• Aucun résultat trouvé

Temperature and humidity in houses, Ottawa, 1957-59

N/A
N/A
Protected

Academic year: 2021

Partager "Temperature and humidity in houses, Ottawa, 1957-59"

Copied!
93
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la

première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Internal Report (National Research Council of Canada. Division of Building

Research), 1966-08-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=7a7c3635-ff28-44ac-a2f6-c7fa1e5638de

https://publications-cnrc.canada.ca/fra/voir/objet/?id=7a7c3635-ff28-44ac-a2f6-c7fa1e5638de

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20386784

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Temperature and humidity in houses, Ottawa, 1957-59

(2)

NATIONAL RESEARCH COUNCIL

CANADA

DIVISION OF BUILDING RESEARCH

TEMPERATURE AND HUMIDITY IN HOUSES, OTTAWA, 1957-59

by

A.D. Kent

/;,N /).. LYZEO

Internal Report No

329

of the

Division of Building Re search

OTTAWA

(3)

PREFACE

The indoor climate in buildings is a subject of some

considerable importance and of great interest to the Division.

The conditions maintained in Canadian single -family dwellings

are of particular interest. While these are strongly related to

the outdoor conditions, winter and summer, they reflect also

the performance of the house as an enclosure separating indoor

and outdoor conditions, the heating equipment performance and

the living habits of the occupants. It was considered

worth-while to accumulate records of indoor climate in single -family

house s in various locations as the occasion arose. The records

obtained for 13 houses in Ottawa from 1957 to 1959 are now

reported.

The author, a mechanical engineer and a research

officer with the Building Services Section, has a special interest

in heating equipment and its performance.

Ottawa

N. B. Hutcheon

(4)

TEMPERATURE AND HUMIDITY IN HOUSES, OTTAWA, 1957-59

by

A.D. Kent

The temperature and humidity in houses affect the comfort

of the occupants and the performance of the building and furnishings.

Very low humidity may have adverse physiological effects and may

cause damage due to shrinkage of moisture - sensitive materials.

Excessive humidity may result in objectionable condensation on

windows and within the structure in winter, and deterioration of

materials due to high moisture content.

Published information on the actual temperatures and

humiditie s in re sidence s in Canada is very limited. Surveys of

some American homes have been made by the National Bureau of

Standards (l) and more recently the Housing and Home Finance

Agency (2), using reliable instruments, but these results are not

directly applicable to Canadian conditions.

The moisture content of the air inside a house depends

upon the net effect of the various sources of moisture gain and loss.

Air exfiltration or ventilation is usually the major source of moisture

loss during the heating season. Thus, the inside relative humidity

depends upon a number of factors; e. g., the tightness of doors and

windows, outside weather conditions, and the use of exhaust fans or

humidifying equipment. The living habits of the occupants may

therefore have much effect on the humidity.

To obtain information on the actual indoor climate in occupied

Canadian homes a program was begun in 1957, involving a number of

Ottawa houses and later additional houses in Saskatoon, Sask., Camp

Gagetown, N.B., Halifax, N.S. and Vancouver, B. C. Temperatures

and relative humiditie s were recorded continuously over a period of

a year or more. In some house s consumption of fuel and electricity

and the operating time of oil burners and circulating fans were also

recorded. These records are contained in a separate series of reports.

This report contains the results of a survey of the indoor

temperatures and relative humidities for thirteen Ottawa dwellings

and the corresponding outdoor temperature s and relative humidities

for a period of two full years, from the beginning of October 1957 to

the end of September 1959. A similar report covering houses in the

(5)

2

-Halifax area is contained in DBR Internal Report No. 261 (3).

Other reports are planned for the surveys in Saskatoon, Camp

Gagetown and Vancouver.

DESCRIPTION OF HOUSES

The houses selected for observation belonged to staff

members of the Division who showed sufficient interest in the

project and in the psychrometric conditions prevalent in their

own homes to allow instruments to be installed. Previous

experience had shown that an interest in the project by members

of the family was essential. The types and sizes of houses in

the group were quite varied, and the locations were scattered

over the city. A listing of the house s and their general de scription

is given in Table 1. Photographs and details of the construction,

heating system and other factors that affect temperature or relative

humidity are contained in Figures 1 to 13. Ten of the houses were

equipped with warm-air heating systems, nine of which were forced

warm air; most had pan-type humidifiers in the furnace plenum,

some of which were in poor condition. Of the three houses with

hot-water heating systems, two had radiant panel systems and no

humidifier; the third had a gravity hot-water system using radiators

and a cabinet -type humidifier in the upstair shall.

INSTRUMENT ATION AND RECORDS

Continuous records of inside dry-bulb temperature and

relative humidity were obtained for the living -dining area of each

house. An effort was made to standardize on the location of the

instruments away from cold walls, windows, warm-air registers,

radios, and television sets, and to fix the height of the measuring

station above the floor for better comparison of conditions in various

house s . This was accomplished to a large degree although the height

of instrument varied between 4 and 5 ft above floor level. The

instrument used in each house was a

hyg

r-othe r mog r aph (Figure 14),

using strands of hair for the humidity-sensing element and a

bi-metallic coil for temperature. The clock-wound cylinder used a

7 -day chart with 0 to 100 per cent relative humidity scale and _40

0

to 110

0

F temperature scale. The week was considered to begin

and end at 12:00 noon on Tuesday, all charts being renewed within

3 hr of this time each week. Calibration of the hygrothermographs

was carried out every two weeks using a battery-operated motorized

psychrometer.

(6)

MセMMMセMMMMM

3

-Readings of outside temperature, relative humidity and

degree days were obtained from records for Ottawa, of the

Meteorological Division, Department of Transport. The thirteen

houses under observation were within seven miles of the

meteoro-logical station and generally in the eastern part of the city.

The humidity ratio, or absolute humidity, was calculated

from the dry-bulb temperature and relative humidity values both

for inside and outside air, so that the absolute moisture content of

the inside atmospheres could be compared directly with one another

and with the moisture content of the outside air. Daily average

humidity ratios were obtained from the daily average dry-bulb

temperatures and relative humidites by means of a psychrometric

chart. Weekly and monthly averages were computed from the daily

averages.

RESULTS

The weather records for the survey period of October 1957

to September 1959, inclusive, and also for an additional period

through to June 1960 for comparison of seasonal climate are shown

in Figure 15. This contains the average weekly value s of degree

days, outside air temperature and relative humidity, and the

corre-sponding average weekly outside humidity ratios in grains of moisture

per pound of dry air, based on daily averages.

