• Aucun résultat trouvé

CHARACTERIZATION OF THE ELECTRIC POTENTIAL ACROSS THE TOKAMAK

N/A
N/A
Protected

Academic year: 2021

Partager "CHARACTERIZATION OF THE ELECTRIC POTENTIAL ACROSS THE TOKAMAK"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: cea-02734620

https://hal-cea.archives-ouvertes.fr/cea-02734620

Submitted on 2 Jun 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

CHARACTERIZATION OF THE ELECTRIC POTENTIAL ACROSS THE TOKAMAK

E. Caschera, G. Dif-Pradalier, Ph Ghendrih, C. Gillot, V. Grandgirard, C. Passeron

To cite this version:

E. Caschera, G. Dif-Pradalier, Ph Ghendrih, C. Gillot, V. Grandgirard, et al.. CHARACTERIZA-TION OF THE ELECTRIC POTENTIAL ACROSS THE TOKAMAK. 2nd International Conference on Data Driven Plasma Science (ICDDPS 2019), May 2019, Marseille, France. �cea-02734620�

(2)

CHARACTERIZATION OF THE ELECTRIC

POTENTIAL ACROSS THE TOKAMAK

E. Caschera

,

G. Dif-Pradalier, Ph. Ghendrih, C. Gillot, V. Grandgirard, C. Passeron

Observation: Depth increases with «quality» of confinement

GYSELA data: orders of magnitude

Zonal Flows shear radially elongated turbulent eddies

A minimal model retains the ends

𝑓𝑖𝑡 𝜌 =

𝛼

0

𝜌

2

+

𝜙

00 (𝜌=0)

𝛼

2

𝜌 − 𝜌

𝑚𝑎𝑥 2

𝐸

𝑟𝑚𝑎𝑥

𝜌 − 𝜌

𝑚𝑎𝑥

𝜌 <

𝜌

1

𝜌 ≥

𝜌

1 Interesting points:

• Minimum of the well

• Electric field at the edge

• Allow some flexibility in-between

What is normal? Can detect bifurcations?

1 2 3 4 5

𝑥105Ω𝑖−10

Time

Minimize

𝜖 = ∫ 𝜙 − 𝑓𝑖𝑡 𝑑𝜌

A more careful look and complexity emerges

𝑡 = 2𝑒5 Ω𝑖−10

𝜙

00

Standard simulation

Run time

~10

7

h/monoproc

2D data stored ~10 Gigabyte

3D data stored ~1 Terabyte

5D data ~1 Terabyte/iteration

The poloidally and toroidally symmetric mode of the electric potential is self-consistently generated by turbulence. Its radial derivatives (the Zonal Flows and the electric shear) substantially affect confinement properties. We study the radial shape of the electric potential through statistical analysis on data from GYSELA, global gyrokinetic and flux-driven code. Two main features are retained in the simple projection on parabolic functions: the maximal depth and the slope (i.e. the electric field) at the edge. A preliminary trend is found in relation to the energy confinement: the well is deeper for increasing confinement.

𝑟 𝜃 𝜑

DATABASE of ~40 good

simulations previously collected  Self-consistently generated by plasma evolution

 Contributes to enhance confinement

Which radial profile for 𝜙

00

?

Long term objectives

 Recognize a good simulation  In-run check: save cpu hours

Ongoing projects

 Developement of Sqlite database  Define the standard shape

Highlights/Constraints:

• Symmetric at 𝜌 = 0

• Grounded at the boundary

• Negative to confine ions while electrons are adiabatic

𝑡 = 2𝑒5 Ω𝑖−10

𝜙

00

𝑎 = 190

[C.C. Petty et al. PoP, 2004]

 Zonal Flows ↔ mode (0,0) of the potential 𝜙00

𝑣𝐸×𝐵 = 𝐸 × 𝐵 𝐵2 𝑣𝜃 ∝ 𝜕𝑟𝜙00 𝜕𝑟𝑣𝜃 ∝ 𝜕𝑟2𝜙00 Zonal Flows Electric Shear

Global, gyrokinetic and flux driven = Self-organized system

0 0.3

• GK Vlasov (5D) + Q.N

• GLOBAL = full torus, full-f • 𝑆ℎ𝑒𝑎𝑡  Self-organized

Only a fraction of stored data is normally analyzed

 𝜙00is a global structure

 Fast time scale evolution/build-up  No analytical prediction

𝑟

𝜙00

?

GYSELA

 The flatter in the center, the steeper at the edge  Shape stiffness (?)

One parabola is sufficient Reversed shear at 𝜌 ∼ 0

Relaxation frequency −𝜕𝑟2𝜙00 𝜌 ∝ 1/𝑎 : Energy confinement time scaling  Trade-off between

neoclassical transport and zonal flows damping

 Suggests 𝐸 𝑟𝑚𝑎𝑥 = 𝑐𝑜𝑛𝑠𝑡  Fix point ?  the easiest picture of a single pendulum

Plasma size 𝜈 : Collisionality

𝑎 = 190

T

ime

Linear scale Loglog scale

𝜈  Constant 𝐸(𝑟𝑚𝑎𝑥) and power law of 𝜙00(𝑟 = 0)

𝑎  𝐸(𝑟𝑚𝑎𝑥) decreases with plasma size and 𝜙00(𝑟 = 0) is not a power law

𝑁𝑜 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑟

Summary

𝜌 = 1/190 a b 𝜌 = 1/190 c 𝜌 = 1/190

Références

Documents relatifs

[r]

Investigations conducted on noise measurements at pass-by of an electric vehicle successively fitted with nine different tyre sets did not bring to light any relation between

A statistical study of the cross-shock electric potential at low Mach number, quasi-perpendicular bow shock crossings using Cluster data.. [ 1 ] The cross-shock electrostatic

Bien que l’ultrafiltration (UF) ait été décrite plus tard, principalement en relation avec la paroi capillaire (par l’intermédiaire des aquaporines), des travaux avaient

a) Sécurité : La sécurité dans les réseaux VANETs est cruciale, car elle affecte la vie des gens. Il est essentiel, par exemple, que l’information vitale ne puisse pas être

Sous chargement monotone croissant, les matériaux à comportement fragile présentent en général, pour un critère de rupture donné, des moyennes de contraintes critiques de rupture

LD: light drinkers; BD: binge drinkers; BDC: binge drinkers using cannabis; BEARNI: Brief Evaluation of Alcohol-Related Neuropsychological Impairments; AUDIT: Alcohol Use

Chapter 5 presents the structure and behavior of the edge radial electric field, as determined from the CXRS data, in a variety of plasma operational regimes and examines