k a g e v a l u e s f o r t h e e l e v a t o r s h a f t and s t a i r w e l l a r e g i v e n i n Ref 8. It was found t h a t leakage values f o r e l e v a t o r s h a f t w a l l s c o n s t r u c t e d of masonry u n i t s a r e

considerably g r e a t e r t h a n t h o s e of cast-in-place c o n c r e t e ; leakage v a l u e s of s t a i r w e l l w a l l s a r e s i m i l a r t o t h o s e of e l e v a t o r s h a f t s c o n s t r u c t e d of cast-in-place c o n c r e t e , a s masonry w a l l s of t h e t e s t s t a i r w e l l s were u s u a l l y e i t h e r parged o r p l a s t e r e d . The v a r i a t i o n i n t h e air-leakage r a t e s of t h e w a l l s of t h e s t a i r w e l l s could n o t be r e l a t e d t o t h e type of w a l l construction. It probably depended on workmanship i n s e a l i n g crack openings around door frames, l i g h t f i x t u r e s , and s e r v i c e p a n e l s i n t h e w a l l s . The air-leakage r a t e s of s t a i r and e l e v a t o r doors c o r r e l a t e d w i t h t h e average crack width between door and door frame.

MATHEMATICAL

MODEL

P r e s s u r e s imposed by wind, s t a c k a c t i o n , and air-handling systems a r e d i s t r i b u t e d i n s i d e a b u i l d i n g i n such a way t h a t a t steady s t a t e , a i r inflow and outflow f o r i n d i v i d u a l

compartments a r e always equal. Hence, f o r a given c o n d i t i o n , t h e p a t t e r n s of p r e s s u r e d i f f e r e n t i a l and a i r leakage depend on t h e air-leakage c h a r a c t e r i s t i c s of a l l s e p a r a t i o n s i n a building. Airflow i n t o and o u t of a s i n g l e compartment cannot be c a l c u l a t e d i n i s o l a t i o n b u t rmst be considered w i t h t h e e f f e c t s of a l l o t h e r compartments. The d e t e r m i n a t i o n of t h e r e s u l t a n t p r e s s u r e d i f f e r e n t i a l s a c r o s s a l l t h e major s e p a r a t i o n s involves s e t t i n g up a mass flow balance equation, u s i n g Eq 1, f o r a l l compartments and s o l v i n g f o r p r e s s u r e s i n each compartment. Because t h e mass flow balance equations a r e n o n l i n e a r , an i t e r a t i v e technique i s r e q u i r e d t o s o l v e f o r t h e p r e s s u r e d i f f e r e n t i a l s and mass flow r a t e s a c r o s s a l l

s e p a r a t i o n s .

Once the v a l u e s of mass flow r a t e s and smoke c o n c e n t r a t i o n i n t h e f i r e compartment a r e known, smoke c o n c e n t r a t i o n i n a l l o t h e r coupartments can be c a l c u l a t e d by:

where p = a i r d e n s i t y V = volume of compartment C = smoke c o n c e n t r a t i o n t = time N a a l l compartments a d j a c e n t t o compartment i

Fji = flow r a t e from space j i n t o space i ( i =

l....N);

when t h i s i s n e g a t i v e , Cj i s replaced by Ci

M = a l l compartments excluding t h e f i r e compartment

This equation assumes i n s t a n t a n e o u s and complete mixing of smoke with a i r i n a compartment. Each v e r t i c a l s h a f t i s t r e a t e d a s i f i t were d i v i d e d i n t o s e p a r a t e compartments one-floor i n h e i g h t . The system of simultaneous d i f f e r e n t i a l e q u a t i o n s can be solved u s i n g a numerical method t o o b t a i n t h e v a l u e s of smoke c o n c e n t r a t i o n i n each compartment a t a s p e c i f i e d time i n t e r v a l .

Based on t h e above mathematical model, a computer program was prepared t o c a l c u l a t e p r e s s u r e d i f f e r e n t i a l s , mass flow r a t e s , and smoke c o n c e n t r a t i o n s i n a l l p a r t s of a

building.9 The computer models a r e shown s c h e m a t i c a l l y i n Figs. 4 and 5. The i n p u t s t o t h e computer program a r e a s follows:

1. Dimensions of a building:

number of f l o o r s , f l o o r h e i g h t s , compartment volumes, and a i r l e a k a g e v a l u e s f o r a l l b u i l d i n g s e p a r a t i o n s .

2. Motive f o r c e s :

s t a c k a c t i o n

-

i n s i d e temperature, o u t s i d e temperature, and temperature of f i r e compartment;

wind a c t i o n

-

wind p r e s s u r e s on t h e outdoor s u r f a c e s of a b u i l d i n g ;

air-handling system

-

balance of a i r f l o w r a t e s i n t o and out of each compartment. 3. F i r e f l o o r :

(8)

Smoke Movement

Assuming t y p i c a l air-leakage v a l u e s f o r t h e b u i l d i n g elements determined from f i e l d d a t a , computer s t u d i e s based on t h e mathematical models were conducted on a 20-story open plan o f f i c e building.10 The r e s u l t s i n d i c a t e d t h e r e l a t i v e i n f l u e n c e of v a r i o u s f a c t o r s on smoke movement i n b u i l d i n g s .

--For t h e Canadian c l i m a t e , b u i l d i n g s t a c k a c t i o n i s t h e p r i n c i p a l mechanism by which smoke i s t r a n s f e r r e d from a f i r e f l o o r t o t h e f l o o r s above.

--With f i r e on a lower f l o o r d u r i n g cold weather, smoke c o n c e n t r a t i o n s i n e l e v a t o r s h a f t s and s t a i r w e l l s and on upper f l o o r s r e a c h c r i t i c a l l e v e l s i n a very s h o r t t i m e . --Smoke moves mainly v e r t i c a l l y , i n e l e v a t o r s h a f t s and a i r d u c t s and, t o a l e s s e r

e x t e n t , i n s t a i r w e l l s .

--The v e r t i c a l a i r movement, and hence t h e r a t e of smoke movement, caused by wind a c t i o n a l o n e i s s u b s t a n t i a l l y l e s s t h a n t h a t caused by s t a c k a c t i o n .

