• Aucun résultat trouvé

force field Molecular investigation mechanics of some acrylic polymers usingSPASIBA Vibrational Spectroscopy

N/A
N/A
Protected

Academic year: 2021

Partager "force field Molecular investigation mechanics of some acrylic polymers usingSPASIBA Vibrational Spectroscopy"

Copied!
13
0
0

Texte intégral

(1)

VibrationalSpectroscopy74(2014)20–32

ContentslistsavailableatScienceDirect

Vibrational

Spectroscopy

j o ur na l h o me pa g e : w w w. e l s e v i e r . c o m / l o c a t e / v i b s p e c

Molecular

mechanics

investigation

of

some

acrylic

polymers

using

SPASIBA

force

field

M.O.

Bensaid

a,∗

,

L.

Ghalouci

a

,

S.

Hiadsi

a

,

F.

Lakhdari

b

,

N.

Benharrats

b

,

G.

Vergoten

c aLaboratoiredeMicroscopeElectroniqueetSciencedesMatériaux,UniversitédesSciencesetdelaTechnologied’OranMohamedBoudiaf,B.p1505El

M’Naouar,31000Oran,Algeria

bLaboratoiredesMatériauxMixtes,UniversitédesSciencesetdelaTechnologied’OranMohamedBoudiaf,Algeria

cUMRCNRS8576“GlycobiologieStructuraleetFonctionnelle”,UniversitédesSciencesetTechnologiesdeLille,59655Villeneuved’AscqCedex,France

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Received17April2014

Receivedinrevisedform2July2014 Accepted3July2014

Availableonline11July2014 Keywords:

Forcefield SPASIBA Acrylicpolymers

Potentialenergydistribution Vibrationalanalysis

a

b

s

t

r

a

c

t

TheFirstgenerationSPASIBAforcefieldisusedtostudynormalvibrationalmodesofPMMA,andthen extendedtootherthermoplasticpolymers,namelyPMA,PMAAandPAA,inordertodetermineits param-eterstransferability.Tothisend,FTIRandFTRspectraofpurePMMAsamples,preparedbytheemulsion polymerizationofMMAandinitiatedbysodium,arerecordedin400–3500cm−1and200–3500cm−1, respectively.Adetailedvibrationalanalysiswasperformedontheobtainedspectraandtheobserved fre-quenciesareassignedtotheirrespectivevibrationalmodes,supportedbypotentialenergydistribution (PED)analysis.OurnumericalresultsrevealanRMSvalueof7.8cm−1correspondingtoIRwavenumbers and8.7cm−1relativelytoRamanwavenumbers.OurvibrationalcalculationsonPMA,PMAAandPAA polymersrevealthattheparameterstransferabilitycriterion,establishedbyShimanouchi,isverifiedfor theSPASIBAforcefield.

©2014ElsevierB.V.Allrightsreserved.

1. Introduction

The molecular modeling of acrylic polymers has recently attractedmuchinterestduetotheiroutstandingpropertiessuchas highelectricalresistivity,lowwaterabsorption,fairtensilestrength andexcellentopticalcharacteristicsaswellascommercial impor-tance[1].ThePolyMethylmethacrylate(PMMA)polymeroffers aparticularregardsinceiteasilyallowsstudyingdifferent phys-icalproperties related topolymers[2]. PMMA is alsothemost usedmember, among a setofthermoplastic polymers,in wide varietyofapplicationsinvirtueofitsexcellenttransparencyand goodmechanicalandchemicalproperties[3–6].X-raydiffraction techniquesarethemostcommonlyappliedcomplementary disci-plinetomicroscopyforstructuralstudies.Forexample,theatomic position(atleastfortheheavieratoms)andgeometrical parame-terscanbeobtainedfromX-raydiffractionexperiment.However, whenaddressingvibrationalmodesstudy,X-raydiffractionisnot abletoprobevibrationalsensitivemodesofchemicalstructures. Bothpolymerconfigurationandconformationalsensitivemodes canbeprobedbymeansofvibrationalspectroscopytool[7,8].This laterhelpsalottounderstandthedynamicalbehaviorofapolymer

∗ Correspondingauthor.Tel.:+213776439402. E-mailaddress:bwassini@yahoo.fr(M.O.Bensaid).

chain.Therefore,InfraredandRamanspectroscopiesremainthe mostimportantandcommontechniquesavailableinresearchand industriallaboratories.Comparedtoexperimentalvibrationaldata, ab-initio/dftmethodsgiveverygoodreproductionofwavenumbers assignmentsofthefundamentalsbandsforsmallmolecules. How-ever,forlargemolecules(i.e.,withmorethan100atoms)oneneeds averypowerfulcomputer.Withlargermolecules,thetimerequired forcomputationbecomesprohibitivelylarge,andonemustresort tomoreapproximatemethodssuchasmolecularmechanicsforce fieldapproach. Nowadays,thereis avarietyofforcefields ded-icatedtothermoplasticpolymers.Thebestknownforatomistic simulationofpolymericsystems,areCOMPASS[9],CVFF[10],PCFF [11]andDREIDING[12]forpolyethyleneoxide,TRIPOS5.2[13]for polyrotaxanes,CHARMM[14]andAMBER[15]forpolystyreneand GROMOS[16]forpolypyrrole.Forbiomolecularsystems,CHARMM, AMBERandSPASIBA(SpectroscopicPotentialAlgorithmfor Sim-ulatingBiomolecularConformationalAdaptability)seemtobethe mostappropriateforcefields.SPASIBAconsistsofapairingbetween amolecularmechanicsforcefieldderivedfromtheAMBERpackage [17]andtheUrey–Bradley–Shimanouchi(UBS)spectroscopicforce field[18].

Comparedtotheothersforcefieldsofsecondgeneration(e.g. PCFF,COMPASS,...)whichcombinebondedterms,non-bonded termsandcrosstermstomakemoreaccuratetheirsvibrational analysisresults,SPASIBAlikefirstgenerationforcefieldreplaces http://dx.doi.org/10.1016/j.vibspec.2014.07.001

(2)

M.O.Bensaidetal./VibrationalSpectroscopy74(2014)20–32 21 thecrossterms(difficulttoparameterized)byUBSconstantsterms

forbondlengthsandbondangles.Thismakesitanaccurateforce fieldandsimpletohandleforvibrationalanalysisstudies.Literature surveyrevealsthatSPASIBAwasalreadyparameterizedforlipids [19], proteins, oligosaccharides and glycoprotein [20], aliphatic aminoacids[21],alkanes[22], alkenes[23],chondroitin sulfate [24],aliphaticethers[25],alcohols[26]andesters[27].However, tothebestofourknowledge,theaccuracyofthisforcefieldhasnot beentestedyetonthermoplasticpolymers(exceptforpolyaniline (PANI)[28])incontrasttoCHARMMandAMBER.Hence,theaimof thisworkistofillthisbreachinliteraturebyconductingaSPASIBA forcefieldstudyonsomethermoplasticpolymers,namelyPMMA, PMA,PMAAandPAA.Thispaperisorganizedasfollows:in Sec-tion2,experimentalproceduretodetermineInfraredandRaman vibrationalfrequenciesofPMMAisdescribed.Section3exposesthe adoptedcomputationalmethod.InSection4,wepresentand dis-cussourexperimentalandnumericalresultsonthelightofprevious worksfollowedbyaconclusion.