Figures 16 to 28 give for houses 1 to 13, respectively, the

average weekly readings of inside air temperature, relative humidity

and humidity ratio, with an added plot of average weekly

inside-outside air temperature difference. The dotted curve s on each of

these figures are plots of the weekly average inside air temperature

and humidity ratio for all 13 houses. Figure 29 shows these same

plots of average inside conditions along with the corre sponding

out-door weekly averages of air temperature and humidity ratio.

In Figure 30 are the same data as in Figure 29(a), (b) and

(c), but plotted on a monthly basis rather than weekly, with the

addition of shaded areas above and below the average monthly values

to show the upper and lower limits for single -house value s .

In Figures 31 to 43 are plotted the inside vs. the outside

monthly average humidity ratios, the upper plot depicting October

1957 to September 1958, inclusive, and the lower plot October 1958

to September 1959. These show the relationship, month by month,

between the moisture contents of the inside and outside atmosphere s

(7)

4

-of each house. The dotted line on each plot is the line -of equal

value s for inside and outside and is drawn in for reference.

Tables

II,

III and IV give the :monthly average values

of inside te:mperature, relative hu:midity and hu:midity ratio,

re spectively, for each of the houses for both twelve -:month periods,

1957 - 58 and 1958 - 59. As well a s the individual house value s , the

tables include average values for all 13 houses and the corresponding

average :monthly outside values based on daily weather readings. The

figures in the tables were used to prepare Figures 30 to 43.

DISCUSSION OF RESULTS

(a)

Outdoor C1i:mate

The outdoor te:mperature records, week by week for the

three winters as shown by Figure 15 (a), (b) and (c) and again in

Figure 29 (a),?(b) and (c), reveal :marked differences in the

te:mper-ature pattern for the three consecutive winters. Whereas the winter

1957 - 58 showed two thaw periods in late Dece:mber and late January

with a relatively :mild March, 1958 - 59 was considerably colder with

no winter thaw periods and a relatively cold March, while 1959 -60

was reasonably :mild all winter except for a cold spell in the second

week of January.

It is intere sting that even though the three winter

patterns are quite different, each shows a week in which the average

te:mperature dipped to about 2

0

F, although the se dips occurred each

year in a different :month.

The corresponding hu:midity ratios at the

ti:me of the se dips showed, in each case, an average of five or six

grains per pound of dry air for the cold week.

The two su:m:mer periods shown in these outdoor te:mperature

and hu:midity ratio curves are also very interesting. The first was a

relatively cool dry su:m:mer with :maxi:mu:m weekly average te mpe r atu r e

of 71 ° F and a hu:midity ratio of only 86 grains, whereas the second

showed :most of July and August with a weekly average te:mperature

between 70° and 74° F and weekly average hu:midity ratios as high as

101 grains. The 1958 record shows a gradual drop in both

te:mpera-ture and hu:midity ratio following the July peak, while the hot :moist

weather of the su:m:mer of 1959 continued well on into August and even

Septe:mber, followed by a pheno:menal plunge in :mid-Septe:mber.

(b)

Indoor Cli:mate

(8)

5

-into weekly average s for individual house s (Figure s 16 to 28) and

for all 13 house s (Figure 29) and again into monthly average s for

all 13 houses (Figure 30). From these records, it is evident that

there was considerable variation in the indoor atmosphere sand

that although the records of some houses were similar to others in

some respects, each appeared to have differences over the

two-year period.

House No.1 (Figure 16) showed temperatures and humidity

ratios that followed the 13 house averages very closely, both winter

and summer, except that the inside temperature was consistently 1

or 2 deg higher during the winter of 1957-58 and the spring of 1958.

Of interest is the lowest weekly average humidity ratio of 23 grains,

which occurred not during the coldest week of the winter in December

but during the third week in February, which was the end of the severe

part of the winter.

House No.2 (Figure 17) showed temperatures and humidities

to be lower than the 13-house average during heating seasons. During

December 1958 the occupants went on a three -week winter vacation,

and the thermostat setting was reduced approximately ten deg. This

period when no moisture from occupancy was being supplied to the

atmosphere had an obvious effect upon the humidity ratio of the air

during the vacation period and the subsequent winter weeks.

House No.3 (Figure 18) was close to the 13-house average

in its weekly average readings of temperature and humidity, except

that during the colde st winter periods the temperature appeared to

drop 2 or 3 deg below the general average. Summertime temperatures

were also lower in this house than the average of all 13 houses.

House No. 4 (Figure 19) appeared to give erratic temperature

readings during the first winter of the survey, and the humidity ratio

during this period was considerably above average. The second winter

saw a more even average temperature with both temperature and

humidity ratio being very close to the 13-house average. Summer

records were, in the main, close to the average for all houses.

House No. 5 (Figure 20) gave substantially higher humidity

ratios in the winter months than most of the other houses, whereas

the temperatures were very steady week by week and about average.

The higher humidity ratio was attributed to a special nozzle -type spray

humidifier operated by a solenoid valve in parallel with the warm-air

furnace blowe r ,

(9)

6

-House No.6 (Figure 21) showed te mpe r atu r e s f r orn 1 to

3 deg above the l3-house average during the winter and 2 to 4 deg

above average during the sumrne r .

Hurrrid

ity ratios were within a

few grains of the average for all 13 house s throughout both winter

and SUInIne

l' •

House No. 7 (Figure 22) was about average in te rnpe r atu r e

and hu rriid

ity , except for s orne what lower te rnpe r atu r e s than the

average in the January to May periods. In both winters the occupants

took a weeki s vacation during the Chr i s trna s -New Ye a r ' s period, and

the

t

he r rno s tat was set down about 5 deg on the se occasions.

House No.8 (Figure 23) weekly average

t

e rnpe r atu r e s were

slightly below the l3-house average during the winter 1957 - 58, about

the s arrie as this average during the winter of 1958-59, and consistently

2 or 3 deg above the average during the hottest parts of both surnrne r s

of 1958 and 1959. The weekly average hurni d

it y ratios followed the

s a rne pattern relative to the 13 -house average. A two weeks vacation

in No ve rnbe r - De ce mbe r 1957 with a

t

he r rno st.at set-back of about six

deg accounted for the drop in both

t

e mpe r atu r e and hurnidi ty ratio

during this period.

House No. 9 (Figure 24) was rna'int a irie d at a lower average

t

e rnpe r atu r e than rrio s

t

of the houses in the survey because of a

preference for lower rOOIn air te rnpe r atu r e s for c o rnf o r

t

in the winter.

Hurrrid'ity ratios were close to the l3-house average except for the

sumrne r of 1958, when hurrridi.ty ratios apparently fell well below

average. During this period there was SOIne trouble with the hurnid

ity

i.n

s

t

r urrie nt going off calibration, and SOIne of the apparent drop in

hurnid

ity ratio is thought to be attributable to in st ru rnent error. There

were periods, however, during which the house was unoccupied for a

week or so at a

t

irne , which would also account for the below-average

values.