-A l a r g e opening i n t h e o u t s i d e w a l l of a f i r e f l o o r a t a lower l e v e l r e s u l t s i n a g r e a t e r r a t e of v e r t i c a l smoke movement caused by s t a c k a c t i o n .

--With wind a c t i o n a l o n e , i t i s expected t h a t a l a r g e opening i n t h e windward w a l l of a f i r e f l o o r would a l s o cause a n i n c r e a s e i n t h e r a t e of v e r t i c a l smoke movement. --If f i r e i s p r e s e n t i n a v e r t i c a l s h a f t , t h e r e s u l t i n g high temperature causes a n

upward movement of a i r i n t h e s h a f t and a downward movement i n a l l o t h e r s h a f t s . T h i s can r e s u l t i n a r e c i r c u l a t i o n of a i r through t h e h e a t e d s h a f t s o t h a t smoke w i l l spread throughout t h e building.

This study emphasized t h e need f o r measures t o c o n t r o l smoke movement i n o r d e r t o p r o t e c t occupants and minimize smoke damage i n t h e e v e n t of f i r e .

C e n t r a l a i r - h a n d l i n g systems a r e commonly used t o d i s t r i b u t e conditioned a i r w i t h i n a building. The network of d u c t s necessary f o r t h e d i s t r i b u t i o n of a i r i n t e r c o n n e c t s v a r i o u s spaces of a b u i l d i n g . I n t h e event of a f i r e , t h e a i r - h a n d l i n g systems can, t h e r e f o r e , a c t a s a v e h i c l e f o r t h e s p r e a d of f i r e and smoke f a r beyond t h e o r i g i n of t h e f i r e . To p r e v e n t r e c i r c u l a t i o n of smoke by t h e a i r - h a n d l i n g system, most s t a n d a r d s s p e c i f y p r o v i s i o n s f o r shutdown of a f a n when e x c e s s i v e smoke i s sensed i n s i d e a n a i r duct. To e x p l o r e t h e behavior of an air-handling system r e l a t i v e t o smoke movement, computer s t u d i e s were conducted with systems p a s s i v e o r a c t i v e , w i t h t h e supply a i r system o p e r a t e d w i t h 1004 outdoor a i r and t h e r e t u r n a i r system o p e r a t e d on t o t a l exhaust. Various c a s e s were i n v e s t i g a t e d f o r a 20-story b u i l d i n g w i t h a f i r e on t h e second f l o o r . l l The r e s u l t s from t h i s study were a s follows:

-Vertical a i r d u c t s without dampers provide a passageway f o r smoke t o migrate t o upper p a r t s of a b u i l d i n g i f t h e a i r h a n d l i n g systems a r e s h u t down when t h e f i r e occurs. --Even r e l a t i v e l y leaky dampers a r e of g r e a t b e n e f i t i n reducing smoke movement through

t h e v e r t i c a l a i r ducts.

--If t h e supply and r e t u r n a i r systems a r e i n o p e r a t i o n and i f t h e r e a r e no dampers i n t h e f i r e compartment, t h e smoke problem may be i n c r e a s e d i n t h e s t a i r w e l l s and e l e v a t o r s h a f t s , but smoke c o n c e n t r a t i o n s i n t h e upper s t o r i e s w i l l be g r e a t l y reduced.

--If t h e supply a i r system i s o f f and t h e r e t u r n a i r system i s operated t o exhaust from a l l f l o o r s , t h e smoke problem may be worse t h a n w i t h both systems on o r both systems o f f , when t h e r e i s a l a r g e opening i n t h e e x t e r i o r w a l l s of t h e f i r e f l o o r .

--If both t h e supply and r e t u r n a i r systems a r e on and t h e damper i n t h e supply a i r d u c t t o t h e f i r e compartment i s closed, smoke i s c o n f i n e d t o t h e f i r e zone a s long a s t h e e x t e r i o r w a l l s of t h e f i r e f l o o r remain i n t a c t . With a l a r g e opening i n t h e e x t e r i o r w a l l s of t h e f i r e f l o o r , however, t h i s method i s u n l i k e l y t o be e f f e c t i v e i n

preventing smoke contamination.

This study i n d i c a t e d t h a t o p e r a t i n g t h e e x i s t i n g v e n t i l a t i o n systems without a d d i t i o n a l measures does not provide adequate smoke c o n t r o l .

(9)

Computer a n a l y s e s have i n d i c a t e d t h a t t h e w o r s t smoke c o n d i t i o n c a n occur d u r i n g c o l d weather w i t h a f i r e on a lower f l o o r and w i t h l a r g e openings i n t h e e x t e r i o r w a l l s of t h e f i r e f l o o r caused by w i n d w breakage due t o t h e f i r e temperature. Fig. 6 i l l u s t r a t e s p r e s s u r e and flow p a t t e r n s caused by b u i l d i n g s t a c k a c t i o n when outdoor temperature i s s i g n i f i c a n t l y lower t h a n b u i l d i n g temperature. The r e l a t i v e p o s i t i o n s of t h e p r e s s u r e l i n e s f o r v e r t i c a l s h a f t s , f l o o r spaces, and outdoor a i r a r e i n d i c a t e d . The flow p a t t e r n , which c a n be deduced from t h e p r e s s u r e diagram, s h w s a g e n e r a l upward movement of a i r ; i n t h e event of f i r e i n a lower f l o o r , smoke w i l l migrate t o t h e upper f l o o r s through v e r t i c a l s h a f t s and openings i n t h e f l o o r c o n s t r u c t i o n . With window breakages on t h e f i r e f l o o r , t h e f l o o r p r e s s u r e approaches t h e o u t s i d e p r e s s u r e . This change i n t h e f l o o r p r e s s u r e i s i n d i c a t e d by t h e dashed l i n e i n Fig. 6 ; t h e f i r e i s assumed t o be on t h e f i r s t f l o o r . The p r e s s u r e d i f f e r e n c e a c r o s s t h e w a l l s of t h e v e r t i c a l s h a f t s on t h e f i r s t f l o o r , r e p r e s e n t e d by t h e h o r i z o n t a l d i s t a n c e between t h e f l o o r s p a c e and t h e v e r t i c a l s h a f t p r e s s u r e l i n e s , i n c r e a s e d s u b s t a n t i a l l y , which would cause a corresponding i n c r e a s e i n t h e r a t e of smoke flow from t h e f i r e r e g i o n i n t o and up t h e v e r t i c a l s h a f t s and from t h e r e i n t o t h e upper f l o o r s . This i s one of t h e c o n d i t i o n s f o r which a smoke c o n t r o l system i s r e q u i r e d t o prevent a b u i l d i n g from b e i n g contaminated w i t h smoke.