2. Experimentalprocedure

Purifiedanddistilledmethylmethacrylate(Aldrich,USA)was usedforthepolymer’spreparation.ThepowderofthePMMAwas synthetizedwitha radicalreactionprocess basedonthe emul-sion polymerization of the methyl methacrylate using sodium persulphateasinitiatorandsodiumdodecylsulfateas emulsify-ing agentat 80◦C. Each PMMA pelletwas preparedby mixing 1mg of thepowdered sample with100mg of dried potassium bromidepowder.Themixturewascarriedoutusingapestleand agatemortar,andthenpressedinaspecialdieuptoapressure of700kg/cm2 toyieldatransparentdisk.TheFourierTransform Infrared (FTIR) spectrum of the PMMA polymer was recorded intherange 400–3500cm−1 usinga NicoletAvatar360Fourier TransformInfraredSpectrometer.Thescanningspeedwasheldat 30cm−1min−1 withaspectral widthof20cm−1.Frequenciesof allsharpbandsarewithina resolutionof±2cm−1.TheFourier TransformRaman(FTR)spectrumofourPMMAsample(pumped by532nmlaserlight)wasrecordedintherange200–3500cm−1 witharesolutionof2cm−1usingaLabRamXploraconfocalRaman microscope(HoribaJobinYvon)equippedwithaconfocal micro-scope(OlympusBX51).TheFTIRandFTRspectraobtainedareused asanexperimentalbasistoestablishthePMMAmoleculeforcefield throughnormalcoordinateanalysis.

3. Computationalmethod

WefirstconductedavibrationalanalysisonaPMMApolymer chainwith100monomersof15atomseach.Thefollowed computa-tionalmethodiswelldescribedinRefs.[20,29].Inourcalculations, thedielectricconstantisusedequalto1.The1–4VanderWaals interactionsandthefull1–4electrostaticpotentialhavebeen cho-sentodescribethenon-bondedinteractionsinourpolymer.The SPASIBAforcefieldconstantsfororganicmolecules[22,23,25–27] are usedas starting point to determineour newPMMA struc-tureparameters.These constantsarerefinedtoobtainthebest fit betweenthe calculated frequencies and theircorresponding peaks observed in the FTIR/FTR spectra, and then transferred toacrylic acid derivatives in order to analyzetheir vibrational normal modes and their assignments using PED analysis. To investigatetheforcefieldparametersaccuracyoftheconsidered polymer,therootmeansquare(RMS)valuesbetweencalculated and observed wavenumbers are estimated using the following expression: RMS=









1 n n



i (vcalc i −

v

exp i ) 2 (1)

Wecansummarizetheforceconstantsoptimizationandnormal modesanalysisprocedureaccordingtothefollowingsteps: 1.The monomerof each polymerchain usedin oursimulation

was generated initially by the GAUSSIAN 98 program [30]. Thestartingmonomerstructurewasoptimizedusingquantum mechanicsattheHartree–Focklevelwith6–31G**basissetin ordertocalculatethepartialcharges.Eachmonomerwasthen exportedtotheSPASIBAforcefieldprogramwheretheywere propagated100timestoobtainourinitialstructures(PMMA, PMAA,PMAandPAA)destinedtobeoptimizedbytheSPASIBA forcefieldprogram.

2.Determinationoftheforcefieldparameterswhich reproduce theavailableexperimentalvibrational spectra.Theoptimized SPASIBAparametersemployedinthepresentworkareshown inTable1(a)–(d).

3.Computationofthepolymergeometrywiththelowerenergy usingswitchedsteepestdescenttoconjugategradientmethod. Theconvergenceisreachedwhenthetotalforcebecomesless than10−5kcalmol−1 ˚A−1.

4.Determinationofthefundamentalvibrationssupportedby nor-malcoordinatesanalysisandPEDcalculations.

5.TransferabilityevaluationoftheSPASIBAforcefieldconstantsto theotheracrylicpolymers,namelyPMA,PMAAandPAA.

TherepeatingunitsofacrylicpolymerswiththeirSPASIBAatom typesarepresentedinFig.1(a)–(d).Thefourstructureshavethe samebackboneconfigurationanddifferentsidechain.

DerreumauxandVergoten[20]reportedthattheequilibrium bond lengths are explicitly expressed in the UBS bond angle energy toimprovethetransferabilityof thebendingforce con-stant from one molecule to another. The SPASIBA Force field parameters are determined fromnormal modes analysis. A set of 39 independent force constants wereconsidered as starting parameters (see Table 1(a)–(d)) and were refined by adjust-mentprocedures toobtainthebestaveragedifferencebetween the calculated and observed values. We notice that the spe-cificUrey–Bradley–ShimanouchiforceconstantsKappa,LCH2and trans-gauche used in this work and originated directly from Ref. [20]are notgiven here.The finalempirical setof SPASIBA parametersdeducedfromthevibrationalanalysisisdisplayedin Table1(a)–(d) and might beconsideredasdatabasefor further polymericstudies.

4. Resultsanddiscussion

4.1. AssignmentsfortheinfraredandRamanspectra

OurobservedFTIRandFTRspectraaregiveninFigs.2and3, respectively. The FTIR spectrum in Fig. 2 is characterized by two intense peaks relative to stretching carbonyl group vibration (C O)at 1730cm−1 and stretchingester group vibra-tion (C O) at 1149cm−1. In the [3000–2854]cm−1 range the (C H) groups exhibit stretching modes, whereas in the [1485–1387]cm−1 range the (C H)groups exhibit deformation mode. Theweakpeak at1060cm−1 isdue tothe(OCH3) rock-ing mode. The broad peak ranging from 1260 to 1000cm−1 is attributed to the stretching vibration of the (C O) ester bond. The peaks at 989and 966cm−1 correspond respectively to (O CH3) symmetric stretching and CH3 rocking. The FTR spectrum in Fig. 3 shows several narrow peaks, specific to

(3)

22 M.O.Bensaidetal./VibrationalSpectroscopy74(2014)20–32 Table1

EmpiricalSPASIBAforceconstantsrelatedtoacrylicpolymers.

(a)ParametersofbondingenergetictermforSPASIBAforcefield

Bonds Startingparameters Refinedparameters

K(kcalmol−1) R0(Å) K(kcalmol−1) R0(Å)

CT HC 320.0b 1.110b 325.0 1.110 C OE 310.0f 1.360f 335.0 1.364 C O 615.0b 1.236b 760.0 1.236 CT OE 245.0f 1.470f 345.0 1.430 CT C 160.7b 1.506b 190.0 1.506 CT CT 165.0b 1.530b 165.0 1.530 CT C9 165.0c 1.530c 165.0 1.530 C9 HM 291.3c 1.110c 308.5 1.110 HE OEg 536.0b 0.950b 565.5 0.960

(b)ParametersforvalenceenergetictermforSPASIBAforcefield

Valenceangle Startingparameters Refinedparameters

H(kcalmol−1rad−2) 0(◦) F(kcalmol−1˚A2) H(kcalmol−1rad−2) 0(◦) F(kcalmol−1˚A2)

HM C9 HM 29.60c 107.70c 10.50c 30.00 108.50 10.07 OE CT HC 17.50e 109.00e 120.00e 20.55 109.50 57.70 HC CT HC 29.60d 108.50d 10.07d 29.00 108.70 10.07 C OE CT 30.00f 114.00f 30.00f 20.30 117.00 100.50 O C CT 14.00c 123.60c 35.00c 21.58 126.50 58.14 C CT C9 18.70b 111.80b 47.47b 18.70 111.80 47.47 O C OE 65.00f 125.00f 100.00f 59.70 126.00 120.50 CT C OE 40.00f 112.20f 100.00f 20.30 113.00 80.50 CT CT CT 18.70b 111.80b 47.47b 18.70 111.80 47.47 CT CT C9 18.70b 111.80b 47.47b 18.70 111.80 47.47 CT C9 CT 18.70b 111.80b 47.47b 18.70 111.80 47.47 CT C9 HM 15.10c 109.50c 69.40c 14.10 109.40 70.00 CT CT HC 15.89b 109.50b 69.43b 15.89 109.50 69.43 C9 CT HC 15.90a 109.50a 69.40a 14.90 109.40 69.90 CT CT C 20.14b 106.50b 47.47b 20.14 106.50 47.47 HC CT C 15.65b 109.50b 78.37b 15.65 109.50 78.37 C9 CT C9 18.70c 111.80c 47.50c 18.70 111.80 47.47 C CT HCh 16.00b 109.50b 77.00b 15.65 109.50 78.37 C OE HEi 28.45b 107.00b 41.00b 28.50 110.00 41.00