'I'e rnpe r a.tu r e s in house No. 10 (Figure 25) were generally

steady week by week and were slightly above the l3-house average.

Hurrrid it

y ratios followed the average except during the colde st weather

when the weekly hurni.dity ratio fell below the average.

House No. 11 (Figure 26) showed wirrte r

ti

me air

t

e mpe r atu r e s

for the rrio s

t

part rnu c h higher than the l3-house average, although

su rnrne r

ti

rne te mpe r a tu r e s were about average. The rnoi stu r e content

(10)

7

-than most houses during the winter mainly because of the rather

high infiltration rate through the large loose -fitting windows.

Thus, the combination of high temperatures and low moisture

content resulted in very low relative humidity readings in this

house for the coldest parts of the winter.

Temperature s in house No. 12 (Figure 27) were from 1 to

4 deg below the l3-house average for the winter months of both

1957-58 and 1958-59, and the wintertime humidity ratios were about

average. In the summer of 1958 both temperature and humidity were

somewhat above the average but, in the following summer, the se

were for the most part below average.

House No. 13 (Figure 28) had consistently higher than

average temperatures and humidity ratios during the winter, with

the summer readings about average in both cases.

General observations throughout the winter showed that

most occupants were satisfied with the humidity conditions that

existed in their own home s with the exception of House No. 11, where

noticeable dryness prevailed in the severe winter weather. No

occupants complained of condensation problems even though some

houses registered a weekly average relative humidity as high as 30

per cent in the severe weather.

(c)

Indoor vs. Outdoor Climate

In Figures 29 (a), (b) and (c) are shown the average weekly

inside and outside air temperature s and humidity ratios, the inside

values being the mean of all thirteen houses. The same information

is plotted in Figure 30 on a monthly basis, the shaded areas above

and below the inside air curve s indicating the spread of individual

house values from the mean value of all the houses.

It is apparent that, in the summer months of July and August,

the average weekly inside air temperature was from 5 to 8 deg higher

than the average weekly outside air temperature. At the same time,

however, the corresponding inside humidity ratio based on all 13

houses was lower than outside for this summer period in both years

and was slightly lower as early as the month of June in 1959. As

none of the house s had air conditioning installations, the reduction in

average inside humidity ratio below that of the outside can only be

(11)

8

-explained by the absorption of rnoi stu r e by the wood, paper, fabrics

and other hygroscopic materials in the house.

A closer study of the relationship between inside humidity

ratio and outside humidity ratio in the individual houses can be

obtained from Figures 31 to 43, where the monthly averages are

plotted and the points joined in chronological order for the periods

October 1957 to September 1958 (upper diagram) and October 1958

to September 1959 (lower diagram). There is some similarity

between the patterns for different house s in that the general shape

of the double line forming the yearly loop is inclined to the dotted

line of equal humidity ratio at a sharp angle and, in most cases, the

points for July and August fall beyond the dotted line.

For any individual house, the angle that the loop makes with

the dotted line is more or less the same for both years, although the

position of the loop on the grid and the location of specific monthly

averages are quite different from year to year due to differences in

weather. The year 1958-59 had a considerably more severe winter

than the previous year so humidity ratios at the lower left of the

loop are lower on the lower diagram. Similarly, the summer of 1959

was considerably hotter and more humid than that of 1958 so the

upper-right extremity of the loop is further toward the upper -upper-right portion of

the grid. The interchange of the position of July and August for the two

years is interesting, as are the radically different positions of December,

May and June.

In comparing the humidity ratio curve s of one house with another,

one would expect those houses with efficient humidifiers and those occupied

by larger families to show higher humidities throughout the year. In

general, this trend is apparent but not always true. It is thought that the

ventilation rate, which is well known to be dependent upon people's living

habits as well as the looseness of fit of windows and doors, has a major

effect upon humiditie s during the winter months. The effect, however,

on summer humidity ratios of such operations as closing the house from

early morning to early evening on hot humid days is less well known.

The hourly weather records show that on such days the outside humidity

ratio is generally between 100 and 120 grains per pound of dry air in the

Ottawa area, with the peak occurring usually between 8:00 a. m. and

12: 00 noon. Air temperature s usually lie between the high 60' s and low

70' s about 6: 00 a. m. and between the high 80' s and low 90' s at about

(12)

9

-little heat and moisture as pos sible by cooking and other household

operations, it should be pos s ib l e to lower the daily average humidity

ratio and temperature below what they would normally be with

day-long ventilation with outside air. If the house is not shaded from

solar radiation, however, the heat intensity will be such as to require

relief by ventilation throughout at least the afternoon, if not the whole

day, especially if the house construction has little thermal storage in

the attic or roof space.

From the weather records plotted in Figure 15 (a), (b) and

(c), it is apparent that the weekly average outside relative humidity

generally remained within a fairly narrow band from about 60 to 85

per cent R. H. all year round, except for occasional periods such as

the spring of 1959.

Thus, the humidity ratio plot has a form similar

to that of the temperature plot. It follows therefore that there will be

a relationship between inside humidity ratio and outside air

temper-ature which will take somewhat the form of the plots of Figures 31 to

43. This is shown in Figure 44, where average weekly values of

inside humidity ratio for all 13 house s have been plotted against the

average weekly outside air temperature. For both 1957 - 58 and

1958-59, it is evident that there is a definite trend towards a hysteresis

loop, the upper part of the curve in each case representing the

summer to winter value s as the moisture -laden materials in the

houses were gradually drying, and the lower part representing the

winter to summer value s as the dried materials were gradually

absorbing moisture.

A composite curve is depicted in Figure 45 as a shaded

band based on the two years for which figures are available. Additional

years might require that the band be enlarged somewhat, particularly

at the "summer" end of the diagram. In Figure 45 are shown also the

curves established by Phillips (1) in a survey by the National Bureau

of Standards for a group of 142 humidified houses (heavy line), and

73 unhumidified house s (dotted line). Also included in the figure are

the results of the Housing and Home Finance Agency survey (2)

conducted for nine house s in Minneapolis, Minn. In replotting the se

curves for direct comparison with the average values for the Ottawa

houses, the units of the authors, relative humidity at 70° F, have

been converted to humidity ratio. The curves of Phillips were derived

from spot readings of wet- and dry-bulb temperatures, both inside

and outdoors, taken with a sling psychrometer twice daily in the

morning and afternoon, and therefore cannot be construed to repre sent

the average values over a 24-hr period. On the whole, however, they

may not differ widely from the true daily averages as both the inside

(13)

10

-and  outside  temperatures  could  be  expected  to  be  lower  using  24­hr 

average  values  rather  than  the  spot  readings  of  morning  and  afternoon. 