Smoke Control

The mathematical model was used t o develop v a r i o u s smoke c o n t r o l measures w i t h t h e o b j e c t i v e of m a i n t a i n i n g t h e e s c a p e r o u t e s , f i r e f i g h t e r s ' e l e v a t o r , and f l o o r s p a c e s o r r e f u g e a r e a s smoke-free. These measures were developed f o r w i n t e r c o n d i t i o n s , when b u i l d i n g s t a c k a c t i o n

i s

t h e p r i n c i p a l mechanism of smoke migration. It was asstnned t h a t t h e f i r e i s contained i n t h e f i r e compartment. The b a s i c concept of smoke c o n t r o l i s t o maintain l e s s p r e s s u r e i n t h e f i r e compartment t h a n i n t h e surrounding spaces.

A smoke s h a f t , w i t h an opening t o t h e f i r e f l o o r and a l a r g e r opening t o t h e outdoors a t t h e top, c a n reduce t h e p r e s s u r e s i n t h e f i r e compartment.12 I n w i n t e r , t h e l a r g e opening a t t h e t o p of t h e smoke s h a f t , communicating t o t h e outdoors, m a i n t a i n s p r e s s u r e s i n t h e smoke s h a f t belaw t h o s e of a d j a c e n t f l o o r s p a c e s a t a l l l e v e l s of t h e s h a f t . By r e d u c i n g t h e p r e s s u r e on t h e f i r e f l o o r r e l a t i v e t o a d j a c e n t s p a c e s , t h e smoke s h a f t can induce a i r f l o w from t h e s e s p a c e s i n t o t h e f i r e f l o o r and o u t through t h e smoke s h a f t . I n t h i s way, t h e spread of smoke i n t o v e r t i c a l s h a f t s and upper s t o r i e s i s prevented. I n summer, w i t h l i t t l e o r no s t a c k a c t i o n , a smoke s h a f t i s n o t e f f e c t i v e f o r v e n t i n g t h e compartment w i t h a low- temperature f i r e . An exhaust f a n a t t h e t o p of t h e smoke s h a f t would make i t e f f e c t i v e year- round.

Where t h e e x t e r i o r w a l l can be expected t o remain i n t a c t , a s i n t h e c a s e of a windowless b u i l d i n g , a smoke s h a f t c a n be e f f e c t i v e i n l i m i t i n g smoke t r a n s f e r t o upper s t o r i e s . I f windows on t h e f i r e f l o o r a r e broken, however, t h e p r e s s u r e i n t h e f i r e f l o o r approaches t h a t of t h e outdoors and t h e smoke s h a f t , w i t h o r w i t h o u t a n e x h a u s t f a n , i s no l o n g e r e f f e c t i v e i n preventing t h e spread of smoke. This can be c o u n t e r a c t e d by r a i s i n g t h e b u i l d i n g

p r e s s u r e s above outdoor p r e s s u r e s a t a l l l e v e l s by o p e r a t i n g t h e c e n t r a l a i r s u p p l y systems a t 100% outdoor a i r . The f i r e compartment can be vented e i t h e r w i t h a smoke s h a f t o r e x t e r i o r w a l l vents. T h i s approach i s commonly c a l l e d t h e b u i l d i n g p r e s s u r i z a t i o n method of smoke c o n t r o l . Other approaches t o p r o t e c t i n g t h e escape r o u t e s a r e p r e s s u r i z e d s t a i r w e l l s and e l e v a t o r s h a f t s and p r o t e c t e d v e s t i b u l e a c c e s s t o s t a i r s and e l e v a t o r s .

Computer a n a l y s i s of smoke movement has i n d i c a t e d t h a t v e r t i c a l s h a f t s c o n s t i t u t e t h e p r i n c i p a l p a t h of smoke s p r e a d through a building. An obvious approach t o d e a l i n g w i t h t h i s mechanism i s t o s e p a r a t e t h e v e r t i c a l s h a f t s p h y s i c a l l y from t h e main f l o o r a r e a s , e i t h e r by a n open balcony o r h e a t e d l o b b i e s t h a t c a n be h e a v i l y vented t o t h e e x t e r i o r i n t h e e v e n t of f i r e . Another approach i n t h e same c a t e g o r y i s t o d i v i d e a b u i l d i n g v e r t i c a l l y i n two, w i t h both p a r t s s e p a r a t e d s p a t i a l l y o r by a p a r t i t i o n , w i t h connunication through vented o r p r e s s u r i z e d v e s t i b u l e s .

The c o n t r o l of smoke, a p a r t from t h e p h y s i c a l arrangement of a b u i l d i n g , a s above, e n t a i l s t h e c o n t r o l of p r e s s u r e s , p a r t i c u l a r l y t h o s e i n t h e v e r t i c a l s h a f t s . It can be achieved e i t h e r by n a t u r a l v e n t i n g of s h a f t s a t t h e t o p o r t h e bottom, o r by mechanical p r e s s u r i z a t i o n of exhaust. A smoke s h a f t i s a s p e c i a l c a s e of top v e n t i n g of a v e r t i c a l s h a f t . Natural v e n t i n g of s h a f t s u t i l i z e s b u i l d i n g s t a c k a c t i o n f o r i t s o p e r a t i o n , and hence, i t i s e f f e c t i v e only d u r i n g c o l d weather. V e r t i c a l s h a f t s i n g e n e r a l c a n be prevented from t r a n s f e r r i n g smoke from lower t o upper f l o o r s i f t h e s h a f t i s vented t o t h e e x t e r i o r a t t h e bottom. The flow of outdoor a i r a t t h e bottom of t h e s h a f t causes t h e s h a f t p r e s s u r e s t o i n c r e a s e above t h o s e of t h e f l o o r space p r e s s u r e s , a s shown i n Fig. 6, where t h e v e r t i c a l

