• Aucun résultat trouvé

Addendum to the paper “Numerical solution of second-order equations on plane domains”

N/A
N/A
Protected

Academic year: 2022

Partager "Addendum to the paper “Numerical solution of second-order equations on plane domains”"

Copied!
8
0
0

Texte intégral

(1)

M2AN - MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

L. A NGERMANN

Addendum to the paper “Numerical solution of second-order equations on plane domains”

M2AN - Modélisation mathématique et analyse numérique, tome 27, no1 (1993), p. 1-7

<http://www.numdam.org/item?id=M2AN_1993__27_1_1_0>

© AFCET, 1993, tous droits réservés.

L’accès aux archives de la revue « M2AN - Modélisation mathématique et analyse numérique » implique l’accord avec les conditions générales d’utili- sation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques

http://www.numdam.org/

(2)

MODÉLISATION MATHÉMATIQUE ET ANALYSE NUMÉRIQUE

(Vol. 27, n° 1, 1993, p. 1 à 7)

ADDENDUM TO THE PAPER

« NUMERICAL SOLUTION OF SECOND-ORDER EQUATIONS ON PLANE DOMAINS (*) »

by L. ANGERMANN (l) Communie ated by R. TEMAM

In the paper [1] we applied a so-called upwind discretization scheme to the problem

- Au 4- b . Vu 4- cu = f in D Q^

u = 0 on B ,

where D is a bounded plane domain with polygonal boundary. We could demonstrate some important properties of the resulting scheme. Moreover, we proved a convergence resuit. Unfortunately, for that proof we had to require the underlying triangulations to be uniformly acute, i.e. in addition to the quite usual assumption on the existence of a uniform lower bound for all interior angles of the triangles (Zlâmal's angle condition), we needed a

TT

uniform upper bound being les s than — strongly. In addition, we had to suppose that the family of triangulations satisfies the so-called inverse assumption (quasiuniformity condition).

In this note, we intend to show that the last two assumptions are not related with the discretization principle itself, but rather with the approximation quality of the coefficients which can be achieved.

Namely, if we redefine the quantities Nij9 ct and ft from [1] as follows :

(*) Manuscript received July 1991.

Ç1) Universitât Erlangen-Niirnberg, Institut fur Angewandte Mathematik, MartensstraBe 3, W-8520 Erlangen, Germany.

M2 AN Modélisation mathématique et Analyse numérique 0764-583X/93/01/1/7/$ 2.70 Mathematica! Modelling and Numerical Analysis © AFCET Gauthier-Villars

(3)

2 L. ANGERMANN

then instead of the assumption (A2) from [1] it is sufficient to suppose that obtuse triangles do not appear in the triangulations. Such triangulations are called weakly acute.

It is not difficult to verify that the statements of Lemmata 1-3 in [1] remain valid. However, the proof of the convergence theorem must be modified essentially. Therefore we completely bring the formulation and the proof of this theorem.

THEOREM 1 : Let the weak solution u of{\) belong to H\{D) n H2(D).

Then the estimate

\\u-uh;H\D)\\^Ch

holds, where C is a positive constant independent of h. • Proof : For arbitrary wh G Xh, we have

C \\uh - wh ; H\D)\\2 ^a(uh- wA, uh - wh) . (2) Setting vh = uh — wh, the right-hand side of this inequality can be treated as follows :

*("*. vh) = a(« ~ wA, vh) + a(uh ~ M, vh)

= a(u - wh, vh) + a(uh, vh) - at{uh, vh) + (f, vh\ - (f, vh)

= a(u-whJ vh)+ da

Using the définition of ft, the term Sa admits the following représentation, which is different from [1] :

8a

= Z Z V-r

l}

)N

lJ

{u

hl

~u

hj

)v

hl

m

lj

+ f (b.Vu

h

)v

h

dx

j e V jeV, JD

- Z [C< Uh'Vhi ~CUhVh]dx- £ [fVh - f, Vhl ] dx

i G V * D{ i e V • ' / ) ,

= Z Z ^

l

-

r

'^

N

u^

u

h

l

-u

h

j)v

hl

m

l]