(c)DihedralangleenergetictermforSPASIBAforcefield

Torsions Startingparameters Refinedparameters

Vn/2(kcalmol−1) Phase() n(order) Vn/2(kcalmol−1) Phase() n(order)

X CT C9 X 0.160b 1b 0b 0.160 0 1 X CT C O 0.130f 0f 3f 0.550 0 3 X C OE X 3.330f 180f 2f 1.500 180 2 X CT OE X 0.010f 0f 3f 0.300 0 3 X CT CT X 0.150d 0d 3d 1.300 0 3 X C CT X 0.250d 180d 2d 0.550 0 3 CT OE C CT -1.175f 180f 2f 1.500 180 2 X OE C X 3.330f 180f 2f 1.500 180 2 CT CT C O 0.130f 0f 3f 0.067 180 3 C OE CT HC 0.270f 0f 3f 0.900 0 3

(d)OutofplanebendingtermforSPASIBAforcefield

Torsions Startedparameters Refinedparameters

Vn/2(kcalmol−1) Phase() n(order) Vn/2(kcalmol−1) Phase() n(order)

X X C O 12f 180f 2f 11 180 3 aRef.[19]. b Ref.[20]. c Ref.[21]. d Ref.[24]. eRef.[25]. f Ref.[27]. gForPAAandPMAA. h ForPMAA.

i ForPAA.

the PMMA chain. In the [3000–2800]cm−1 range the Raman transitionsare themostprominentand areidentified as(C H) stretchingvibrationsofCH2andCH3.Thepeakat1729cm−1 cor-responds to (C O) stretching vibration. The [1481–1453]cm−1

range is dominated by (C H) bending vibration, whereas [1288–813]cm−1rangecorrespondsto(C O)stretchingvibration. The(CH2)waggingandtwistingvibrationsat1406and1324cm−1, the (C C␣) stretching vibrations at 1124cm−1, the (CH3)

(4)

M.O.Bensaidetal./VibrationalSpectroscopy74(2014)20–32 23

ααCT

C9

C

O

OE

CT

CT

HM

HM

HC

HC

HC

HC

HC

HC

n (a)

CT

C9

C

O

OE

CT

HC

HM

HM

HC

HC

HC

n (b)

CT

C9

C

O

OE

HE

CT

HM

HM

HC

HC

HC

n (c)

CT

C9

C

O

OE

HE

HC

HM

HM

n (d)

Fig.1.MonomerunitsandSPASIBAatomtypesof(a)poly(methylmethacrylate) [PMMA],(b)poly(methylacrylate)[PMA],(c)poly(methacrylicacid)[PMAA],and (d)poly(acrylicacid)[PAA].

twistingmodeat1044cm−1,the(C C O)in–planebending vibra-tionsat600and559cm−1andthe(O C O)deformationvibrations at454cm−1areonlyobservedinFTRspectrum.OurFTIRandFTR spectraconfirmthepresenceofallfunctionalgroupsspecifictothe PMMApolymer.WenotethatmostbandsidentifiedinourFTIRand FTRspectraarealreadyreportedinreferences[31–36].

4.2. Optimizedgeometricalparameters

Smallmodelscanbeminimizedtoaglobalminimum. How-ever,multipleminimizationsfromdifferentstartingconformations shouldberuntoconfirmthataglobalminimumhasindeedbeen found.Largermodelslikeoursystemscanoftenbeminimizedto severaldifferentconformationsthatamoleculemightassumeat

3500 3000 2500 2000 1500 1000 500 20 30 40 50 60 70 80 90 100 86 0 TRANSMITTANCE (%)

Wavenu

mber (Cm

-1

)

48 2 11 49 1 73 0

PMMA FTIR Spectrum

2 85 0 29 50 30 00 59 0 75 0 84 1 98 9 10 60 1 19 4 12 42 13 64 1 45 0

Fig.2.TheobservedFTIRspectrumofPMMA.

0K.But,aglobalminimum maynever befoundfortheselarge models,becauseofthecomplexityofthepotentialenergysurface. Inourcase,unfortunately,thereisnoguaranteethattheminimum wehavefoundisnecessarilyaglobalminimum,butbycomparing ourresultswithotherexperimentalandtheoreticalones (espe-ciallythoseofVacatelloandFlory[43])wecansaythatwehave reachedagoodminimum.

Theoptimizedgeometricalparameters(bondlengths,valence anddihedralangles)ofourstudiedPMMApolymeraresummarized inTable2,usingSPASIBAatomtypesnotationsgiveninFig.1.Our PMMAbondlengths,valenceanglesanddihedralangles respec-tivelypresentaveragedeviationsof0.006 ˚A,0.3◦and1.4◦compared toliteraturevaluesgiveninTable2.

Theconformationalisomersgeneratedbyrotationaroundthe X–C9–CT–Xbonddeterminestheconformationalstructureofthe chain backbone (trans(t) and gauche(g)), whereas, the rotation aroundtheX–CT–C–Xbonddeterminestheorientationoftheester groupsrelativelytothechain.

500 1000 1500 2000 2500 3000 35000 1000 2000 3000 4000 5000 96 6 98 9 RAMAN SHIFT (cm-1) IN TE NSITY (A.U) PMMA FT-RAMAN spectrum 47 6 60 0 81 3 1 45 3 172 9 284 6 2 95 3 300 0

(5)

24 M.O.Bensaidetal./VibrationalSpectroscopy74(2014)20–32 Table2

MeanvaluegeometricalparametersofPMMAoptimizedbySPASIBAforcefieldalong withotherexperimentalandtheoreticalresults.BondsaregiveninÅandvalence anddihedralanglesindegrees.

Parameters Ourresults Otherworks CT HC 1.110 1.10a,g,1.08c C OE 1.354 1.31c,1.36b,e,f,g,1.37d C O 1.203 1.19c,1.21a,1.22b,e,f,g,1.27d CT OE 1.429 1.39d,1.46a,1.45b,e,f,g,1.42c CT C 1.540 1.32a,1.49d,1.52e,f,g CT CT 1.530 1.52c,1.53b,d,e,f,g CT C9 1.530 1.53b,d,e,f,g C9 HM 1.115 1.08c,1.10g HM C9 HM 106.25 107.5g,120c OE CT HC 110.21 – HC CT HC 108.93 108c,109c,107.5g C OE CT 118.32 110f,112.4a,114.0b,116c,117d O C CT 123.35 121.0b,e,122f,g,124.0c,125d C CT C9 108.79 109.5b,d,e,111f O C OE 123.88 124.0a,f,g,122c CT C OE 112.36 114.0b,e,f,g,113c CT CT CT 110.79 110b,c,109c,111g CT CT C9 114.75 122.0b,115.25d CT C9 CT 124.03 113.0e,124.0a,f,122.0b,d CT C9 HM 105.74 – CT CT HC 111.24 109.5g CT CT C 109.89 109c,110c C9 CT C9 111.69 106f,109c,109.5d,114.0a,110.0b,c,d,e X CT C9 X −25.12,13.12 −23,11g,−22,12g X CT C X −11.15,174.13 −8g,171g aRef.[37]. b Ref.[38]. c Ref.[39]. d Ref.[40]. eRef.[41]. f Ref.[42]. gRef.[43].

OurPMMA dihedralanglesvaluescorroborate wellwiththe resultsofVaccateloandFlory[43].Thus,wecanconcludethatour polymerisofttsequencewith(10/1)helixconformation.

From Table2, we can state that our optimized geometrical parametersofPMMApolymerareingoodagreementwith liter-atureresults, and canbetakeninto accountfor thevibrational analysisandassignments.