(10)

s h a f t p r e s s u r e l i n e i s moved e n t i r e l y t o t h e r i g h t of t h e f l o o r s p a c e p r e s s u r e l i n e and t h e n e u t r a l p r e s s u r e l e v e l is l o c a t e d a t t h e bottom of t h e s h a f t . On t h e o t h e r hand, i f a s h a f t i s vented t o t h e e x t e r i o r a t t h e t o p , t h e s h a f t p r e s s u r e l i n e i s moved e n t i r e l y t o t h e l e f t of t h e f l o o r space p r e s s u r e l i n e , s o t h a t t h e n e u t r a l p r e s s u r e l e v e l

is

l o c a t e d a t t h e t o p of t h e s h a f t . Smoke flowing i n t o t h e s h a f t a t low l e v e l s w i l l n o t r e t u r n t o any o t h e r f l o o r space, a s t h e vent a t t h e top w i l l c o n s t i t u t e t h e o n l y o u t l e t from t h e s h a f t .

Computer a n a l y s i s i n d i c a t e d t h a t optimum v e n t s i z e i s e s s e n t i a l l y independent of t h e outdoor temperature;13 i t i n c r e a s e s , however, w i t h t h e h e i g h t of t h e b u i l d i n g and t h e e f f e c t i v e a r e a through which leakage can t a k e p l a c e between t h e s h a f t and t h e r e s t of t h e building. I f v e n t i n g i s r e s t r i c t e d t o e i t h e r t h e t o p o r bottom l o c a t i o n s , t h e o p t i m m v e n t s i z e i n c r e a s e s w i t h t h e number of vented s h a f t s . Top v e n t i n g some s h a f t s and bottom v e n t i n g o t h e r s w i l l reduce t h e o p t i m m v e n t s i z e s f o r both. Top v e n t i n g i n c r e a s e s smoke

contamination of t h e s h a f t and cannot, t h e r e f o r e , be used f o r s h a f t s , such a s s t a i r w e l l s , i n which smoke contamination m s t be r e s t r i c t e d . Bottom v e n t i n g i n h i b i t s t h e flow of smoke i n t o

t h e s h a f t from a d j a c e n t contaminated spaces. The flow of a i r i n t o t h e s h a f t from o u t s i d e , however, tends t o lower t h e s h a f t a i r temperature, which a d v e r s e l y a f f e c t s t h e performance of t h e vent. These f a c t o r s , and t h e p r a c t i c a l r e s t r i c t i o n on v e n t s i z e s f o r h i g h b u i l d i n g s , l i m i t t h e c o n d i t i o n s under which v e n t i n g c a n be f u l l y e f f e c t i v e a s a smoke c o n t r o l measure.

Top v e n t i n g can a s s i s t i n t h e e v a c u a t i o n of smoke o r i g i n a t i n g from a f i r e i n a s h a f t . The v e n t s i z e r e q u i r e d , however, t o p r e v e n t a flow of a i r and smoke from a s h a f t a t a n e l e v a t e d temperature t o a d j a c e n t i n t e r i o r spaces i s much g r e a t e r than r e q u i r e d f o r s h a f t s a t n o n m l b u i l d i n g temperature. Because of t h e d i f f i c u l t y of p r e v e n t i n g smoke contamination of a b u i l d i n g from f i r e s i n s h a f t s , s p e c i a l p r e c a u t i o n s a r e r e q u i r e d t o minimize t h e p o s s i b i l i t y of t h e i r occurrence.

Whereas n a t u r a l v e n t i n g is e f f e c t i v e f o r smoke c o n t r o l d u r i n g cold weather, mechanical p r e s s u r i z a t i o n , o r e x h a u s t of v e r t i c a l s h a f t s , i s e f f e c t i v e y e a r r o u n d . The s t a t e m e n t s made w i t h regard t o t h e s i z e of t o p and bottom v e n t s f o r n a t u r a l v e n t i n g a l s o a p p l y t o t h e r a t e of outdoor a i r supply r e q u i r e d f o r mechanical p r e s s u r i z a t i o n of a s h a f t and t h e r a t e of

mechanical exhaust of a i r i n t h e s h a f t t o outdoors. The maximum flow of outdoor a i r f o r mechanical p r e s s u r i z a t i o n i s t h a t necessary t o c o u n t e r a c t b u i l d i n g s t a c k a c t i o n a t t h e w i n t e r design temperature. A combination of bottom v e n t i n g and mechanical p r e s s u r i z a t i o n can be used f o r t h e p r o t e c t i o n of a s t a i r w e l l from smoke contamination; t h e e x i t door a t ground l e v e l , which i s l i k e l y t o be open f o r e v a c u a t i o n , can s e r v e a s a bottom vent.

Another approach t o p r o t e c t i n g t h e v e r t i c a l s h a f t s i s t o provide p r e s s u r i z e d o r

n a t u r a l l y vented v e s t i b u l e s around s t a i r s and e l e v a t o r doors. N a t u r a l v e n t i n g i s p o s s i b l e i f a v e s t i b u l e i s a s s o c i a t e d w i t h a v e r t i c a l s h a f t a d j a c e n t t o t h e e x t e r i o r w a l l of t h e

v e s t i b u l e , and comaunicating t o t h e e x t e r i o r . With l a r g e v e n t openings, t h e p r e s s u r e s i n t h e v e s t i b u l e s a r e c l o s e t o t h o s e of outdoors a t a l l l e v e l s . This h a s t h e e f f e c t of i s o l a t i n g t h e v e r t i c a l s h a f t from t h e remainder of t h e b u i l d i n g s o t h a t i t no l o n g e r s e r v e s a s a v e h i c l e f o r t h e spread of smoke from f l o o r t o f l o o r . The v e s t i b u l e p r o t e c t e d by mechanical p r e s s u r i z a t i o n , which i s a n a l t e r n a t i v e t o n a t u r a l v e n t i n g , i s n o t r e s t r i c t e d by t h e l o c a t i o n of t h e v e r t i c a l s h a f t s . The p r e s s u r e s i n t h e v e s t i b u l e s p a c e s a r e i n c r e a s e d s o t h e d i r e c t i o n of flow i s from t h e v e s t i b u l e i n t o t h e v e r t i c a l s h a f t and f l o o r s p a c e s , and t h e s h a f t i s p r o t e c t e d from smoke contamination. P r e s s u r i z e d v e s t i b u l e s a s s o c i a t e d w i t h a s t a i r w e l l can s e r v e a s a r e a s of refuge i f they a r e l a r g e enough t o accommodate a l l occupants of a building.