+ (b.Vu

h

)v

hl

dx\

•eV [jeV, JD, j

+ Z f (b.Vuh

)(v

h

-v

hi

)dx- ^ f [e, u

hl

- cu

h

] v

hl

dx

• E v JD, ,£VJD,

+ Z cu

h

(v

h

-v

hl

)dx- £ | f[v

h

-v

hl

]dx

• ev JD, ,v JD,

< 52+

M2 AN Modélisation mathématique et Analyse numérique Mathematica! Modelling and Numencal Analysis

(4)

where

ôi = Z [b.Vuh + cuh-f](vh-vhl)dx,

8 = V v J y u N m - f \(V.b

2 2-t hl\ Z J hl IJ IJ

{ ( n . 6 ) « » - [ry uhl + (

By Cauchy's inequality, for 5! we obtain

« ! * \\b.Vu

h

+ cu

h

-f;L

2

(D)\\ I j ] l

The last term can be estimated by means of Lemma 2.1 from [3], that is

« ! * CA | | * . V«A+ <:«*-ƒ ;L2(D)\\\vh;Hl(D)\ . (3)

Now we consider 82. Using the définition of c(, we have

Integrating the first intégral by parts and using the définition of NlJt we obtain

ieV *>Dt

V.b)(uh-uhl)vhldx

Applying Cauchy's inequality and Lemma 2.1 from [3], it follows ô2^Ch\\c-V.b;LQ0(D)\\\uh;Hl(D)\\\vh\\r

In view of the équivalence of the || . l^-norm with the L2-norm on Xh (see Lemma 2.2 in [3]), we get

82 ^ Ch ||c - V . b ; Lœ( D ) | | \uh ; T /1^ ) ) ||i?A ; L2(D)|| . (4) vol. 27, n° 1, 1993

(5)

4 L ANGERMANN

Thus it remains to consider the third term. By a symmetry argument, we see that

Obviously, by means of BtJ and xt there can be defined s orne triangle TtJ in such a way that BtJ is one edge and xt the opposite vertex. On the other hand, it is possible to represent this triangle as the union of two triangles T^P (k = 1, 2) having in common the vertex xl and the straight-line segment Connecting the node xt with the point — (xt + x} ).

Now we can write ô3 — <531 + S32, where

i eV j Ë V , JBtj

ôv = \yL Z {"h-r.j uhl- (1 -r^u^N^iv^-v

i sV j eVt JBtJ

We turn to the estimation of the intégral

(n.b-N^u.ds.

To this end we introducé a référence triangle T with vertices t± = (0, 0), r2 = (1, 0), f3 = (0, 1) and transform TtJ onto f in such a way that BtJ has the image B — txî2. Then we have

w h e r e

:d~s

ƒ(&)= f {n.b~NtJ)uh

Je

It follows

Using the trace theorem [4], w e get

M2 AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numencal Analysis

(6)

Observing that ƒ vanishes for constant \ we conclude from Bramble- Hilbert's lemma [2] the estimate

\jÇb)\ ^C\n.l;Hl(f)\\\uh;Hl(f)\\ .

The back-transformation (see [2], again) yields

\JtJ(b)\ ^ C ^ ^ C m e a s ^ ) -1 \n . b ; Hl{TtJ)\ \\uk ; H\Tl})\\

l

^ Cm„ hTij(meas TtJ)"'2 \n . b ; W(Ti;)\\\uh;Hl<Jt])||

^ Cm.j ^ ( m e a s T^)"2 \b ; [WK^)]2] \\uh ; Hl(TtJ)^ . Thus we have

_i

8

31

*sCh\b; [ ^ ( D ) ]

2| £ £ m„(meas:Ty) '2 x

i eV j sVt

x K-i^lUu,,;//

1

^,,)!.

