• Aucun résultat trouvé

Transport phenomena

N/A
N/A
Protected

Academic year: 2022

Partager "Transport phenomena"

Copied!
18
0
0

Texte intégral

(1)

Transport phenomena

Engineering at small scale Engineering at large scale Transport in the environment

Transport in living systems

(2)

How do you design precisely a biochemical sensor on a microchip ?

Engineering at small scale : the microchip problem

T. Squires et al., Nature Biotech. 26, 417 (2008)

(3)

Engineering at large scale : a nuclear reactor

(4)

Mass transport in the environment

How does turbulence affects heat and mass transport ?

Simulation of Cs137 transport in the Pacific Ocean cerea.enpc.fr/fukushima

(5)

Heat transport in the environment : radiative equilibrium of the Earth

From an IPCC technical report

(6)

Heat transport in living systems : thermal regulation of migratory birds

What is the cooling power of pigeon’s legs ?

L. Martineau & J. Larochelle, J. Exp. Biology 136, 193 (1988)

(7)

The honeybee problem

Ta from 21 to 45°C

Heat transport in animals : thermal regulation of flying insects

What are the different mechanisms involved in heat exchange ? What is their relative importance ?

What is the temperature of the body as a function of air temperature ?

(8)

Mass transport in living systems : is there an optimal geometry for fish gills ?

K. Park et al., PNAS 111, 8067 (2014)

(9)

Outline

review of diffusive processes

1D steady state diffusion, with sources and phase changes

geometrical effects in diffusion

radiative heat transfer

transfer by convection (advection)

combined convection and diffusion

transport boundary layer

thermal convection, coupling u and T

dispersion in random velocity fields (turbulent flows, porous media)

(10)

The « inverted class »

reading material is posted on :

https://blog.espci.fr/marcfermigier/transport-phenomena-2021/

you read and (hopefully) understand it

in (virtual) class we check that ideas and concepts are understood through problem solving

we explain again ideas and concepts that need to be clarified

(11)

Transport processes. Basic relations

molecular diffusion

JD = DrC JD = rT

heat flux : Fourier’s law mass flux : Fick’s law

convection

(advection by a macroscopic flow u)

JC = Cu

JC = ⇢CpT u

heat flux mass flux

Radiative heat transfer

JR = T 4

Flux : quantity exchanged through unit surface per unit

time

Total Flux : flux integrated over a whole surface

(12)

local equations for concentration and

temperature

Sources of heat and mass

chemical reactions phase changes nuclear reactions dissipative processes

rate of change = divergence (flux) + source term

Peclet number Pe = U L/D

Conservation laws

@T

@t + u.rT = T + R

⇢C

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

convection-diffusion equations

@C

@t + u.rC = D C + R

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(13)

Boundary conditions at interfaces

Continuity of temperature and concentration fields infinite gradients lead to infinite fluxes

Continuity of heat and mass fluxes

exception : 1st order phase change with latent heat

Boundary conditions for fluid flows continuity of velocity and stresses

(14)

macroscopic balances

(15)

The coffee cup problem 1

Coffee (essentially hot water) + sucrose (hydrodynamic radius 0.5 nm)

How long does it take for the sucrose to diffuse to the top ?

If you don’t stir the sugar in your coffee, why does it get cold way before it is

sweetened ?

(16)

The coffee cup problem 1a

What is the molecular diffusion coefficient of sucrose in water ?

D = µ kBT

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

μ : mobility = velocity/applied force

m d2x

dt2 = 1 µ

dx

dt + FT(t)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Langevin’s equation for the motion of a Brownian object

h<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> FT i = 0

hxx˙ i = 1 2

d

dt hx2i = µkBT + C exp( t/µm)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

(17)

t µ m

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit> hx2i = 2µ kB T t<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Sphere of radius a in a viscous fluid µ = 1 6⇡⌘a

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

D = kBT 6⇡⌘a

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

at 300 K, kBT = 4 10-21 J

a = 5 10-10 m, η = 10-3 Pa.s D = 4 10-10 m2/s

tD = L2/D ~ 106 s ~10 days

(18)

The coffee cup problem 2

How long does it take to cool down to room temperature ? What if diffusion in air is the only mechanism ?

Physical properties of air : density ρ = 1 kg/m3

specific heat Cp = 1000 J/kg.K

thermal conductivity λ = 0.025 W/m.K Physical properties of coffee :

density ρ = 1000 kg/m3

specific heat Cp = 4180 J/kg.K

thermal conductivity λ = 0.6 W/m.K

tκ = L2/κ ~ 100 s

κ = λ/ρCp = 2.5 10-5 m2/s

Références

Documents relatifs

Dans un deuxième temps, les maquettes d’arbres validées sont utilisées pour caractériser précisément la géométrie et l’architecture du milieu afin d’alimenter les

This model, established from a version of the Reynolds transport theorem adapted to a stochastic representation of the flow, gives rise to a large-scale description of the flow

[13] Kazoe Y, Miyakawa S, Miki N, Sato Y (2009) Fluorescence imaging technique of surface electrostatic potential using evanescent wave illumination. [14] Kazoe Y, Nakamura T,

We instantiate these ideas in three different setups: (i) when comparing a discrete distribution to another, we show that incremental stochastic optimization schemes can beat

(2017) compared the global- scale tropospheric transport properties among free-running simulations using internally generated meteorological fields and simulations constrained

Ismael Hernández-Carrasco 1 , Alejandro Orfila 2 , Vincent Rossi 3 &amp; Veronique Garçon 4 Coastal ocean ecosystems are major contributors to the global biogeochemical cycles

The effect of different physical parameters (surface tension, viscosity and density, inflow velocity conditions), although implicit in the equations through their effect on the

Dans notre contexte, les pleurésies purulentes de l’enfant sont diagnostiquées de façon tardive, stade 2 ou 3 donc souvent les fibrinolytiques ne seront plus efficaces et