Various smoke c o n t r o l measures t h a t a r e a p p l i c a b l e t o h i g h b u i l d i n g s a r e s e t o u t i n c h a p t e r 3 of The Supplement t o t h e National ~ u i i d i n ~ Code of Canada, 1 9 8 0 . ~ The requirements f o r vent s i z e s and mechanical supply a i r r a t e s were based mainly on t h e d a t a o b t a i n e d from

t h e mathematical model of a b u i l d i n g , w i t h leakage v a l u e s o b t a i n e d from t e s t s i n m u l t i s t o r y b u i l d i n g s . An overview of t h e NRC smoke c o n t r o l measures i s given i n Ref 14.

SIMPLE ANALYSIS

Whether d i s c u s s i n g smoke movement i n a n unprotected b u i l d i n g o r t h e development of smoke c o n t r o l measures, t h e flow p a t t e r n s found i n b u i l d i n g s a r e o f t e n s o cooplex t h a t a d e t a i l e d a n a l y s i s of a l l t h e f e a t u r e s on which q u a n t i t a t i v e i n f o r m a t i o n i s d e s i r a b l e u s u a l l y

n e c e s s i t a t e s a computer study. A number of r e l e v a n t p r e s s u r e and a i r f l o w p a t t e r n s can be analyzed t o a c l o s e approximation, both q u a n t i t a t i v e l y and q u a l i t a t i v e l y , without t h e use of a computer. 15

(11)

For a n open p l a n b u i l d i n g , a s shawn i n Fig. 6, t h e p r e s s u r e d i f f e r e n t i a l a c r o s s t h e v e r t i c a l s h a f t w a l l s and t h e o u t s i d e w a l l s can be c a l c u l a t e d by i n t r o d u c i n g a v a l u e f o r t h e t h e r m a l d r a f t c o e f f i c i e n t , y , which depends on t h e t i g h t n e s s of f l o o r s e p a r a t i o n r e l a t i v e t o t h a t of t h e e x t e r i o r w a l l s . It is t h e r a t i o of t h e p r e s s u r e d i f f e r e n c e a c r o s s t h e o u t s i d e w a l l s t o t h e t h e o r e t i c a l p r e s s u r e d i f f e r e n c e . For most b u i l d i n g s , t h e i n t e r i o r a i r t i g h t n e s s w i t h r e g a r d t o a i r f l o w due t o s t a c k a c t i o n i s governed by t h e a i r - l e a k a g e v a l u e s of t h e v e r t i c a l s h a f t w a l l s r a t h e r t h a n t h o s e of t h e f l o o r c o n s t r u c t i o n . Knowing t h e a i r - l e a k a g e v a l u e s f o r t h e e x t e r i o r and v e r t i c a l s h a f t w a l l s , and assuming a n a i r t i g h t f l o o r

c o n s t r u c t i o n , t h e v a l u e f o r y can be approximated by c o n s i d e r i n g s e r i e s flow a t any l e v e l from outdoors t o t h e f l o o r space and from t h e f l o o r s p a c e t o t h e s h a f t s .

where

PC = p r e s s u r e d i f f e r e n c e due t o s t a c k a c t i o n Pw = p r e s s u r e d i f f e r e n c e a c r o s s o u t s i d e w a l l s

$

= a i r l e a k a g e v a l u e f o r t h e o u t s i d e w a l l of a t y p i c a l f l o o r

As = a g g r e g a t e air-leakage v a l u e f o r a l l v e r t i c a l s h a f t w a l l s of a t y p i c a l f l o o r The e x p e r i m e n t a l l y determined v a l u e of y v a r i e d from 0.63 t o 0.82 based on measurements on s e v e r a l buildings.16 For o u t s i d e w a l l s t h a t a r e r e l a t i v e l y a i r t i g h t , t h e v a l u e of y i s a l s o a f f e c t e d by t h e o p e r a t i o n of t h e a i r - h a n d l i n g system. With t h e a i r - h a n d l i n g system s h u t down, a s may be t h e c a s e i n t h e e v e n t of a f i r e , t h e a i r d i s t r i b u t i o n d u c t s a c t a s

i n t e r c o n n e c t i o n s between f l o o r s , which lowers t h e i n t e r i o r a i r t i g h t n e s s and r e s u l t s i n a g r e a t e r v a l u e of y t h a n w i t h t h e a i r h a n d l i n g system o p e r a t i n g . T h i s e f f e c t would be m c h g r e a t e r f o r b u i l d i n g s w i t h c e n t r a l WAC s y s t e m , compared t o b u i l d i n g s w i t h systems

compartmented on e a c h f l o o r .

Knowing o r assuming a v a l u e f o r y , t h e v a r i o u s p r e s s u r e d i f f e r e n c e s caused by s t a c k a c t i o n can be c a l c u l a t e d a t a n y ' l e v e l i n a b u i l d i n g (Fig. 6 ) .

P r e s s u r e d i f f e r e n c e a c r o s s o u t s i d e w a l l s :

P r e s s u r e d i f f e r e n c e a c r o s s v e r t i c a l s h a f t w a l l s :

P r e s s u r e d i f f e r e n c e a c r o s s f l o o r c o n s t r u c t i o n of f l o o r i:

The l o c a t i o n of t h e n e u t r a l p r e s s u r e l e v e l , r e q u i r e d f o r c a l c u l a t i n g PC of Eq 2 , can be determined f o r e x t e r i o r w a l l s and s h a f t s w i t h uniform l e a k a g e from t h e f o l l o w i n g e q u a t i o n :

where

h = n e u t r a l p r e s s u r e l e v e l measured from t h e bottom

H

= h e i g h t of v e r t i c a l s h a f t o r b u i l d i n g Ti a b s o l u t e i n s i d e a i r temperature To a a b s o l u t e o u t s i d e a i r t e m p e r a t u r e

I n Eq 9 , Ti > Tot If Ti < To, t h e r a t i o Ti/To i s i n v e r t e d .