Unfortunately,  the  Housing  and  Home  Finance  Agency  does  not  give  a 

complete  record  of  the  relative  humidity  at  70°  F  versus  outside 

temperature  for  the  nine  houses  in State  College,  Pa.  which were 

also  studied.  From the  single  value  given  in  Table  IV  of  the  paper  (2), 

it would  appear  that  the  State  College  values  of  relative  humidity 

might  be  somewhat  lower  than  those  of  the  Minneapolis  houses  for 

the  same  outside  air  temperature,  which would  bring  them  closely 

into  line  with  the  results  of  the  Ottawa  house  survey. 

CONCLUSIONS 

(a)  

Based  on  the  three  consecutive  winters  of  weather  observations, 

Ottawa  winter  temperature  can  be  expected to  fall  to  a  weekly 

average  of  about  2 °  F  for  at  least  one  week  of  the  winter,  with 

a  corre sponding  outside  air  humidity  ratio  of  about  5  grains  of 

moisture  per  pound  of  dry  air. 

(b)  

Based  on  the  records  of  two  consecutive  summers,  Ottawa 

summer  temperature  and  humidity  ratio  maxima  can  vary 

considerably from  year  to  year, the  maximum  average  weekly 

outside  temperature  probably  lying  between  72°  and  77°  F  for 

most  summer s,  with  a  corre sponding  maximum  average 

weekly  outside  humidity  ratio  of  between  85  and  105  grains  of 

moisture  per  pound  of  dry  air. 

(c)  

The  outside  air  weekly  average  temperature  and  humidity 

ratio  for  any  particular  week  of  one  year  may  be  markedly 

different  from  the  values  for  the  corresponding  week  of  another 

year,  e. g.,  the  week  of  17­24  December  1957  showed  an 

average  of  34°  F  while  that  of  16­23  December  1958  was  3°  F. 

Even  on  a  monthly  basis  these  figures  vary  widely  from  one 

year  to  the  next. 

(d)  

With  inside  air  temperature  maintained  in  the  low  70' s  in  an 

Ottawa house  equipped  with  a  warm­air  heating  system,  the 

weekly  average  relative  humidity  is  likely to  fall  to  about  20 

to  25  per  cent  in  the  most  severe  winter  weather,  with  a 

corre sponding  humidity  ratio  of  about  22  to  30  grains  of 

moisture  per  pound  of  dry  air.  The  use  of  a  pan­type 

humidi-fier  in  the  furnace  plenum did  little  to  raise  the  humidity 

ratio  in  the  house s  under  observation. 

(14)

­ 11 

--

(e)  

Summer  air  temperatures  inside  the  houses  will  be  as  a 

rule  5  to  8  F  deg  higher  than  outside,  based  on  weekly 

values  at  the  peak  of the  summer  heat.  Summer  relative 

humidities  inside  will  likely be  from  50  to  70  per  cent 

during  this  peak period,  corre sponding  to  a  humidity  ratio 

of  about  75  to  95  grains  of  moisture  per  pound  of  dry  air, 

or  slightly  lower  than the  peak  outside  air  values. 

(f)  

The  weekly  average  inside  air  humidity  ratio  varies  directly 

with the corresponding outside  air  temperature,  but  the  values 

for  the  period  from  midsummer  to  midwinter  are  higher  than 

those  for  the  period from  midwinter  to  midsummer  at  the 

same  average  outside  temperature.  This  hystere sis  effect 

is  probably  due  to  the  storage  and  subsequent  re ­evaporation 

of  moisture  by the  hygroscopic  materials  of  the  house 

construction  and  furnishings. 

ACKNOWLEDGEMENTS 

The  author  is  indebted to  Mr.  A. G.  Wilson,  Head  of  the 

Building  Service s  Section,  for  advice  and  as sistance  in the  planning 

of  this  part  of  the  project,  and  to  Mr.  L. P.  Chabot  for  the  work 

involved  in the  weekly  servicing  of  instruments  and  the  processing 

of  records,  in which  he  was  assisted  by  Mr.  G.  Monast. 

REFERENCES 

1.  

Phillips,  Thomas  D.  A  Survey  of  Humidities  in Residences. 

Building  Materials  and  Structures  Report  BMS  56,  National 

Bureau  of Standards,  Washington,  October  1940. 

2.  

Humidity  Conditions  in  Modern  Houses.  Housing  Research 

No.6,  published  by the  Housing  and  Horne  Finance  Agency, 

Washington,  October  1953. 

3.  

Robson,  D. R.  Temperature  and  Humidity in  Houses,  Halifax 

1960­61.  National  Research  Council,  Division  of  Building 

Research,  DBR  Internal  Report  No.  261,  March  1963. 

(15)

TABLE 

I

OTTAWA  HOUSES  UNDER 

observaセ   

House  Occupant 

Approx. 

Storeys 

Under  Floor 

Construction 

Heating  System  Approximate  Floor 

No. 

Year  Of 

Const'n 

(basement  or 

slab) 

Area  (not  including 

basement) 

H .L.Hall 

1948 

1  1/2 

basement 

wood  shingles 

forced  warm  air 

1040  sq  ft 

on  wood  frame 

C.R.Crocker  1953 

1  1/2 

basement 

"

forced  warm  air 

1400  sq 

ft 

C.St­Jacques 

1955 

1  1/2 

ba s ezrient 

brick  veneer 

forced  warm  air 

1260  sq  ft 

on  wood  frame 

A.G.Wilson 

1956 

basement 

forced  warm  air 

1200  sq  ft 

P.J.Sereda 

1955 

basement 

"

forced  warm air 

1200  sq 

ft 

W.H.Ball 

1953 

basement 

wood  shingles 

forced  warm  air 

1200  sq 

ft

on  wood  frame 

R.Tetu 

1955 

basement 

brick  veneer 

for ced  warm air 

1000  sq 

ft 

on  wood  frame 

D.G.Stephenson 

basement 

I '

forced  warm  air 

1000  sq 

ft 

1955 

R.F.Legget 

1947 

basement 

"

forced  warm air 

1790  sq 

ft 

10 

E.V.Gibbons  1925 

2  1/2 

basement 

brick  veneer 

gravity  warm 

1820  sq 

ft 

** 

stucco  on  wood 

air  * 

frame 

11 

J.E.Hanna 

1903 

2  1/2 

basement 

solid  brick 

hot  water 

2860  sq 

ft 

(radiator 

51 

12 

W.  R.  Schriever 

1952 

slab  on 

wood  siding  on 

hot  water 

1370  sq 

ft 

** 

ground 

wood  frame 

(panel) 