4.3. Normalmodeanalysis

Wehavecarriedoutthenormalmodevibrationsanalysisusing theSPASIBAforcefieldrefinedconstants.Table3summarizesthe PMMAinfraredandRamanfrequencies,theirrelativeintensities andthecalculatedvibrationalfrequenciesusingPEDanalysis.We notethatredundantmodesandPEDcontributionsbelow10%are omitted.TheR.M.Sdeviationsbetweenthepredictedandobserved wavenumbersfrominfraredandRamanfrequenciesare7.8 and 8.7cm−1,respectively.

Inthe3000–2800cm−1range

Thevibrationsinthisregionrefertothe(C H)stretchingmodes inPMMAstructure.The(C H)stretchingvibrationsofPMMAare attributableto three distinct constituent groups: the␣-methyl groupdirectlyattachedtomainchaincarbon,thesidechainester methylgroupandthebackbonemethylenegroup.Theliterature assignmentsofthesebroadenedandhighlyoverlappedbandslead tolackofdistinctnessbetween␣CH3,OCH3 andCH2groups.The sevenbands, generallyreported in infraredand Ramanspectra [46,47],aretypicallyaround3025,3000,2950,2930,2910,2890 and 2850cm−1. In our FTIR and FTR spectra we observed just threebands characteristic ofPMMA sample around3000,2950 and2846cm−1.Thisdifferencemaybeduetothestrong overlap-pingbandscharacter.ThePEDinthis regionrevealsthat(C H)

stretchingmodesaredominatedbyacombinedstretching char-acterbetweensymmetricandasymmetricin␣CH3,OCH3andCH2 groups.However,calculatedfrequenciesat3011and3000cm−1are puremodeswithaveryhighcontribution.Ourcalculationsresults inthisregioncorroboratewellwithRefs.[46–48].

At1730cm−1

Thestretchingcarbonylgroupshows averyintensemodein ourIRspectrumandamediummodeat1729cm−1inourRaman spectrumfrequency.ThePEDassignmentsshowthatthestretching (C O)isapuremodewithahighcontribution(100%).Thisresult isinagreementwithprevioustheoreticalandexperimentalworks [31–36,45,47,49,54].

Inthe1500–1300cm−1region

Theregionbelow1500cm−1isthefingerprintofbothinfrared and Ramanspectra.Thespectra inthis region arehighly over-lappedandmainlydominatedbythesymmetricandasymmetric vibrations(deformationsin-planebending,twisting,wagging, scis-soring)of theestermethyl,␣-methyland methylenegroups. A lowskeletal (C C)stretchingvibrationisalsopresent. OurPED calculationsshowamixedvibrationalmodescharacterbetween asymmetricalbending vibrationsof␣-methyl and estermethyl groups.

In1300–950cm−1region

DespitethespectraofPMMAinthisregionhavebeenanalyzed byseveralearlierstudies[31,52,56,59],thebandassignmentsare notwelladdressedasreportedinref[60].Inaddition,thisregion isverysensitivetothetemperature,pressure,configurationand conformationalchanges[50,61].However,theabsorptionbandsin thisregionareknowntobeassignedtotheasymmetric stretch-ingof(C C O)modecoupledtothe(C O)stretchingmodeinthe estergroup[31,50,59].Thisregionexhibitstwodoubletsbands cor-respondingtoasymmetricstretchingof(C O);onecalculatedat (1150,1189cm−1),observedat(1149,1194cm−1)FTIRandat(1145, 1182cm−1)FTR and the secondcalculated at (1244, 1262cm−1), observedat(1242,1273cm−1)FTIRandat(1240,1288cm−1)FTR.The splittingofthesevibrationfrequenciesisattributedtothe rota-tionalisomerismoftheestergroup[52].Manyauthors[31,34,52] presentthesedoubletsassensitiveconformationaldoublets. How-ever,(C C)stretchingvibrationsmodescalculatedat(1064cm−1), observed at (1060cm−1)FTIR and at (1064cm−1)FTR seem tobe insensitive to the conformation changes. This doublet is only presentinsyndiotacticPMMA[31,34].ThePEDcalculationsofthis regionrevealthatthemajorityofvibrationalnormalmodesare stronglymixedbetweenthemwithlowcontributionscomparedto othervibrationalregions.Thismaybethemaincauseofthenot wellassignmentsdefinitioninthisregion.

Inthe950–250cm−1region

Accordingtoourtheoreticalresults,the900–250cm−1 range cover mainly frequencies of complicated coupled vibrational modes, involvingthe deformation (rocking and in-plane bend-ing)ofCH3group,deformation(in-planebendingandout-of-plane bending)of(C O)and(C O)groupsandstretchingof(C C)and (C O)groups.

The860cm−1vibrationalmode,presentinourcalculated fre-quencies,seemstobealmostdominatedbythe841cm−1 band inourFTIRspectrum(seeFig.2).Thisindicatesthelackof crys-tallinityinoursyndiotacticPMMApolymersample[58].Vacatello andFlory[43]andSundararajan[62]reportedthatisotacticPMMA doesnotabsorbat860cm−1.ThePEDindicatesastrongmixingof theinternaldisplacementcoordinateswithverylowcontribution totheenergypotentialdistribution.

(6)

M.O. Bensaid et al. / Vibrational Spectroscopy 74 (2014) 20–32 25 Table3

PMMAObservedandcalculatedIRandRamanwavenumbers(incm−1),theirassignments(symmetric,asymmetric,rocking,twisting,wagging,scissoringandbending)andtheirpotentialenergydistribution,comparedtoother experimentalandtheoreticalworks.

Observedwavenumbers Calculated Wave-numbers

Assignments AssignmentsPED(%) OTHERWORKS

FTIR FTR FTIRSyn(Iso) FTRSyn(Iso) Theo. Assignments(Exp/Theo)

– – 3011 – (100%)␯asCTHC(OCH3) 3026f(3029)f(3030)i,j

(3025)i3025h,i

3026f(3027)f

3013d(3027)o 3031i

3011d3031f AsymstretchOCH

3d,f,h,i,j,o,sym stretchOCH3i 3000m 3000m 3000 C Hasym stretchingin OCH3 (99%)␯asCTHC(OCH3) 2995a,c,e,i(2995)c,i,r3000d 2998j,k(3000)i,j2998h,i (3002)i2996g,i(3004)i 3001e(3002)e,i (3006)o2998b 3002b3001p 3004i3031i 3002d,i Asymstretch OCH3a,b,c,d,e,g,h,i,j,o,p,r,asym stretch␣CH3a,h,i,j,p,symstretch ␣CH3i,symstretchCH2c,asym stretchCH2i,outofplaneOCH3i 2950vs 2953vs 2958 C Hasym stretchingin CH2 (85%)␯asC9HM+(13%) ␯asCTHC(OCH3) 2948a,c,e,i,r(2948)c,i 2952f,g,i,j(2954)f2953d (2953)i,j(2953)i2958i,k (2958)i2956i(2956)i2957h 2962s2960s 2953d,e (2953)e,f 2950f,i2957a,i (2953)o2954b,i 2957p2960i 3002i2955i 2951d2952f2957i2950i Symstretch OCH3a,b,c,e,f,g,h,i,j,p,r,asym stretch␣CH3c,f,h,i,j,o,s,sym stretch␣CH3a,c,e,h,i,p,sym stretchCH2c,i,asymstretch CH2a,b,d,e,h,i,j,p,inplaneOCH3i – – 2925 C Hsym stretchingin ␣CH3 (80%)␯sCTHC (␣CH3)+(18%)␯sC9HM 2920a,c,g,i(2920)c,e,i2929f (2914)f2915i2930i,j(2925) i,j(2930)i2934i(2928)i 2928i2915i2925k2933h 2932e(2932)e 2938f(2919)f 2920a2920b 2939i2928i 2931f2938i2920i AsymstretchCH 2f,symstretch CH2a,b,e,h,i,j,symstretch ␣CH3e,h,i,j,symstretch OCH3a,b,i,asymstretchOCH3g,i – – 2910 C Hsym