For an e n c l o s u r e with two unequal openings w i t h known a i r f l o w c h a r a c t e r i s t i c s , t h e l o c a t i o n of t h e n e u t r a l p r e s s u r e l e v e l i s g i v e n by t h e f o l l o w i n g equation:

(12)

where

h = n e u t r a l p r e s s u r e l e v e l measured from t h e lower opening

A

= v e r t i c a l h e i g h t between openings A, = lower opening

%

= upper opening

I n Eq 10, Ti > To. I f Ti < To, t h e r a t i o Ti/To i s i n v e r t e d .

The s t e a d y - s t a t e c o n c e n t r a t i o n , C, t o be expected i n t h e upper h a l f of a simple h i g h b u i l d i n g , a s a r e s u l t of a f i r e a t a low l e v e l and of s t a c k a c t i o n a s s o c i a t e d w i t h b u i l d i n g h e a t i n g , is given t o an approximation by

where

Cf = t h e s t e a d y - s t a t e smoke c o n c e n t r a t i o n on t h e f i r e f l o o r N = t h e number of s t o r i e s i n t h e b u i l d i n g

n = t h e number of s i m i l a r compartments i n t o which t h e f i r e f l o o r i s d i v i d e d

The e x p r e s s i o n r e l a t e s t o t h e s i t u a t i o n where a l l windows a r e i n t a c t and t h e doors t o a l l compartments on t h e f i r e f l o o r a r e closed. V i s i b i l i t y and carbon monoxide c o n s i d e r a t i o n s suggest t h a t smoke c o n c e n t r a t i o n s more t h a n one p e r c e n t of t h o s e i n t h e f i r e a r e a a r e l i k e l y t o be unacceptable.

Adopting t h e one percent c r i t e r i o n , t h e e x p r e s s i o n s u g g e s t s t h a t , under t h e c o n d i t i o n s s p e c i f i e d , s e r i o u s smoke c o n d i t i o n s should n o t a r i s e i n t h e upper s t o r i e s of a high b u i l d i n g provided n.N

.

300. Thus, f o r an apartment b u i l d i n g having t e n apartments p e r f l o o r , upper f l o o r s would remain t e n a b l e i n t h e e v e n t of f i r e on a lower f l o o r , provided t h e b u i l d i n g were h i g h e r than 30 s t o r i e s . F r a c t u r e of windows i n t h e f i r e a r e a (when t h i s i s a t a low l e v e l i n a b u i l d i n g ) w i l l , i n g e n e r a l , i n c r e a s e smoke d e n s i t i e s i n t h e upper l e v e l s by a s u b s t a n t i a l f a c t o r , a s a r e s u l t of s t a c k a c t i o n . I f t h e door t o t h e compartment involved i n f i r e i s open, t h e n t h e advantage of coupartmentation, a t l e a s t a s r e g a r d s i t s i n f l u e n c e on smoke l e v e l s i n remote p a r t s of t h e b u i l d i n g , i s n u l l i f i e d . Providing automatic c l o s u r e t o t h e room doors can g r e a t l y reduce t h e p o s s i b i l i t y of a n i n t o l e r a b l e l e v e l of smoke i n t h e c o r r i d o r .

So f a r , p r e s s u r e d i f f e r e n c e s were considered i n terms of g a s flow r a t e and flow d i r e c t i o n . Another c o n s i d e r a t i o n i s t h e f o r c e imposed on t h e s t a i r doors by t h e s t a c k p r e s s u r e d i f f e r e n c e s , which can i n t e r f e r e w i t h t h e i r o p e r a t i o n d u r i n g e v a c u a t i o n . The l i m i t i n g p r e s s u r e d i f f e r e n c e may be t a k e n t o be 0.40 i n c h of w a t e r (LOO Pa) based on t h e r e s u l t s of door t e s t s conducted w i t h handicapped people.17 The maximum s t a c k p r e s s u r e d i f f e r e n c e s a c r o s s a s t a i r door, which o c c u r a t t h e bottom and top f l o o r s , w i t h a l a r g e opening i n t h e e x t e r i o r w a l l s caused by a f i r e on t h e s e f l o o r s , can be c a l c u l a t e d from Eq 2.

A s f o r t h e b u i l d i n g p r e s s u r i z a t i o n method, w i t h an a c t i v e smoke c o n t r o l system, t h e n e u t r a l p r e s s u r e l e v e l of t h e b u i l d i n g i s lawered t o t h e ground f l o o r l e v e l . The maximm p r e s s u r e d i f f e r e n c e occurs on t h e t o p f l o o r only and i s twice t h e v a l u e i n t h e previous case.

Both c a s e s a r e p l o t t e d i n Fig. 7 , which g i v e s t h e b u i l d i n g h e i g h t a t which t h e maximum p r e s s u r e d i f f e r e n c e s a r e 0.40 i n c h of w a t e r (100 Pa) f o r a g i v e n outdoor temperature. For b u i l d i n g s w i t h e x t e r i o r w a l l s i n t a c t and w i t h a thermal d r a f t c o e f f i c i e n t of 0.80, t h e h e i g h t o f t h e b u i l d i n g w i t h no a c t i v e smoke c o n t r o l would be f i v e times t h a t g i v e n i n Fig. 7. With a c t i v e smoke c o n t r o l t h e h e i g h t would depend upon t h e type of system used. Where a p r e s s u r e d i f f e r e n c e exceeding 0.40 i n c h of w a t e r (100 Pa) i s a n t i c i p a t e d , a n o f f s e t hinge door o r a power-assisted door can be used. Another a l t e r n a t i v e is t o provide a f u l l s p r i n k l e r system t o t h e b u i l d i n g , s o t h a t t h e p r o b a b i l i t y of window breakage i s minimized.