In view of the relations

K - vhj I = dtJ \n . Vü^| and dy mi; = 4 meas Ty (5) it follows

6

3l

^Ch\b; [Wl(D)]

2

\ £ X (™easr„)

5 |n . Vvh

\ \\u

h ; T/1^))! .

i e V j s Vt

Cauchy's inequality implies

^ 2 1 1 | | (6)

Thus it remains to consider the term 532. Using the notation B\*p = Bl} n T%\

we can write

where

«fcy = Uh ~ ri3 Uhl - (1 - ry ) Uhj .

Now, on each triangle 7 ^ we have

vol. 27, n° 1, 1993

(7)

6 L. ANGERMANN

with Vuh being constant on T®\ Thus, uhlJ can be treated as follows

«Aiy = (1 ~ ^ ) ( " A I - *%) + VMA . (x - xt)

= (1 -rtJ)dtJ(n.Vuh) + Vuh. (x -xt)

*CdtJ\\Vuk\\.

Therefore, together with (5) this estimate implies

ik)

^ 7

t ;ev, * = ï nieas itJ

where m^) is the length of B$\

Observing that meas T^ = -• m^ dip after the application of various variants of Cauchy's inequality we obtain

132

E E

d

'j

N

-j t f

{ e 1/ y e Vt

(7) Summarizing the relations (3), (4), (6), (7) and using Lemma 1 frorn [1] in order to dérive an a priori estimate for || uh ; H1 (D ) ||, we get from (2)

\\uh - wh ; Hl(D)\\ *C[\\u-wh; Hl(D)\\ + h] .

The triangle inequality yields

\\u-uh;Hl(D)\\ * \\u-wh;Hl(D)\\ + || wA - wh ; Hl(D)||

Choosing for wh the Lagrangian interpolant in Xh of the exact solution u of (1), the standard interpolation theory gives

\\u-wh;Hl(D)\\ ^Ch\u;H2(D)\ . Now, the desired result follows immediately. •

M2 AN Modélisation mathématique et Analyse numérique Mathematical Modelling and Numencal Analysis

(8)

REFERENCES

[1] L. ANGERMANN, Numerical solution of second-order elliptic équations on plane domains, M2AN Modél. Math. Anal Numér., 25(2) : 169-191, 1991.

[2] P. CIARLET, The finite element method for elliptic problems, North-Holland, Amsterdam-New York-Oxford, 1978.

[3] T. IKEDA, Maximum principle in finite element models for convection-dijfusion phenomena, North-Holland, Amsterdam-New York-Oxford, 1983.

[4] J. WLOKA, Partielle Differentialgleichungen. Sobolevrâume und Randwertaufga- bent Teubner-Verlag, Stuttgart, 1982.

vol. 27, n° 1, 1993

Références

Documents relatifs

the right-hand side of (1.1) lies in H − 1 ( Ω )) the vari- ational solution of (1.1) is unique under a global Lipschitz condition on the function A(x, s) with respect to the variable

In section 3, we study the regularity of solutions to the Stokes equations by using the lifting method in the case of regular data, and by the transposition method in the case of

Ilias, Immersions minimales, premiere valeur propre du Lapla- cien et volume conforme, Mathematische Annalen, 275(1986), 257-267; Une ine- galit´e du type ”Reilly” pour

Finally we describe our approach. In Subsection 4.1, using the comparison of the solutions at u = b, and following ideas in [16,17], we study the behavior of the solutions in

- We prove here the existence of a positive solution, under general conditions, for semilinear elliptic equations in unbounded domains with a variational structure..

The existence of a positive lower bound of the compressi- bility is proved in the case of general quantum lattice systems at high temperature.. The compressibility

In this paper, we focus on the ferromagnetic Ising model and prove that the mixing time of Glauber dynamics on any n-vertex graph is at least (1/4 + o(1))n log

L’accès aux archives de la revue « Cahiers de topologie et géométrie différentielle catégoriques » implique l’accord avec les conditions générales d’utilisation