stretchingof OCH3

(73%)␯sCTHC (OCH3)+(26%)␯asC9HM

2915a,k(2910)i2910i2907h (2919)o2915i SymstretchOCH

3a,h,i,sym stretchCH2a,asymstretchCH2o – – 2889 C Hsym stretchingof ␣CH3 (57%)␯sCTHC (␣CH3)+(39%)␯sC9HM 2885h,i,j(2890)i,j2890i 2895k2892h2883s2882s 2893 f,i2890i 2880i 2892 f Symstretch␣CH 3f,h,i,j,s,stretch OCH3h,i,j,asymstretchCH2s 2850w 2846m 2858 C Hsym stretchingin CH2 (86%)␯sC9HM+(12%) ␯sCTHC(OCH3) 2835c,e(2835)c2850a,f,i (2840)f2840d2844g 2845i,j,k(2842)i,j(2860)i 2860i2855h,i(2845)i2842i 2847h2857h2848s 2845e,f,i (2845)e(2842)f 2849a2840d (2842)o2864b 2848p2857i 2847i 2851f2835d SymstretchCH 2f,o,s,stretching CH2h,i,defCH2i,symstretch OCH3a,b,c,d,e,g,h,i,j,p,asym stretchOCH3i,symstretch␣CH3

h,i,inplaneOCH 3i 1730vs 1729m 1730 C Ostretching (100%)␯CO 1730a,c,e,i1740f1731f (1736)f(1730)c,i1727d (1750)r1732g1733k1758s 1735e(1735)e 1731f(1738, 1725)f1736a,i 1730d(1738, 1725)o1724b 1736p 1732f1724d StretchC Oa,b,c,d,e,f,g,i,o,p,r,s,

OCH3rockingf,defCCOo

1485m 1481m 1488 Inplaneasym defof␣CH3 (53%)␦asHCCTHC (␣CH3)+(42%) ␴HMC9HM 1483a,c,d,e,g,h(1483)c 1487f(1486)f1483j(1483)j 1485r1492k 1488e(1488)e 1487d,f(1486)f 1490a(1486)o 1483i1480i 1478f1480d CH 2scia,f,␣CH3asym defc,d,e,h,i,j,o,r,CH 2bendo 1450ms 1453ms 1450 Inplaneasym defofOCH3 (75%)␦asHCCTHC (␣CH3)+(22%)␦asHCCTHC (OCH3) 1464f,s1465a,c,g,j (1465)c,j,l(1450)l1470k 1465e1450f,g,h,r(1453)f 1452a,c1452j(1452)j (1465)r1455k1460h (1445)c1447d 1461i1460i 1451f,i1456a 1452b1460i,p 1452i1453d,e (1455)e(1447)o 1464f1450f1446d ␣CH 3asymdefa,b,d,f,h,i,j,p,s, OCH3asym defa,c,e,f,g,h,i,j,l,p,r,s,CH 2 bendc,j,h,l,r,OCH 3rockingf,sym defOCH3c,o,rockingCH2e 1434ms – 1437 Inplanesymdef

ofOCH3 (65%)␦sHCCTHC(OCH3) 1445e1436f(1442)f 1438a,c,j,l,g,h,r1437d (1438)j1442k,s (1447)f(1432)o 1435i1438i 1438f1430d OCH

3symdefa,c,d,e,f,l,r,OCH3 bendg,i,j,h,OCH

3asymbendo, OCH3rockingo,bendCH2s – 1406w 1402 CH2twisting (61%)

␶␻HMC9HM+(16%) ␻HMC9CT+(16%) ␻HCCTHC

1398d1390j(1390)j1391k 1400a1388o 1388d CH

2twistorwaga,h,CH3defd, ␣CH3symbendj,o

(7)

26 M.O. Bensaid et al. / Vibrational Spectroscopy 74 (2014) 20–32 Table3(Continued)

Observedwavenumbers Calculated Wave-numbers

Assignments AssignmentsPED(%) OTHERWORKS

FTIR FTR FTIRSyn(Iso) FTRSyn(Iso) Theo. Assignments(Exp/Theo)

1387m 1383w 1382 Inplanesymdef

of␣CH3 (61%)␦sHCCTHC(␣CH3) 1388a,c,e,g,h,l,r(1388)c 1382f(1386)f1380s 1390e,i (1387)d,e1389f (1388)f 1392f1381d ␣CH 3sym,defa,c,e,f,h,i,l,r,s,CH2 defd,OCH 3bendg 1364vw 1366w 1363 CH2wagging (50%)␻HMC9CT+(20%) ␯CTC9 1370c,e,h,k1376a(1370)c 1367d1370j(1370)j1368g 1374s1371s 1370e(1370)e 1364d ␣CH

3sym,defa,c,s,twistorwag CH2e,j,CH2wagd,s – 1324w 1323 CH2wagging (43%)␻HMC9CT+(31%) ␯C9CT+(13%) ␯CTCT+(10%)␦Sctcthc 1340f(1338)f 1325e1326f (1335)f1327d (1335)o 1335f1320d CH 2wagf,o,CH2twistd,CC stretchingo,␣CH 3symbendo – – 1310 CH2wagging (33%)␻HMC9CT+(24%) ␯CTC+(17%)␯C9CT 1316f1303s 1310f CCstretchf,CH 2wagf,CH2twists 1273vw 1288w 1262 Asymstretching of(C O) (50%)␯asCOE+(29%) ␯asOECT+(12%)␯CTC 1295e(1295)c1278f(1268)i 1270a,c,g,l,r(1260)c,r 1267d1268n(1260)l1276k 1273m(1265)m 1272e(1281)e (1270)f1276a (1270)o1336b 1264p

1271f1261d CCstretchf,o,asymstretch

CCOa,b,c,l,n,p,r,stretch COa,b,c,d,n,p,r,asymstretch COCe,l,CH 2twisto,CCbendo, CCCdefo,␣CH 3symdefl,r 1242m 1240w 1244 Asymstretching of(C O) (58%)␯asCOE+(22%) ␯asOECT 1252e1242f,g,m1240a,c,l (1252)c,l,r1239d,m1238n 1240r(1239)l1248k1251s 1238e1241f (1231)f1234a 1240d(1231)o 1238b 1241f1238d COstretchb,c,d,f,l,n,o,r,s,CC

stretchf,r,asymstretch

CCOa,b,c,l,n,r,asymstretchCOCe,

CH2twisto,COinplanebendo, bandassociatedwithvibrations ofestergroupsofPMMAg

1194m 1182w 1189 Asymstretching of(C O C) (55%)␯asOECT+(17%) ␯asCOE+(15%)␦OECTHC 1190a,c,e,r1193f,m1197d,s (1198)f(1190)c,r1192n (1191)l1191l1194g1200k (1195)m 1188a,e(1190)e 1183f1187d (1190)o 1191f1190d OCH

3rockf,s,o,OCH3,asym bendf,CH

2twistf,o,skeletal stretchingcoupledwithinternal CHdefvibrationc,n,r,asym

stretchCOCa,e,l,CH

3wagd,CH2 wago,bandassociatedwith

vibrationsofestergroupsof PMMAg 1149ms 1145w 1150 Asymstretching of(C O C) (44%)␯asOECT+(22%) ␯asCOE+(15%)␦OECTHC 1150a,c,e,g,r1149f,l,m (1150)c,r1147d1148n (1147)l,m1155k 1160d,e(1152)e 1158f1161a (1157)o(1150)o

1156f1155d1138d CCstretchf,l,o,skeletalstretching

coupledwithinternalC Hdef vibrationc,n,r,asymstretch

COCa,e,l,o,CH 3wag(CH3 twist)d,CH 2wago,␣-CH3rocko, CH2twisto – 1124w 1110 Stretchingof (C C) (29%)␯CTCT+(16%) ␯CTC9+(14%) ␦OECTHC+(10%) ␦CTCTHC 1122e,f,s(1115)f1125n (1104)l1161l1099s 1123e(1120)e 1126f(1123)f 1125a1127d (1123)o(1113)o 1118f1121d OCH