13 

A.D.Kent 

1951 

"

"

"

1870  sq 

ft 

*  Forced  Warm  Air  after  Sept.  1959 

(16)

TABLE  II 

OTTAWA  HOUSES 

MEAN  MONTHLY  TEMPERATURE  (Living  Room)

In 

of 

OCT/57 

/58 

NOV/57 

/58 

DEC/57 

/58 

JAN/58 

/59 

FEB/58 

/59 

MAR/58 

/59 

APR/58 

/59 

MAY/58 

/59 

JUN/58 

/59 

JUL/58 

/59 

AUG/58 

/59 

SEP/58 

/59 

70.7 

71.0 

71.5 

70.6 

72.3 

71.2 

72.2 

70.8 

73.6 

70.5 

73.2 

70.9 

73.4 

71.2 

72.7 

72.8 

72.8 

71.9 

77.0 

75.7 

74.2 

75.5 

71.2 

73.8 

69.3 

68.2 

69.9 

70.2 

70.6 

65.4 

70.0 

69.2 

70.7 

68.5 

69.5 

68.6 

68.0 

67.4 

68.7 

70.9 

68.3 

70.0 

75.7 

77.3 

74.3 

77.2 

68.1 

72.0 

69.3 

70.7 

70.3 

70.7 

70.6 

68.5 

68.9 

68.3 

70.2 

70.0 

70.7 

70.8 

69.7 

70.5 

70.3 

71.8 

70.2 

73.5 

73.3 

75.6 

73.4 

75.1 

71.8 

72.8 

69.7 

69.5 

69.4 

70.3 

68.6 

70.6 

71.3 

71.0 

72.0 

70.3 

71.4 

72.5 

72.5 

70.6 

71.8 

70.7 

71.9 

73.3 

75.3 

78.3 

73.6 

77.6 

70.4 

75.7 

70.9 

70.9 

70.7 

70.1 

70.9 

69.2 

71.3 

70.0 

71.6 

69.5 

71.9 

69.2 

71.3 

70.0 

71.3 

71.9 

72.9 

73.1 

76.2 

77.0 

75.8 

77.8 

I

72.1 

74.9 

72.9 

71.8 

73.1 

71.4 

72.8 

71.9 

72.6 

71.9 

73.2 

72.0 

73.6 

72.2 

74.1 

71.7 

73.2 

73.6 

74.1 

75.2 

78.7 

79.2 

77.9 

79.3 

73.6 

77.0 

71.2 

69.8 

71.3 

70.2 

69.7 

70.7 

69.3 

67.7 

69.5 

69.5 

70.2 

68.5 

71.2 

68.3 

70.4 

69.4 

71.0 

71.9 

75.4 

74.6 

74.2 

75.2 

71.7 

73.2 

70.1 

70.5 

69.5 

70.1 

68.4 

71.4 

69.8 

71.0 

69.5 

70.5 

69.9 

71.8 

70.4 

72.5 

71.6 

74.1 

72  .1 

75.0 

77.5 

79.3 

77.0 

78.3 

71.3 

75.1 

68.8 

67.3 

67.9 

66.9 

68.3 

68.8 

68.3 

68.8 

68.7 

68.6 

68.5 

68.5 

67.4 

65.6 

66.5 

68.1 

66.6 

70.1 

73.9 

75.9 

72  .3 

75.9 

69.9 

71.1 

10 

72.8 

72.8 

73.0 

72.0 

73.7 

71.9 

72.6 

72.2 

73.0 

71.6 

72.3 

71.9 

70.2 

70.3 

72.3 

72.0 

72.3 

72.1 

75.9 

74.5 

74.8 

77.2 

72  .4 

74.4 

11

74.:::: 

73.5 

75.8 

73.4 

74.5 

75.8 

75.0 

74.7 

75.9 

71.2 

77.2 

72.2 

76.2 

70.6 

74.3 

72.3 

74.0 

74.1 

76.0 

76.7 

74.5 

78.2 

72.0 

75.5 

12 

70.1 

68.1 

69.8 

68.3 

69.4 

68.9 

68.5 

68.6 

68.3 

69.2 

70.6 

70.5 

70.8 

70.9 

70.9 

72.1 

72.2 

72  .9 

77.9 

77.3 

76.8 

76.1 

71.2 

71.9 

13 

71.5 

73.4 

71.0 

73.7 

72  .0 

74.6 

72  .3 

73.0 

72.0 

71.8 

73.2 

72.7 

72.1 

72.7 

72.8 

74.2 

72.9 

75.2 

I

75.6 

76.7 

74.5 

75.8 

72.8 

72.9 

Mean

of 1 

I-b..:ses

Out-side

70.9

70.6

47

46

71.0

70.6

37

36

70.9

70.7

26

9

70.9

70.6

17

12

71.4

70.2

11

10

71.7

70.8

33

25

71.3

70.2

45

43

71.3

71.8

51

58

71.6

72.9

59

66

76.0

76.8

68

71

74.9

76.9

66

71

71.4

73.9

58

62

(17)

TABLE III 

MEAN  MONTHLY  RELATIVE  HUMIDITY  (Living  Room) 

