• Aucun résultat trouvé

Volatiles and refratories in solar analogs: No terrestial planet connection

N/A
N/A
Protected

Academic year: 2021

Partager "Volatiles and refratories in solar analogs: No terrestial planet connection"

Copied!
2
0
0

Texte intégral

(1)

The Astrophysics of Planetary Systems: Formation, Structure, and Dynamical Evolution

Proceedings IAU Symposium No. 276, 2010 A. Sozzetti, M. G. Lattanzi & A. P. Boss, eds.

c

 International Astronomical Union 2011 doi:10.1017/S174392131102062X

Volatiles and refratories in solar analogs:

No terrestial planet connection

Jonay I. Gonz´

alez Hern´

andez

1,2

, Garik Israelian

1

, Nuno C. Santos

3,4

,

Sergio Sousa

3

, Elisa Delgado-Mena

1

, Vasco Neves

3

and

St´

ephane Udry

5

1

Instituto de Astrof´ısica de Canarias, C/ Via L´actea s/n, 38200 La Laguna, Spain email: jonay@iac.es

2Dpto. de Astrof´ısica y Ciencias de la Atm´osfera, Facultad de Ciencias F´ısicas, Universidad Complutense de Madrid, E-28040 Madrid, Spain

3

Centro de Astrof´ısica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 4Departamento de F´ısica e Astronomia, Faculdade de Ciˆencias, Universidade do Porto,

Portugal 5

Observatoire Astronomique de l’Universit´e de Gen`eve, 51 Ch. des Maillettes, -Sauverny-Ch1290, Versoix, Switzerland1

Abstract. We have analysed very high-quality HARPS and UVES spectra of 95 solar analogs,

24 hosting planets and 71 without detected planets, to search for any possible signature of terrestial planets in the chemical abundances of volatile and refractory elements with respect to the solar abundances.

We demonstrate that stars with and without planets in this sample show similar mean abun-dance ratios, in particular, a sub-sample of 14 planet-host and 14 “single” solar analogs in the metallicity range 0.14 < [Fe/H] < 0.36. In addition, two of the planetary systems in this sub-sample, containing each of them a super-Earth-like planet with masses in the range ∼ 7 − 11 Earth masses, have different volatile-to-refratory abundance ratios to what would be expected from the presence of a terrestial planets.

Finally, we check that after removing the Galactic chemical evolution effects any possible difference in mean abundances, with respect to solar values, of refratory and volatile elements practically dissappears.

Keywords. stars: abundances, stars: fundamental parameters, planetary systems, planetary

systems: formation, stars: atmospheres

1. Introduction

The discovery of more than 400 exoplanets orbiting solar-type stars by the radial velocity technique have provided a substantial amount of high-quality spectroscopic data (see e.g. Neves et al. 2009).

Recently, Mel´endez et al. (2009) have obtained a clear trend [X/Fe] versus TC in a

sample of 11 solar twins, and claimed (see also Ram´ırez et al. 2009, 2010) that the most likely explanation to this abundance pattern is related to the presence of terrestial planets in the solar planetary system.

Here we summarize the analysis of very high-quality HARPS and UVES spectroscopic data of a sample of 95 solar analogs with and without planets (see Gonz´alez Hern´andez

et al. 2010), with a resolving power of λ/δλ85,000 and a mean S/N∼850.

The stellar parameters and metallicities of the whole sample of stars were computed using the method described in Sousa et al. (2008). The chemical abundance derived for

422

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S174392131102062X

(2)

Searching for terrestial planets in solar analogs 423 each spectral line was computed using the LTE code MOOG (Sneden 1973), and a grid of Kurucz ATLAS9 model atmospheres (Kurucz 1993).

2. Metal-rich solar analogs hosting super-Earth-like planets

We find no substantial differences in the abundance patterns of solar analogs with and without planets. In particular, the slopes of the abundance ratios [X/Fe] versus TC in two

metal-rich stars, HD 1461 and HD 160691, containing each of them one super-Earth-like planet, with 7-11 Earth masses, have the opposite sign to what one would expect if the amount of refractory metals in the atmospheres of planet hosts would depend only on the amount of terrestial planets.

0 500 1000 1500 TC (K) -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 ∆ [X/Fe] SUN-STARS HD 160691 ([Fe/H] = +0.3) HD 1461 ([Fe/H] = +0.2) C C O O S S Na Na Mg Mg Al Al Si Si Ca Ca Sc Sc Ti Ti V V Cr Cr Mn Mn Fe Fe Co Co Ni Ni Cu Cu Zn Zn Sr Sr Y Y Zr Zr Ba BaCe Ce Nd Nd Eu Eu 0 500 1000 1500 TC (K) -0.4 -0.3 -0.2 -0.1 0.0 0.1 0.2 ∆ [X/Fe] SUN-STARS HD 160691 ([Fe/H] = +0.3) HD 1461 ([Fe/H] = +0.2) C C O O S S Na Na Mg Mg Al Al Si Si Ca Ca Sc Sc Ti Ti V V Cr Cr Mn Mn Fe Fe Co Co Ni Ni Cu Cu Zn Zn Sr Sr Y Y Zr Zr Ba Ba Ce Ce Nd Nd Eu Eu

Figure 1.Left panel: A bundance diff erences, ∆ [X /Fe]S U N−S T A R S, b etween the Sun, and 2 planet hosts w ith sup er-Earth-like planets. Linear fits for diff erent TC ranges to the data p oints weighted w ith the error bars

are also displayed. We note the diff erent slop es derived w hen cho osing the range TC > 1200 K (dashed-dotted

line) as in M el´endez et al. (2009) and G onz´alez H ern´andez et al. (2010), and TC > 900 K (dashed-three-dotted

line) as in R am´ırez et al. (2009, 2010). A n arbitrary shift of -0.25 dex has b een applied to the abundances of the planet host H D 160691. Right panel: Sam e as left panel of this figure but after correcting each elem ent abundance ratio of each star using a linear fit to the G alactic chem ical trend of the corresp onding elem ent at the m etallicity of each star.

In left panel of Fig. 1 we display the abundances of these two stars and some linear fits for different TC ranges. The steep positive trend in the linear fit for TC > 900 K

is probably affected by chemical evolution effects on Mn, Na and Cu. In right panel of Fig. 1 we have already removed the Galactic chemical evolution effects and both stars do not seem to show any trend. We may conclude that it seems plausible that many of our targets hosts terrestrial planets but this may not affect the volatile-to-refratory abundance ratios in the atmospheres of these stars (see e.g. Udry & Santos 2007).

References

Gonz´alez Hern´andez, J. I., Israelian, G., Santos, N. C., et al. 2010, ApJ, 720, 1592

Kurucz, R. L. ATLAS9 Stellar Atmospheres Programs and 2 km s−1 Grid, CD-ROM No. 13, Smithsonian Astrophysical Observatory, Cambridge, 1993

Mel´endez, J., Asplund, M., Gustafsson, B., & Yong, D. 2009, ApJ Letters, 704, L66

Neves, V., Santos, N. C., Sousa, S. G., Correia, A. C. M., & Israelian, G. 2009, A&A, 497, 563 Ram´ırez, I., Mel´endez, J., & Asplund, M. 2009, A&A Letters, 508, L17

Ram´ırez, I., Asplund, M., Baumann, P., Mel´endez, J., & Bensby, T. 2010, A&A, 521, A33 Sousa, S. G., et al. 2008, A&A, 487, 373

Sneden, C. 1973, PhD Dissertation, Univ. of Texas, Austin Udry, S. & Santos, N. C. 2007, ARA&A, 45, 397

at https:/www.cambridge.org/core/terms. https://doi.org/10.1017/S174392131102062X

Figure

Figure 1. Left panel: A bundance diff erences, ∆ [X/Fe] S U N −S T A R S , b etween the Sun, and 2 planet hosts w ith sup er-Earth-like planets

Références

Documents relatifs

- 160 - و قرط مادختسا نم هل دبلاف بيلاسأ نوكي نأ ملعملا نم بلطتي امم ةددعتم و ةفلتخم ميلعتلا ةيلمع نم فدهلا قيقحت ةعرس و ،بلاطلا بناج نم ملعتلا ثودح ةيفيكب

It is based on sieves which are usually used to characterize size of mineral aggregates, for example in the standard NF EN 933-1 – Determination of particle size

In order to specifically study this network structure and make possible the large population analysis of the model, we con- centrated on foraging (Bell, 1984) and physiological

This research presented a review of Lean Product Development, introduced and explored the role of the process architect, and proposed an analysis procedure to aid

In this paper, we investigate the wavelength and temperature dependence of the magneto- optical properties of a GaMnAs layer with and without capping by dielectric layers using

Le groupe texte permet d’insérer dans la diapositive divers éléments : une zone de texte, un WordArt, un numéro de diapositive, la date, un en-tête ou un pied de page, un

Evolution of the average synaptic modification (mean STDP) and of the Frobenius norm of the total change on the whole synaptic matrix (STDP norm).