3rockf,o,OCH3asym bendf,o,backbonestretch

CCa,e,l,n,s,CH 3wagd 1060w 1064w 1064 C CStretching (46%)␯CTCT+(25%) ␯CTC9+(15%)␦OECTHC 1065f1063a,c,g1060n1068k 1057s 1063e(1050)e 1064f(996)f 1067d1062b 1081p 1068f1064d OCstretchf,OCH 3rockf,s,band arisesfromintramolecular interactionc,n,backbonestretch

CCa,b,e,g,p,CH 3twistd – 1044vw 1046 CH3twisting andC C stretching (33%)␶␻HCCTC9+(31%) ␯CTC9+(13%)␶␻CTCTHC 1050d 1046d 1042d CH 3twistd

– – 1023 OCH3rocking (45%)␳OECTHC+(31%) ␯COE+(15%)␦HCCTHC

1026f(998)f1038s 1027d 1022d OCstretchf,OCH3rockf,CC stretchd,CH2rocks 989m 989m 980 C Ostretching andInplane bendingof OCH3 (25%)␯aCOE+(21%) ␯CTCT+(20%) ␦OECTHC+(11%) ␯CTC9+(10%) ␯aOECT+(10%)␯CTC 989t996e992f(996)c990d,g 988a,c,r996k(996)r(995)t (995)e990d (996)o988e 987f(996)f991a 988b999p 991f981d985f ␣CH

3rockf,OC,stretchf,o,asym stretchCOCc,g,rockOCH

3a,b,

(8)

M.O. Bensaid et al. / Vibrational Spectroscopy 74 (2014) 20–32 27 966w 965m 957 OCH3rocking (32%)␳CTCTHC (␣CH3)+(22%) ␳HMC9CT+(17%) ␯CTC+(15%) ␯CTCT+(10%)␯COE 951e,f(951)c,f 967a,c,d,f,g,r,t(950)r972k 968s946s(953)t 967e,f(953)e,f (960)f970a,d (960)o(953)o 935f980f968d ␣CH 3rocka,c,e,f,g,o,r,s,CH2 rockf,o,CCstretchd,f,o 912vw – 913 CH3rockingand CH2rocking (33%)␳CTCTHC (␣CH3)+(27%) ␳HMC9CT 913d,f910a,c,t915g916k 912e915f920d 914b925p 915 f905d CH 2rockb,f,p,CH3rockd 860vw – 860 CH3rockingand CH2rocking (36%)␳CTCTHC+(30%) ␳HMC9CT+(14%) ␯C9CT+(12%)␯CTCT 863f860t 877e876f878b 880d 881f868d CCstretchf,CH 2Rockb,f,t,CO stretchfCH 3rockd 841w 837w 839 CH2rocking (30%)␳HMC9CT+(26%) ␳CTCTHC+(16%) ␯COE+(13%) ␯C9CT+(11%)␯CTCT 842a,c,e,g(842)c840d830k (843)f845k844s841t 842e(841)e 833a840d (844)f,o 828d CCstretchf,o,s,CH 2 rocka,b,d,e,g,f,o,t,COstretchf,o 808vw 813s 796 C Osym stretching (24%)␯sOECT+(21%) ␯sCOE+(19%) ␯CTCT+(10%)␳HMC9CT 810e,f,g(808)f807a,c,d,q (810)c786q827g812k 815e(809)e,f 812f796a810d (809)o818a 812b786q

800f805d803q796q COstretchf,CCstretchf,o,q,sym

stretchCOCa,b,e,g,o,C Oin planebendf 750m – 767 C Ooutof planebending (64%)␥CO+(16%) ␯COE+(15%)␦OCOE 759e747f(764)f749a,r,t (759)c,r,t752g 767e(774)e 736a733d (782)o(764)o 732b853p

755f725d761q C Ooutofplanebendd,f,o,rock

CH2c,stretchCCskeletal modea,b,c,g,p,r,COinplane bendd,Cbendo,r – – 742 C Ooutof planebending (42%)␥CO+(13%) ␯COE+(13%) ␦OCOE+(10%) ␯CTCT+(10%) ␯C9CT+(10%)␯CTC 749c750d,s749q753k (742)e732q 739d761q RockCH 2c,s,stretchCCc,e,q,C O outofplanebendd

– 600m 607 In-plane bending (C C O) (44%)␦CTCO+(30%) ␯CTCT 643f598a,f(609)f 601e602f(597, 562)f604a600d 600b(597)o 602p

660f595d CCOOstretcha,b,f,o,p,COinplane

bendd,f,o,symbendCCOa,e,b,p

590w 559w 570 Inplanebending of(C C O) (32%)␦CTCO+(26%) ␦C9CTCT+(24%) ␯CTCT+(15%)␯CTC 560e(559)f,i552a(560)c 554c552q(568)i 555e(561)e 537a560d (562)o558b 552q

550d591q DefCCCa,b,e,i,CCinplanebendd,

CCstretchi,o,q,COinplane bendo,wagof␣CH 3i – 526vw 501 Inplanebending of(C C O) (35%)␦COECT+(30%) ␯CTCT

508f505a510c,k 509n504a513d 502d CCOdefn,CCbendd,n,inplane

asymdefCCOorC Oinplane defa 482vw 485vw 482 Inplanebending ofC C O) (27%)␦COECT+(25%) ␦CTC9CT+(17%) ␦CTCOE+(13%)␦CTCTCT 486f(480)f,i484a,c,e,g485k 484e,f(480)e (481)f487a,d (481)o

484f478d CCOdefc,f,o,CCbendd,f,i,o,Out

ofplanedefCCOa,e,g,CCCdefo,i

– 454vw 459 Inplanebending of(O C O) (25%)␦CTCO+(23%) ␥COE+(20%) ␦CTCOE+(10%) ␦C9CTCT+(10%)␦CTCTC

(9)

28 M.O. Bensaid et al. / Vibrational Spectroscopy 74 (2014) 20–32 Table3(Continued)

Observedwavenumbers Calculated Wave-numbers

Assignments AssignmentsPED(%) OTHERWORKS

FTIR FTR FTIRSyn(Iso) FTRSyn(Iso) Theo. Assignments(Exp/Theo)

– 391vw 390 Inplanebending of(C O C) (40%)␦COECT+(16%) ␦CTCTCT+(14%) ␦CCTCT+(13%)␦CTC9CT 400a(391)i420k 391f400a (390)o 392

f DefCOCaCbendo,CCCdefo,wag

of␣CH3i – 365w 365 Inplanebending of(C O C) (35%)␦COECT+(32%) ␦CTC9CT+(17%) ␦CTCTCT+(14%)␦CTCTC 364f(365)f360a 366e(373)e 363f(372)f370a 367d(372)o (341)o

360f361d CCCdeff,o,COCdeff,o,inplane

symbendCCOa,e,o,COoutof

planebendd – – 327 Inplanebending of(C C C) (33%)␦C9CTCT+(32%) ␦COECT 320a320q 304a(314)o 296q 370q DefCCCa,o,q,Cbendo – 299w 283 Inplanebending of(C C C) (25%)␦C9CTC+(20%) ␦COECT+(15%)␦CTCTC9

301f,e300d 295f291d COoutofplanebendd

– 252vw 260 Inplanebending of(C C C)

(25%)␦C9CTC+(20%) ␦COECT+(16%) ␶OECT+(15%)␦CTCTC9

319f276f(314)f295a 275f(314)f267d 284f250d COinplanebendf,CCCdeff,CC

bendd,f

– – 203 Torsionof (C O)

(55%)␶OECT 216q225q(188)i 200d(221)o

216q

192d201q182q CCoutofplanebendd,q,CO

torsiono,CCCbendo,q,defOCH

3i – – 189 Torsionof

(C O)

(40%)␶COE+(28%) ␶OECT+(15%)␦C9CTC

163d 169d CCoutofplanebendd

– – 146 Torsionof(C C) (60%)␶CTC9 153f140d 170f144d CCtorsiond – – 116 Torsionof (C O) (72%)␶COE+(22%)␶CTC (113)i(109)i COtorsioni – – 87 Torsionof (C O)

(78%)␶COE+(20%)␶CTC 95q (85)o 73q CCstretcho,Cbendo,CCCdefo

OutofplanebendofCCCq,CO

torsioni

– – 62 Torsionof (C O)

(81%)␶COE 58q Hinderedrotationortranslationq

Note1:␣CH3isthemethylgroupandOCH3istheestermethylgroup.