The amount of a i r r e q u i r e d t o d i l u t e a contaminated atmosphere t o a t e n a b l e l e v e l a t a g i v e n time c a n be c a l c u l a t e d approximately. Assuming p e r f e c t mixing of t h e c o n t a d n a t e d and d i l u e n t a i r :

(13)

where

C = f i n a l c o n c e n t r a t i o n of contaminant Co = i n i t i a l c o n c e n t r a t i o n of contaminant

e = 2.718

a r a t e of d i l u e n t a i r flow ( a i r changes p e r u n i t time) t = time between i n i t i a l and f i n a l c o n c e n t r a t i o n

I f the l e v e l of contamination i n a compartment i s e q u i v a l e n t t o t h a t of t h e f i r e compartment, and no more smoke i s e n t e r i n g , t h e amount of c l e a n a i r needed t o c r e a t e t h e one percent t e n a b l e atmosphere would be f i v e times t h e volume of t h e compartment. I f c l e a n a i r i s s u p p l i e d a t t h e r a t e of one volume every two minutes, t h e atmosphere i n t h e c o q a r t m e n t would be a c c e p t a b l e i n about t e n minutes.

FIELD

TESTS

F i e l d study c o n s t i t u t e s a necessary a r e a of r e s e a r c h i n a s s e s s i n g smoke hazards i n m u l t i s t o r y b u i l d i n g s and i n developing smoke c o n t r o l measures. It n o t only couplements t h e work

conducted with mathematical models, but h a s proven e s s e n t i a l i n improving t h e models i n some a s p e c t s previously omitted o r underestimated.

F i e l d t e s t s were i n i t i a l l y conducted t o develop d a t a on t h e air-leakage c h a r a c t e r i s t i c s of b u i l d i n g elements and t o o b t a i n t h e p r e s s u r e p a t t e r n caused by s t a c k a c t i o n f o r a i r i n f i l t r a t i o n and smoke movement s t u d i e s . Subsequent s t u d i e s sought t o determine t h e flow r e s i s t a n c e s of s t a i r w e l l s and t o a s s e s s t h e performance of v a r i o u s smoke c o n t r o l techniques and t h e i n s t a l l e d smoke c o n t r o l system. Another important a r e a of r e s e a r c h i n v o l v i n g f i e l d s t u d i e s conducted by DBRINRC i s on t r a d i t i o n a l t o t a l and s e l e c t e d s e q u e n t i a l e v a c u a t i o n s of b u i l d i n g s . l s 2 T h i s a s p e c t of f i r e s t u d i e s a f f e c t s t h e d e s i g n of smoke c o n t r o l systems, because opening s t a i r doors by occupants during evacuation and use of s t a i r s and e l e v a t o r s by f i r e f i g h t e r s can change t h e a i r and smoke flow p a t t e r n i n a building.

The parameters of Eq 1 t h a t were measured were p r e s s u r e d i f f e r e n c e s a c r o s s b u i l d i n g elements, and a i r v e l o c i t i e s a t i n t a k e and exhaust g r i l l e s , i n s i d e ductwork f o r supply and exhaust of a i r , and a t open doors and e x t e r i o r w a l l vents. The p r e s s u r e d i f f e r e n c e l a i r v e l o c i t y method i s simple, s a f e and inexpensive; however, i t does n o t t a k e i n t o account t h e e f f e c t of f i r e temperature and i t does not provide v i s u a l o b s e r v a t i o n of t h e movement of smoke. Chemical smoke was used on a few occasions t o demonstrate t h e e f f e c t i v e n e s s of a smoke c o n t r o l system.

P r o t e c t i o n of S t a i r w e l l s

I n i t i a l l y , t e s t s on t h e s t a i r w e l l s were conducted t o determine the e f f e c t i v e n e s s of n a t u r a l v e n t i n g a t t h e bottom. Bottom v e n t i n g of s t a i r w e l l s can be r e a d i l y achieved by opening a s t a i r w e l l door l e a d i n d i r e c t 1 outdoors a t grade l e v e l . A t y p i c a l s t a i r door r e p r e s e n t s a vent a r e a of 20 f

b

(1.86

f

).

Measurements were conducted i n w i n t e r on a ten-story b u i l d i n g with a heated s t a i r w e l l a d j a c e n t t o t h e e x t e r i o r wa11.13 With a l l doors closed, a i r flawed i n t o t h e s t a i r w e l l from t h e f l o o r s below t h e n e u t r a l p r e s s u r e l e v e l a t t h e e i g h t h f l o o r , and o u t of t h e s h a f t above t h i s l e v e l . With t h e e x i t door open and a l l o t h e r doors c l o s e d , p r e s s u r e measurements a c r o s s t h e s t a i r w e l l doors i n d i c a t e d t h a t a i r flowed from t h e s t a i r w e l l t o a l l f l o o r s . S i m i l a r measurements on a 38-story b u i l d i n g , a l s o w i t h a h e a t e d s t a i r w e l l a d j a c e n t t o t h e e x t e r i o r w a l l , i n d i c a t e d t h a t , with a l l doors c l o s e d , the n e u t r a l p r e s s u r e l e v e l was l o c a t e d on t h e 35th f l o o r , w i t h a i r f l o w i n t o t h e s t a i r w e l l below i t and o u t from t h e s t a i w e l l above i t . 1 3 When the e x i t door was opened, a i r flowed o u t of t h e s h a f t from t h e second t o t h e 20th s t o r y

l e v e l s and from t h e 34th t o t h e 38th s t o r y . Air flowed i n t o t h e s h a f t from t h e 2 1 s t t o t h e 33rd s t o r y , although t h e r a t e s of a i r i n f l o w were decreased, a s i n d i c a t e d by t h e r e d u c t i o n i n t h e adverse p r e s s u r e d i f f e r e n c e s .

These t e s t s confirmed t h e r e s u l t s obtained from computer a n a l y s i s t h a t when t h e a i r temperature o u t s i d e a b u i l d i n g i s belaw t h a t i n s i d e , v e n t i n g a s h a f t a t t h e bottom r e s u l t s i n a flow of o u t s i d e a i r i n t o t h e s h a f t . This causes s h a f t p r e s s u r e s t o i n c r e a s e r e l a t i v e t o t h o s e i n a d j a c e n t s p a c e s and t h u s p r e v e n t s o r d e c r e a s e s t h e flow of smoke from t h e s e spaces

(14)

i n t o t h e s h a f t . Bottom v e n t i n g can be a p p l i e d d u r i n g a f i r e t o p r o t e c t t h e s t a i r w e l l by simply opening t h e s t a i r door a t e x i t l e v e l t o connect t h e s t a i r w e l l t o e x t e r i o r pressures. I n t h i s c o n t e x t , a s t a i r w e l l t h a t e x i t s d i r e c t l y t o o u t s i d e a t grade l e v e l , r a t h e r t h a n i n t o t h e ground f l o o r lobby, is p r e f e r r e d , p a r t i c u l a r l y f o r a f i r e on t h e ground f l o o r o r t h e f l o o r below grade.