OTTAWA  HOUSES 

In  Per  Cent 

9CT/57  NOV/57 

DEC/57 

JAN/58 

FEB/58  MAR/58 

APR/58 

MAY/58 

JUN/58 

JUL/58 

AUG/58 

SEP/58 

/58 

/58 

/58 

/59 

/59 

/59 

/59 

/59 

/59 

/59 

/59 

/59 

42.2 

39.7 

34.2 

28.7 

27.1 

33.9 

36.7 

36.9 

43.0 

50.7 

50.8 

51.7 

47.5 

39.1 

28.5 

28.9 

24.5 

28.9 

34.7 

43.1 

51.0 

53.2 

57.1 

54.4 

41.8 

36.9 

30.5 

27.9 

26.5 

32.2 

35.3 

40.2 

47.6 

53.7 

52.7 

51.1 

46.7 

34.7 

23.5 

21.8 

21.7 

26.8 

32.9 

45.2 

49.8 

53.2 

58.2 

58.7 

42.1 

40.1 

35.4 

31.9 

31.2 

38.4 

40.0 

42.6 

48.3 

56.3 

53.7 

54.6 

47.3 

43.0 

30.8 

31.1 

30.0 

33.0 

39.5 

46.4 

51.8 

54.2 

58.3 

52.2 

50.7 

49.7 

44.6 

39.3 

33.7 

38.0 

41.0 

41.8 

44.9 

52.3 

52.2 

54.4 

49.3 

39.6 

28.0 

29.9 

30.2 

32.2 

35.8 

45.2 

51.1 

50.3 

55.1 

58.8 

51.5 

47.0 

41.5 

32.6 

32.2 

39.3 

41.9 

42.2 

46.1 

53.4 

49.0 

50.2 

45.2 

40.0 

36.6 

33.0 

39.5 

40.3 

42.3 

45.3 

49.6 

53.3 

59.9 

54.3 

44.3 

41.8 

38.0 

31.9 

23.5 

29.2 

30.5 

37.0 

43.2 

48.8 

46.4 

49.2 

44.3 

35.2 

28.0 

25.9 

24.9 

27.5 

31.3 

41.2 

48.6 

48.3 

52.2 

48.3 

46.6 

43.0 

38.5 

33.9 

27.2 

31.9 

34.7 

38.4 

45.3 

52.8 

51.1 

53.5 

I

49.9 

39.8 

26.0 

26.9 

28.2 

31.0 

35.9 

45.3 

54.2 

52.4 

58.9 

61.0 

44.5 

39.6 

33.4 

26.3 

23.1 

35.9 

38.2 

38.1 

45.1 

53.6 

51.6 

55.3 

46.4 

35.7 

25.2 

26.2 

25'.8 

29.4 

38.5 

47.5 

52.8 

51.4 

57.6 

55.8 

49.1 

43.1 

39.5 

34.3 

31.6 

35.7 

38.4 

41. 7 

45.5 

45.7 

40.9 

43.9 

53.6 

44.0 

33.6 

30.8 

29.5 

30.1 

36.0 

43.8 

51.8 

53.3 

57.3 

61.0 

10 

45.0 

39.6 

33.2 

26.1 

23.9 

32.9 

38.1 

36.8 

43.4 

49.9 

46.1 

48.3 

43.5 

38.1 

21.1 

21.5 

20.6 

25.7 

34.8 

43.2 

50.0 

52.5 

55.6 

50.5 

11 

40.2 

31.3 

27.7 

21.5 

18.6 

25.5 

30.0 

33.3 

38.5 

53.2 

53.1 

53.3 

38.1 

28.4 

18.1 

20.8 

21.9 

23.9 

29.7 

42.2 

50.1 

50.4 

57.3 

56.0 

12 

46.1 

42.8 

38.4 

33.5 

29.2 

31.7 

33.0 

37.7 

43.9 

52.2 

48.9 

50.9 

42.7 

37.7 

28.7 

28.9 

30.9 

29.5 

32.7 

42.2 

46.1 

44.0 

56.3 

56.1 

13 

47.8 

43.0 

39.6 

34.5 

31.7 

35.3 

39.0 

42.9 

50.6 

56.5 

52.6 

54.8 

49.3 

40.0 

28.0 

29.0 

27.6 

30.4 

35.3 

43.9 

51.9 

53.7 

60.8 

62.5 

"lean 

45.5 

41.3 

36.5 

31.0 

27.7 

33.8 

36.7 

39.2 

45.0 

52.2 

49.9 

51.6 

of 13 

46.4 

38.1 

27.4 

27.3 

27.3 

29.9 

35.3 

44.2 

50.7 

51.6 

57.3 

56.1 

Mouses

Out- 74

78

79

76

78

77

62

61

64

74

71

78

side 74

74

77

78

74

73

63

64

68

67

76

76

(18)

TABLE  IV 

MEAN  MONTHLY  HUMIDITY  RATIO  (Living  Room) 

OTTA WA  HOUSES 

In  Grains  Per  lb 

of  Dry  Air 

OCT/57 

NOV /57 

DEC/57 

JAN  /58 

FEB/58  MAR/58 

APR/58 

MAY/58 

JUN/58 

JUL/58  AUG/58 

SEP/58 

/58 

/58 

/58 

/59 

/59 

/59 

/59 

/59 

/59 

/59 

/59 

/59 

47 

45 

40 

34 

34 

41 

45 

44 

52 

71 

65 

59 

54 

43 

31 

32 

27 

31 

39 

53 

60 

71 

76 

69 

44 

40

34 

30 

29 

35 

36 

42 

50 

73 

67 

53 

46 

38 

22 

23 

22 

28 

33 

50 

59 

75 

83 

70 

45 

44 

39 

34 

34 

43 

43 

47 

51 

70 

67 

64 

51 

48 

32 

32 

31 

36 

44 

54 

64 

72 

77 

64 

55 

53 

46 

45 

39 

43 

49 

48 

53 

69 

65 

60 

53 

43 

30 

33 

33 

36 

40 

51 

62 

74 

78 

78 

59 

53 

46 

37 

37 

45 

48 

48 

56 

71 

66 

60 

51 

43 

38 

36 

32 

42 

46 

53 

61 

74 

88 

71 

53 

51 

45 

38 

29 

36 

38 

45 

55 

75 

67 

59 

52 

40 

30 

28 

29 

32 

36 

52 

63 

73 

79 

68 

53 

49 

41 

36 

29 

35 

39 

42 

51 

70 

64 

61 

53 

43 

28 

28 

29 

31 

36 

49 

64 

67 

73 

76 

49 

42 

35 

28 

25 

38 

42 

43 

53 

76 

70 

64 

51 

39 

29 

29 

27 

34 

46 

60 

69 

77 

86 

73 

51 

43 

41 

35 

33 

37 

38 

40 

45 

58 

51 

44 

54 

43 

33 

32 

30 

31 

34 

47 

57 

71 

77 

71 

10 

54 

47 

41 

31 

29 

39 

42 

43 

51 

66 

60 

58 

52 

45 

23 

25 

23 

30 

39 

51 

59 

67 

78 

65 

11 

50 

41 

35 

28 

24 

35 

40 

41 

48 

72 

69 

60 

47 

36 

23 

27 

25 

28 

33 

50 

63 

69 

85 

73 

12 

51 

46 

41 

34 

30 

35 

36 

43 

52 

75 

67 

58 

45 

39 

30 

30 

33 

33 

37 

50 

56 

58 

76 

66 

13 

55 

48 

46 

41 

37 

43 

46 

52 

61 

76 

67 

65 

60 

49 

36 

35 

31 

37 

42 

55 

68 

72 

82 

76 

Mean 

of 13 

I­bt.1'es 

51 

51 

46 

42 

41 

30 

35 

30 

32 

29 

39 

33 

42 

39 

44 

52 

52 

62 

71 

71 

65 

80 

59 

71 

Out-side

37

35

27

24

18

8

13

9

8

9

20

14

24

28

35

47

セセ  

76

75

67

86

57

67

(19)

• • • • • • •  

ANセT[ゥ_  

,. 

Brick •• , 0 '   hッオセセZ   appr ox,  yr.  of conatn, 

Conet'll:  Fl'<lXlH'I:. ::. ,

Other •o  ,  , , 

Extel'.: Wood.,

'f': .

B:&'ick veneer 

Other  • セLL[アTGZ  LDィ[セiセセL   •••••

StorielJ NャIZGセL   Floor  area. 

P?'!r9.

,sfl·,47;  •• 

Roof:  Gable  ••

V:.. 

Hip  •.• ,  ,  Flat. , e  e e 

Other 0 C e セセゥヲセセ  セqqセセ ..セセNQ  

. ""

c

Bal>ement  •

:< .. 

C:rawl sー。」セ  • , . • .  Slab. , .. , 

lruilUlation:ceiling .2.". セセB[G\[・^Q  ••••• ,  • 0 ,  • • • • • • • •  

walls  • 

3: 

rセセNBGZGセッjN  

.. , . ,

e  ,  , • • • • •  , , 

Vapour Barrie:r:  ceiling, 

.<..

セB[pGBL[ e­

:-{<;-." ...•. "

walllil , , •-: •• LsセA_MZGZBBB[ゥZ・N •••o • , , , • •

Windows:  Type"  NセL[ZMAZ_i[・ML  ZMGLGBG[セッ  , •• , . ' .  '  ,  ,  e e "  •• 

Glazing:  double",..  single. セ  •• 

m。エセャGゥ。ャZ  

frcune. 

:,=,,:e:'4 • •••

e•  , 

sash セ   (l .. 1& wood セ   " セ   ... Q  ") !l . . . . 0  " . . .   " l>

Storm windowj;j:  yelJ. :­:, •  no. ,  ,  , , 

Weathe:ntrippl.ng;  yes  •.. ,.  no 

.v:...

Doors:  Single...  Storm  .•­:.• 

Weathe:rstripping:  yes. (. .  ,  no, •.• , 

Vestibule:  front:  yu...  no  •.

V:  •, 

rear:  yes...  no  • •

v:.,

Basement:  Full.!...  Partial ••••• 

No.  of  r oorn s o 

,o.":!.

Appr ox,  h.eight e  • 

7.•

ft.  

Wall below  grade  •.

5f •. 

ft,  

Heated  • 

,v: ,, 

Unheated  •.•..  

Windows:  Type, NBGA・Zセ・エ  

•. ff'1? 

LィZセセL  

,.. ,

Gladng:  (0)  •. ,  .  ,  (6).0(. , •

Storm:  yes  .•

V::.. 

no  .. ,  •• 

Membr­ane  und ez floor ;  yes  •.. "  no 

Nセ  

.•. 

General  condition:  wet  •... ,  damp  . , , , . 

dry •.

v:, . 

Figure  1  House  No.1, 

26  Kilbarry  Crescent. 

Name  H.  L  ·H"""I\ 

a、、イ・セセZZ

 

セセZ

 

kGAセ[セセWZ

 

ZセセBGセセヲZ

 

:: ::: :: :: :::: :

Children •• 7. ,  AgelJ, ..­­::­,  .  , •. ,  •. ,  •••. ,  . , • , •••• 

Heating Syshm:  Type. fZPNGZgセL  LGカヲセセGWGN  セ[BZN  0 , 

Type  of Fuel:  01.1 . .

>(. . 

Coal. e  •  • •  Gas  ..•..

Furnace:  Make., ヲゥセャZLLᆬ .. ヲGZiGエTセャNセセセL_Nッ ..•.... , .•. 

_  Capacity •• LQZTrLLセセ

.•

qセゥャケBNLN  , ... , , , e• 

Burner:  Make HfZGセQMABGZケNIN  

, .. , ... , , ", '., .. 

0 ,  •  , • •  

Capacity •. 

L

セセ  

,

セNZM NX[ーGNセ[  ["1/'

:­"!; 

サSpZセセNGWBNiiZ^NN[   r...z-..le.

Controls:   Thermostat:  Type, LセWAT   RD,"';"'.

.::! •• ,.,

Location  . jLZLZゥセZBNLZLLセiNBB[L  

!'...

ゥセ  

.':"'...

USu.al  setting  (day)  ••.• セLセ  ,  ••  'OF 

(night)  •.. .

"".!t. . . . .,

Fan  Control  settings:  On. 

!4'? 

OF 

00 NセYB   OF 

Aqu!il.stat !!letting  • , e • •   0 F

High  Limit  setting NセN   OF 

Chimney:  Outside  •.

V:.. 

InlBide  ••.• , 

Fireplace:  Standa.rd  •.セLN   Circub,ting. ,  ,  ,  . 

Damper:  open when in use.  , , 

open  at  all times. ,  .... 

ExhaUilt  Fan:  None  •.. ,.  Kitchen,:­:, .  Bath  •.•.. 

Cooking Range:  Type. セiGABBエ .... セBL[   .••. , , , .•••.

Humidifier:  Type  cZ_ーセNーセ   , .••.••. ,  ,  .. 

Location e fNv[BBNBセLーGゥセL[BLZBN  , ••••  

Conditi.on  .. ,  . 

9..1'

, , , .•..

Service  Water  HeateJ'.':Type  • ァャセ\[エイ[N」NN

...• , . ,

.

Location  , t[SnZBLBZGGヲセエL  , .  

Wuh.e:r:  Type., aセエ\[BZLL[LLケ[ZML  

.. , .. , , ' ... , , ... , , . , .

Location  ,l=2o,s,«';­V:"l"t,  , •••••••. 

Dryer:  Location NセセsZiz[B[GGvZGエN  , ••• :;.-' " , .• , •••. '"

Vented?  yelil""  0 ,  no, ,  .  ,  . 

(20)

• • • • • • •  

• •

House:  appr cx, yr.  of  con stn. •QUZセ_  

..

Constnr  Frame. (. .  .  Brick. ,  .  ,  . 

Other., ... 

Exter.:  Wood,.;/..  Brick veneer 

Othe1' • • • • • • • • • • • • • • • • • • ••

Stories. 

l

セ\G[ャL  

Floor  area  ••1.4;­0? •

ZGQGセG

 

..•

Roof:  Gable. {. ..  Hip. .  • .  .  Flat •.•.. 

Other  •.•.•....••.•. ,  .. ,  ,  . 

Basement •. 