Note2:vs:verystrong;s:strong;ms:mediumstrong;m:medium;w:weak;vw:veryweak;

␯:stretching;␦:inplanebending;␥:outofplanebending;␶:torsion;␳,rocking;␯s:,symmetricstretching;

␯as:asymmetricstretching;␦s:symmetricdeformation;␦as:asymmetricdeformation;␶␻:twisting;␻:wagging␴:scissoring.

aRef.[31]. b Ref.[33]. c Ref.[34]. d Ref.[35]. eRef.[36]. f Ref.[44]. gRef.[45]. h Ref.[46]. i Ref.[47]. j Ref.[48]. kRef.[49]. l Ref.[50]. m Ref.[51]. n Ref.[52]. oRef.[53]. p Ref.[54]. q Ref.[55]. rRef.[56]. s Ref.[57]. tRef.[58].

(10)

M.O.Bensaidetal./VibrationalSpectroscopy74(2014)20–32 29 Below250cm−1

Fewbandsareobservedandcalculatedbelow250cm−1.The C OandC Ctorsionalvibrationswereexpected.ThePEDindicates largecoupledcontributionsbetweenthesetorsionalvibrations.

4.4. TheaccuracyandtransferabilityoftheSPASIBAparameters Theaccuracyofamolecularmechanicsforcefieldisrelatedto itsforceparameterstransferabilityfromonemoleculetoanother. Good parameters should generally be able to reproduce vari-ousphysicalpropertiesofdifferentmolecularsystemswithsame chemicalstructures.

Theaimofthissubsectionistocheckthetransferabilityof SPA-SIBAforceconstants(developedfor PMMA)toPMA,PMAAand PAApolymers.Tothisend,wehaveanalyzedthenormalmodesof thesepolymersbymeansofthesamePMMAcalculationsmethod andsamenumberofmonomerunits.MostofthePMMAforcefield refinedparametersareusedtoestablishthevibrational wavenum-bersoftheothersstudiedpolymers,withadditionalforceconstant namely(HE OE)bondingenergetictermspresentonthePMAA andPAAstructures,(C CT HC)forPMAAand(C OE HE)forPAA valenceangleenergeticterms(seeTable1(a)and(b)).

OptimizedgeometricalparametersofourPMA,PMAAandPAA polymersaresummarizedinTable4(a)–(c).Thebondlengthsand valence anglesaveragedeviations relativelytoliterature values giveninTable4(a)–(c)are(0.037 ˚A,2.2◦)PMA,(0.020 ˚A,5.4◦)PMAA and(0.037 ˚A,3.1◦)PAA.

Thediscrepanciesobservedinanglesvaluesbetweenourresults andliteraturevaluesaremainlyduetothedifferencebetweenthe modelsusedforcomparison(copolymersagainstour homopoly-mersof100monomers).Wenotehere,thatourPMA,PMAAand PAApolymersexhibiteachthesame10/1helixconformationwith ttsequencededucedaboveforourPMMApolymer.

InTable5wesummarizethecalculatedvibrational wavenum-bersandtheirPEDattributionsofPMA,PMAAandPAAalongwith ourPMMAandpreviousexperimentalresults.

AsitcanbenoticedfromTable5,allstudiedacrylicpolymers present almost same symmetrical and asymmetrical stretching vibrational normal modes of CH3 and CH2 groups in the mid-infraredregionwithhighPEDcontribution.Theseresultsagreewell withexperimentalvibrationalbandsintheFTIRorFTRspectrum oftheacrylicpolymersreportedintheliteratureforPMA[57,66], PMAA[57,67,68]andPAA[68–70].

Thecalculated(C O)stretchingfrequenciesat1730cm−1(for PMMA,PMAandPAA)andat1732cm−1 forPMAAwerealready reported in previous experimental results in 1700–1750cm−1 region[66–71].Wenotealsothatthesymmetricaland asymmetri-calofCH3andCH2deformationvibrationsinthe[1500–1430]cm−1 regionwereobservedbymanyauthorsforsomeAcrylicpolymers [57,66–70].

Below1430cm−1,andatthesamewavenumber,thePED cal-culationsgivedifferentassignmentsforthestudiedpolymers.As it can beobserved from Table 5, PAA and PMAA exhibit same (C O) stretchingcoupledwith(O H)in-plane bending attribu-tions,whereas,PMMAandPMApresentasymmetricaldeformation ofestermethylgroup.Thesedissimilaritiesinmodeattributions areduetothesensitivityoftheSPASIBAforcefieldtotheatomic positionsinthechemicalstructureandwerealreadyreportedin manypreviousexperimentalresults[48,66,67,70].ThePED calcu-lationsshowthepresenceofthehydroxylstretchingvibrationof (O H)grouparound3447cm−1and3441cm−1forPMAAandPAA, respectively.These (O H)stretching vibrationsarepuremodes withhighcontributionstothepotentialenergydistribution.From vibrational wavenumbers and their assignments of thestudied

Table4

MeanvaluegeometricalparametersofPMA,PMAAandPAAoptimizedbySPASIBA forcefieldalongwithotherexperimentalandtheoreticalresults.Bondsaregivenin Åandvalenceanddihedralanglesindegrees.

(a)OptimizedgeometricalparametersofPMA

Parameters Ourresults Otherworks[63]

CT HC 1.110 1.069,1.070,1.076,1.080 C OE 1.352 1.352,1.350 C O 1.203 1.206,1.207 CT OE 1.430 1.452 CT C 1.530 1.473,1.474 CT C9 1.560 1.316 C9 HM 1.107 1.072,1.073 HC CT HC 108.81 109.0,110 OE CT HC 109.49 105,110 CT C OE 113.13 111,113 O C CT 123.61 125,126 C9 CT HC 110.93 124 C CT C9 112.78 120,123 CT C9 HM 108.69 121,122 HM C9 HM 105.51 117 O C OE 124.02 122,123 HC CT C 111.66 114,116 C9 CT C9 111.80 – CT C9 CT 119.01 – X CT C9 X −26.44,17.13 – X CT C X −7.01,179.03 –

(b)OptimizedgeometricalparametersofPMAA

Parameters Ourresults Otherworks

CT HC 1.102 – CT CT 1.542 – C O 1.200 1.234a,1.230b C OE 1.352 1.368b CT C 1.542 – CT C9 1.573 – C9 HM 1.101 – HE OE 0.960 0.971a,0.967b CT C9 HM 102.35 – C CT C9 111.14 – O C CT 128.26 – C OE HE 105.06 109.97a HM C9 HM 106.05 – HC CT HC 107.65 – O C OE 119.10 113.22b CT CT C9 110.77 – CT C9 CT 127.45 – CT CT HC 111.12 – CT CT C 111.44 – C9 CT C9 102.41 – X CT C9 X −20.84,22.71 – X CT C X −11.78,178.32 –

(c)OptimizedgeometricalparametersofPAA

Parameters Ourresults Otherworks[63]

CT HC 1.110 1.069,1.070,1.072 C OE 1.360 1.356,1.357,1.358,1.359 C O 1.199 1.199,1.204,1.205 CT C 1.540 1.470,1.471,1.485,1.487 CT C9 1.567 1.306,1.315,1.316 C9 HM 1.109 1.072 HE OE 0.965 0.961,0.963,0.968 CT C9 HM 109.91 120,121,122,124 HM C9 HM 104.78 117,118 C9 CT HC 105.62 121,122,123,124 C CT C9 114.02 120,123,126 O C CT 127.30 122,124,125,127 C OE CT 113.87 111,113,116,118 C OE HE 108.68 112,115,117 O C OE 118.95 120,122 CT C9 CT 119.77 – HC CT C 101.10 114,116,118 C9 CT C9 113.36 – X CT C9 X −26.18,16.82 – X CT C X 6.56,174.39 – aRef.[64]. bRef.[65].