Mechanical p r e s s u r i z a t i o n of s t a i r w e l l s does n o t r e l y on b u i l d i n g s t a c k a c t i o n f o r i t s o p e r a t i o n , and i t i s e f f e c t i v e a t a l l times of t h e year. The r a t e of a i r supply r e q u i r e d t o p r e s s u r i z e a s t a i r w e l l t o a d e s i r e d l e v e l depends upon t h e a i r t i g h t n e s s of t h e s h a f t

e n c l o s u r e and on t h e number of s t a i r doors designated t o be open. It was found from t e s t s on t h e p r e s s u r i z e d s t a i r w e l l s of a 23- and a 37-story b u i l d i n g , w i t h bottom and t o p a i r

i n j e c t i o n , r e s p e c t i v e l y , t h a t t h e r e were s u b s t a n t i a l p r e s s u r e l o s s e s i n s i d e t h e s t a i w e l l caused by t h e flow r e s i s t a n c e of t h e winding s t a i r c a s e . 1 8 This caused a nonuniform p r e s s u r i z a t i o n of t h e s t a i r w e l l , w i t h t h e g r e a t e s t p r e s s u r i z a t i o n n e a r t h e p o i n t of a i r i n j e c t i o n and t h e l e a s t a t t h e f a r t h e s t p o i n t from it. T e s t s on s t a i r w e l l s of e i g h t m l t i s t o r p b u i l d i n g s i n d i c a t e d t h a t t h e flow r e s i s t a n c e s of conventional s t a i r w e l l s were about 1150 times g r e a t e r than those of a i r ducts.8

The flow r e s i s t a n c e of a s t a i r w e l l can a l s o be r e p r e s e n t e d by an o r i f i c e a t each f l o o r l e v e l , assuming no r e s i s t a n c e between f l o o r s . The s i z e of t h e o r i f i c e can be c a l c u l a t e d from t h e p r e s s u r e l o s s c o e f f i c i e n t by t h e following equation: where = o r i f i c e a r e a = c r o s s - s e c t i o n a l a r e a of a s h a f t Cd = c o e f f i c i e n t of discharge of an o r i f i c e K = p r e s s u r e l o s s c o e f f i c i e n t L 5 h e i g h t of s h a f t per f l o o r De = e q u i v a l e n t diameter

The c a l c u l a t e d values of t h e o r i f i c e s i z e from t h e measured values of p r e s s u r e l o s s c o e f f i c i e n t v a r i e d from 24% t o 32% of t h e c r o s s - s e c t i o n a l a r e a of t h e s h a f t . The i n t e r n a l flow r e s i s t a n c e of a s t a i r w e l l , because i t i s s u b s t a n t i a l , mst be taken i n t o account i n d e s i g n i n g t h e p r e s s u r i z a t i o n system. These s t u d i e s l e d t o t h e i n c o r p o r a t i o n of t h i s f a c t o r i n terms of o r i f i c e a r e a i n t o t h e computer program f o r c a l c u l a t i n g smoke c o n c e n t r a t i o n s i n m l t i s t o r y b u i l d i ~ i g s . ~ Using t h e modified computer program, t h e design of a s t a i r w e l l p r e s s u r i z a t i o n system was i n v e s t i g a t e d , with t h e e x i t door a t grade l e v e l assumed t o be l e f t open f o r evacuation and bottom venting.19 The main conclusion from t h i s study was t h a t m u l t i p l e i n j e c t i o n , r a t h e r than s i n g l e i n j e c t i o n a t e i t h e r t o p o r bottom, i s r e q u i r e d f o r providing a uniform p r e s s u r i z a t i o n i n t h e s t a i r w e l l . T h i s w i l l avoid e x c e s s i v e p r e s s u r e s on t h e s t a i r doors and ensure a uniform supply of a i r f o r d i l u t i o n of smoke t h a t may have e n t e r e d t h e s t a i w e l l w i t h u s e of s t a i r doors d u r i n g a f i r e . It was a l s o concluded t h a t venting t h e f i r e f l o o r , t o g e t h e r w i t h o p e r a t i n g t h e p r e s s u r i z a t i o n system, can g r e a t l y reduce t h e p o s s i b i l i t y of smoke m i g r a t i n g i n t o t h e s t a i r w e l l .

It is p r e f e r a b l e t o l o c a t e t h e f a n near t h e bottom, r a t h e r than a t t h e t o p , because s t a c k a c t i o n i n w i n t e r s i m p l i f i e s s t a r t - u p of t h e f a n and b r i n g s outdoor a i r i n t o t h e s t a i r w e l l through t h e f a n and duct system i n t h e event of f a n f a i l u r e . Also, because of f r i c t i o n a l r e s i s t a n c e i n t h e v e r t i c a l supply d u c t , more a i r i s l i k e l y t o be d e l i v e r e d t o t h e s t a i r w e l l a t low l e v e l s than a t high l e v e l s .

Venting of F i r e F l o o r

Venting of a f i r e compartment h e l p s t o reduce p r e s s u r e s t h e r e t o minimize o r even e l i m i n a t e t h e flow of smoke from t h e f i r e r e g i o n t o a d j a c e n t a r e a s . It a s s i s t s f i r e f i g h t e r s and h e l p s t o p r o t e c t occupants by i n h i b i t i n g t h e spread of smoke and t o x i c g a s e s from t h e f l o o r of o r i g i n t o o t h e r f l o o r s . One means of v e n t i n g t h e f i r e r e g i o n i s t o provide openable panels o r windows i n the e x t e r i o r w a l l s ; o t h e r s a r e mechanical venting and smoke s h a f t s . The former method permits d i r e c t v e n t i n g of smoke from t h e f i r e f l o o r t o t h e e x t e r i o r ; t h e l a t t e r methods allow smoke from t h e f i r e f l o o r t o flow i n t o and o u t of t h e exhaust s h a f t above t h e roof of a building.

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

&#34; Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers