• Aucun résultat trouvé

Strutural properties of bounded languages with respect to multiplication by a constant

N/A
N/A
Protected

Academic year: 2021

Partager "Strutural properties of bounded languages with respect to multiplication by a constant"

Copied!
22
0
0

Texte intégral

(1)

                                         ! "# $% & $' () " $* % " $+ ,-.& +/ # - + $ 0 ' (1 + 2 3 4 & #$ # 3 + ' & " 5 ' , ' 5 5 6 7 +7 % ' () " $* % " $+ , -8 # +# 9

(2)

                            

S

                        

B

`

                    

λ = β

`

(3)

                                      ! " #   $  !    

S = (L, Σ, <)

  

L

            %                 

(Σ, <)

&               

L

                           

<

 %               

rep

S

:

N

→ L

val

S

= rep

−1

(4)





a

n 0 1

2

3

4

· · ·

rep(n) ε a aa aaa aaaa · · ·

 

{a, b}

, a < b

n 0 1 2

3

4

5

6

7

· · ·

rep(n) ε a b aa ab ba bb aaa · · ·

 

a

b

, a < b

n 0 1 2

3

4

5

6

· · ·

rep(n) ε a b aa ab bb aaa · · ·

(5)

      

X

N

S

 ! #   "    "! 

rep

S

(X) ⊆ Σ

"   !            !     !   !  $  

(6)

  

S = (L, Σ, <)

                      !     # !  ! !     $       " !    #   " " #  # 

λ

N

        #    $

S

 ! #   "    !  !

X

   !  !

λX

"  "  

S

 ! #   "     !

(7)

         

S

                  

S = (L, Σ, <)

                    &                

S

         &           

u

L

(n)

                

n

       

L

&                  

L

⊆ Σ

                   

u

L

(n) ∈ Θ(n

k

)



k

N

 

S = (L, Σ, <)

&    %       

S

                      

λ

      

λ = β

k+1

   

β

N

&

(8)

           

L

  !   ! 

u

L

(n) ∈ O(1).

              

L

⊂ Σ

                   

S = (L, Σ, <)

&  

X

N

S

                

X

                &        

S

                        & 

X

N

S

           

λX

S

             

λ

N

&

(9)

     

β > 0

&                       

S = (a

b

,

{a < b}),

          

β

2

  %

S

                  

β

        &

(10)

         

B

`

= a

1

· · · a

`

             %                  

Σ

`

= {a

1

< . . . < a

`

}

 

`

≥ 1.

                             

(B

`

, Σ

`

)

       

rep

`

 

val

`

               &  

X

N

    

B



`

! #   "     ! 

rep

`

(X)

            %       

Σ

`

.

(11)

                     

λ

   %             

f

λ

: B

`

→ B

`

.

                  !  !  ! "  !  # !  ! !    $     " !   #  " " #     !  "     "        # " #    !  !  !  !        !  # 

B



`

(12)

  

` = 2



Σ

2

= {a, b}

 

λ = 25

&

8

−−−→ 200

×25

rep

2

↓ rep

2

a b

2

−−−→ a

×25

9

b

10

N

−−→

×λ

N

rep

`

↓ rep

`

B

`

−→ B

f

λ

`

          

λ = 25

        

f

λ

  

B

2

         

w, w

0

∈ B

2



f

λ

(w) = w

0

       

val

2

(w

0

) = 25 val

2

(w)

&

(13)



B

`

              

u

`

(n) :=

u

B

`

(n) = #(B

`

∩ Σ

n

`

)

 

v

`

(n) := #(B

`

∩ Σ

≤n

`

) =

n

X

i=0

u

`

(i).

       

`

≥ 1

 

n

≥ 0

   %

u

`+1

(n) =

v

`

(n)

  

u

`

(n) =



n + `

− 1

`

− 1



.

 

(14)

    

S = (a

1

· · · a

`

,

{a

1

<

· · · < a

`

})

&   %

val

`

(a

n

1

1

· · · a

n

`

`

) =

`

X

i=1



n

i

+ · · · + n

`

+ ` − i

`

− i + 1



.

             

n

N



|rep

`

(n)| = k ⇔



k + `

− 1

`



|

{z

}

val

`

(a

k

1

)

≤ n ≤

`

X

i=1



k + i

− 1

i



|

{z

}

val

`

(a

k

`

)

.

(15)

                 

3

        

a

b

c



aaa < aab < aac < abb < abc < acc < bbb < bbc < bcc < ccc.

  %

val

3

(aaa) =



5

3



= 10

 

val

3

(acc) = 15

&

               

ϕ :

{a, b, c} → {a, b, c}

    

ϕ(a) = ε, ϕ(b) = b, ϕ(c) = c

            

3

   

ε < b < c < bb < bc < cc < bbb < bbc < bcc < ccc.

   %

val

3

(acc) = val

3

(aaa) + val

2

(cc)

  

val

2

    

                

b

c

&

(16)

              %

u

B

`

(n) ∈ Θ(n

`−1

).

   %                        

λ = β

`

.

(17)

        

`

N

\ {0}

&       

n

             

n =



z

`

`



+



z

`−1

`

− 1



+ · · · +



z

1

1



    

z

`

> z

`−1

>

· · · > z

1

≥ 0

&

(18)

           

rep

`

(n).

                %     &                         

t

i



n

<

t

+1

i



   

 



t

i



          

                      %  

α

1

, . . . , α

`

     

α

i

+ · · · + α

`

=

z

(` − i + 1) − ` + i,

i = 1, . . . , `.

  

rep

`

(

n

) = a

α

1

1

· · · a

α

`

`

&

(19)

   

` = 3

          

12345678901234567890 =



4199737

3



+



3803913

2



+



1580642

1



    %       

n

1

+ n

2

+ n

3

= 4199737 − 2

n

2

+ n

3

= 3803913 − 1

n

3

= 1580642

⇔ (n

1

, n

2

, n

3

) = (395823, 2223270, 1580642),

   %

rep

3

(12345678901234567890) = a

395823

b

2223270

c

1580642

.

(20)

        

λ = β

`

                         

S = (a

b

c

,

{a < b < c}),



β

N

\ {0, 1}

     

β

6≡ ±1 (mod 6)

            

β

3

       %  

S

            &

(21)

              

β

`

 % 

S

                              

S = (a

1

· · · a

`

,

{a

1

<

· · · < a

`

})

                

B

`

% 

`

          

β =

k

Y

i=1

p

θ

i

i

  

p

1

, . . . , p

k

                     

`

&

(22)

    

n

N

            %

|rep

`

`

n)

| = β |rep

`

(n)| +

(β − 1)(` − 1)

2

+ i

  

i

∈ {−1, 0, . . . , β − 1}

&

Références

Documents relatifs

We consider in ultrahyperbolic Clifford analysis, [1], [5], [6], the rep- resentation of a k-vector function F : Ω → Cl k p,q , with 0 &lt; k &lt; n, in terms of functions

Example 1.1. Recall that languages of unranked trees can be specified by means of DTDs, that is, by sets of rules of the form a → L a , where L a is a regular language describing

For the streaming setting, if we consider 0-lookahead repair strategies with aggregate cost, the threshold problem becomes solvable in polynomial time (hence it is as difficult as

C (2) dans le cycle imidazolium conduit à une variation très significative des propriétés macroscopiques, cette méthylation de la position C (2) des liquides

Biobased pH- responsive and self-healing hydrogels prepared from O-carboxymethyl chitosan and a 3-dimensional dynamer as cartilage engineering scaffold.c. Biobased pH-responsive

In ultra high Rayleigh numbers ( Ra &gt; 10 16 ) experiments in He, one of the stratification criteria, scaling with α ∆ h , could be violated. This criterion garanties that

In the particular case s = 1 the s-perimeter coincides with the classical perimeter, and our results improve the ones of Kn¨ upfer and Muratov [25, 26] concerning minimality of balls

Finally, in section 4 closure properties under language operations are investigated, as union, intersection, catenation, shuffle, their iterations, intersection with regular