I. . 

Crawl Space. .  . e •  Slab  •... ,

Insulation:  ceiling  ..セZ  .1';'1;'>;e;-';'--I,':'":'<;I•••••••••••••

walls  • .  . ;3,':

t:

セ セ ,,­:­­;1. ,,;?.:;I.  • • • • • • • • • • •  Vapour  Barrier:  ceiling.< LsZ・A^NBLM[セᆱMN  セセ  [LZLNセLL[h[Mウ

. • . 

walls  ..V;:  •••• ': •••• :' •• セ.•• ,"•• , •  Windows:   Type. K'­1,:,pt<­•• ­;­. M[pNッ[LBLMN「ィMaセ「ス\[MiZLMZMMセ  ••  , 

Glazing:  double...  !lingle.

V:• . • 

Material:  frame. yG[\[セT  

•.•.

0 0   • • • • •,  ,  • 

sash '!I .. イ[イエセ・NL[ZMZ。NNNNゥ  <>" S., " .. 0 Q Q I:J.. ,. G

Storm windows:  yes 0

.<

e •  no  •....

Weatherstripping:   yes, ... ,  no.

V:,  •. 

Door s :   Singl e  •• . • .  StOlt m  e 

.v: ..

Weathel'stripping:  yes,.V::,. no  ••.•. 

Vestibule:  f:::ont:  yes.,...  no. :  ... 

:rear:  yes,., •.  no.::­":,. 

Basement:  Full. (. .  •  Pal'Hal. ,  ,  •. 

No,  of  rooms e Oセv[BM[

Appz ox,  hsight  , 

.7. ,

ft,

Wall below  gr ade Q  Nセ  • •  ft.

Heated  • •

V: , ,

Unheated. , 0 , • 

Windows:   Type Q 

't!.,";>e:-, ;­.

エ_セ  

,h.' 

':'S<;J.  , •• 

Glazing:  (d}  Q . , . , (<I),

Y:

0 0 

Storm:  yea, .­:..  no  .. 0 "  

Membrane  under  floor:  yes,. 0 no,!, •  , 

General  condition:   wet  •....  damp  . . .  

dry •.

< .

Figure  2  House  No.2, 

777  He rrrl o c k  Road. 

Name  C.R.Crocl:::..z...­' 

a、、イ・セセBB   

;'77' 

GイMTセZGZGゥL[」ォZN  

°R:­i.'···,···· ., ... 

Children':

.4:,' .

GaセセセZ

 

:

セ\   セZ  

9: -:

Zセ   セ ZセZ  

:::

ZHGセZsZWjZ

 

Heating System:  Type  .. e」ZMイ[c[セNyMHセLZBBZGLセNGGGZN  

Type  of  Fuel:  Oil, e ...­:.  •  Coal  •. ,  .  ,  Gas, . . . .  

Furnace:  Make  ••.

ft"4

1

:,­y, 

e  • •   ,  •  ,  • • •   '  • • • • • • • • • •  ,  • 

Capacity , LアーGーAGセセ  .. tc;9·,QQ9 • •fZ_セBMOZL[[  

., ... 

Burner:  Make  \r.!e.!+':'"

Capacit'y"   .

'75'

セセUZ  セォィG  

.

ZG[[[iセG  

.. , 

e 8 .. .,  .. セ  .. ",0· b D '" c セ セ   "  .. 

Contr ol e :   Thermostat:  Type. ZZ_セBGZGA_ャセN  エZ[セ

. . , 

Location, 0 e ZrゥZLLゥLZLセN   f:?f'?',"\ , ••••

Usual  setting  (day)  , •••

"?'?  .. , 

QF 

(night) e  • •  セセ • • ,  • •   0 F

Fan  Control  settings:  On, 

?9..

OF  

Off Nセセ  .. OF  

Aquaatat  setting  •. , o .   • F 

High  Limit  setting. 

?-p,o.

@F 

Chimney:  Outside, セ  . ,  L"l.I'.li.de.  ,  • ,  . 

Fireplace:  Standard, ,..;"  Cil'culating  . . . .  , 

Damper:   open when  in use. :­": 0 • 

open  at  all timelll •••••

EJihauat  Fan:  None 

.v:. ..

Kitchen, . . . .  Bath •.. , . 

Cooking Range:  Type. LセiセMZMセLZ[[ZM .•.... 0 • • • •  

Humidifier:   Type, 

R,,:,;

LLZLLLセKAGN   LZLN。セ  .. • . e  • • •  , 

Location 0 

,I-;l'f't

NBL[Lセ  NセゥZZLLZLL[LMGWGN   •• , , ,

Condition  ... X€;--,'1,

rrr: . . . . ,

0 •  0 

Service  Water  Heater:   Type  ..セLQGZGWMエイL[ZZMM •••.••.• , • , 

Location  • イNZ_セLKLLZLZLNョZエZ  

...•. 

Wal1lhel':   Type  ..jZエNu[エZッNBLL[LMセエゥN」N

•. :­: 

NセiZNB[エ[^L[L  

.... ,., ...

Location 0  ,  QS[BセUZBBセセLZLLエL  .• 0• • • ,  • 

Dr yez :   Location  •. oT'f?":''f•••• , '.' ••••• " . ,  •••••••• 

Vented?  yell •• 0 ,  • •   no., , , . 

Indoor Hne:  location  •.MMイ[ZNN\^[UNQzNBGZBMセZBMエGZ  

•••••.••

i

Figure

TABLE  II  OTTAWA  HOUSES  MEAN  MONTHLY  TEMPERATURE  (Living  Room)
TABLE III 
TABLE  IV 
Figure  1  House  No.1, 
+7

Références

Documents relatifs

The aim of this study is to start from different angulated radiographs [5,6] of the same bone Region Of Interest (ROI) and see if a better relationship between texture analysis

The effects of decreasing pixel size and increasing vertical resolution on the pixel fill factor, temporal noise and dynamic range are observed for three fabrication

Relatively new and dedi- cated methods for TOP, such as identification of irrelevant arcs and mandatory customers, clique and independent-set cuts based on the incompatibilities,

(a) Sketch of the experimental set-up, (b) Pressure dependence of resistivity measurement by the conductive-rubber method on the phenolic plate (dots); the shaded band represents

Measuring humidity reliably is challenging in environments where humidity is near saturation. Measurements may be corrupted by fog, mist, rain, and heavy dew. A wet probe may

Figure  7 a shows the compari- son of secular acceleration (SA) of the radial component of the geomagnetic field at the Earth’s surface between the MHD and KD forecasts for

trypanosomosis eradication campaign; PPIF: Pupae per initial female; rH: Relative humidity; SAS: Slovak Academy of Sciences; SD: Standard deviation; SEN: Senegal; SENbkf:

4.3.3 Appareillage des pertes de substance complexes intéressant le revêtement cutané .... De nos JOurs, les progrès réalisés dans tous les domaines et leurs cortèges