(11)

30 M.O. Bensaid et al. / Vibrational Spectroscopy 74 (2014) 20–32 Table5

CalculatedwavenumbersandPEDofPMA,PMAAandPAAobtainedusingtheoptimizedforceconstantsfromtheempiricalSPASIBAforcefield(PMMAwavenumbersvaluesandattributionsarereproducedhereformoreclarity).

Calculatedwavenumbers(cm−1 ) PED%assignments Otherworks

PMMA PMA PMAA PAA PMMA PMA PMAA PAA PMA PMAA PAA

FTIR/FTR Assignments FTIR/FTR Assignments FTIR/FTR Assignments

– – 3447 3441 – – (98%)␯OEHE (98%)␯OEHE (3572–3540)a,g O Hstretcha,g 3100–3200i OHstretchi

3000 3075 3006 3076 (99%)␯asCTHC(OCH3) (97%)␯asCTHC (83%)␯asCTHC (100%)␯asCTHC 2998b CH3 asymstretchb 3001g CH2 stretchg 2958 2964 2962 2967 (85%)␯asC9HM+(13%)

␯asCTHC(OCH3)

(63%)␯asC9HM (63%)␯asC9HM (63%)␯asC9HM 2970b StretchCHb (2960–2971)a,g CH3 asym

stretcha,g – 2943 2941 2942 – (41%)␯sCTHC+ (27%)␯asC9HM (40%) ␯sCTHC+(27%) ␯asC9HM (43%) ␯asC9HM+(24%) ␯Scthc

2959b SymstretchCH3b 2939g CH3 symstretchg

2925 2930 2930 2929 (80%)

␯sCTHC(␣CH3)+(18%) ␯sC9HM

(68%)␯asC9HM (61%)␯asC9HM (67%)␯asC9HM 2924b CH2 asymstretchb 2928a CH2 asymstretcha (2877–2930)i,f CH2 orCHstretchf CH2 asymstretchi 2889 2885 2883 2882 (57%)␯sCTHC (␣CH3)+(39%)␯sC9HM (52%) ␯sC9HM+(43%) ␯sCTHC (53%) ␯sCTHC+(45%) ␯sC9HM (55%) ␯sC9HM+(41%) ␯sCTHC

2883a CH2 asymstretcha 2882a CH3 symstretcha

2858 2845 2842 2845 (86%)␯sC9HM+(12%) ␯sCTHC(OCH3)

(85%)␯sC9HM (83%)␯sC9HM (85%)␯sC9HM 2847b2848a CH2 symstretcha,b 2839a CH2 symstretcha 2860i CH2 stretchsymi

1730 1731 1734 1731 (100%)␯CO (99%)␯CO (99%)␯CO (95%)␯CO 1733b1758a vC Oa,b (1673–1767)a,c,d,g,h C Ostretcha,g,d,h COOc (1686–1742)d,e,f,i C Ostretchd,e,f,i 1488 1485 1483 1485 (53%)␦asHCCTHC (␣CH3)+(42%) ␴HMC9HM (38%) ␦asHCCTHC+(24%) ␦asOECTHC+(18%) ␯OECT (60%) ␦asHCCTHC+(26%) ␯OEHE (54%) ␦asHCCTHC+(25%) ␯OEHE 1487c1483d OHc,CH3 defd 1450 1450 1450 1453 (75%)␦asHCCTHC (␣CH3)+(22%) ␦asHCCTHC(OCH3) (71%) ␦asHCCTHC+(10%) ␦HMC9HM (49%) ␦HMC9HM+(16%) ␦asHCCTHC (62%) ␦HMC9HM+(13%) ␦CTCTHC 1452b1442a CH3 asymdefb CH2 benda (1448–1455)c,d,g 1455a CH3 asym,defg, CH2c,CH2 defa,d (1451–1460)d,e,f,i CH2,defe,iCH2 defd,f 1437 1434 1432 1434 (65%)␦sHCCTHC(OCH3) (64%) ␦asHCCTHC+(19%) ␦HMC9HM (64%) ␦asHCCTHC+(35%) COEHE (72%) ␦asHCCTHC+(31%) COEHE 1434b CH3 symdefb,CH2 defb 1432h O–H/acidcarboxyl stretchh – 1416 1424 1419 – (55%)␦asHCCTHC (52%)␯COE+(23%) ␦COEHE+(10%) ␯C9CT (44%)␯COE+(33%) ␦COEHE+(10%) ␯CTC 1415c1413c COOc (1413–1415)d,f,i COstretchd,f,OH defd,f,CH2 bendi 1402 1403 1401 1397 (61%) ␶␻HMC9HM+(16%) ␻HMC9CT+(16%) ␻HCCTHC (31%) ␶␻HMC9HM+(23%) ␦sHCCTHC+(14%) ␻CTC9HM+(13%) ␻HCCTCT (45%)␯COE+(39%) ␦COEHE (43%)␯COE+(38%) ␦COEHE 1389c1390d COOc,COstretchd, OHdefd

1402d1400i COOsymstretchd,

i,OHinplanebendi 1363 1369 1371 1379 (50%)␻HMC9CT+(20%) ␯CTC9 (43%) ␻HMC9CT+(21%) ␦HCCTC9 (30%)␦sHCCTCT+ (12%)␯COE+(12%) ␯C9CT (29%) ␦sHCCTCT+(23%) ␦HCCTC9 (1374–1180)a,b CH3 wagb,CH2 waga (1371–1381)a,d,g CH3 symdefa,g 1323 1346 1331 1333 (43%)␻HMC9CT+(31%) ␯C9CT+(13%) ␯CTCT+(10%)␦sCTCTHC (34%) ␦sHCCTHC+(23%) ␦HCCTC9+(15%) ␦HMC9HM (30%) ␻HMC9CT+(12%) ␦CTCTC (41%) ␻CTC9HM+(16%) ␦HCCTC+(14%) ␦C9CTHC

1330b CHdefb 1354g1324c C–O–HbendgCH2c 1320–1345d,e,f CH2wagd,CHdefd, CH2 twiste,f 1310 1302 1280 1295 (33%)␻HMC9CT+(24%) ␯CCT+(17%)␯C9CT (38%) ␻CTC9HM+(17%) ␯CTC+(14%) ␯COE+(10%) ␦HCCTC (29%) ␻CTC9HM+(24%) ␯CTC9+(15%) ␯CTCT+(14%)␯CTC (49%) ␻HMC9CT+(12%) ␯CTC 1302a1175–1302a CH2 twista (1280–1304)a CH2 waga 1262 1267 1258 1276 (50%)␯asCOE+(29%) ␯asOECT+(12%)␯CTC (55%) ␯asCOE+(21%) ␯asOECT+(12%) ␯CTC+(10%) ␦CTC9HM (48%) ␦COEHE+(24%) ␯COE (56%) ␦COEHE+(30%) ␯COE 1260b CCOOstretchb, skeletalstretchb 1262a,d COstretcha,OH defd 1244 1256 1243 1255 (58%)␯asCOE+(22%) ␯asOECT (45%) ␯asCOE+(16%) ␯CTC+(14%)␯OECT (53%) ␦COEHE+(18%) ␯COE (53%) ␦COEHE+(26%) ␯COE

1251a C Ostretcha 1197–1245a CH2 twista 1247d1248f COstretchd,OH defd,C Ostretch coupledwithO H in-planebendf 1189 1167 1179 1174 (55%)␯asOECT+(17%) ␯asCOE+(15%)␦OECTHC (34%)␯OECT+(16%) ␯C9CT+(13%) ␯COE+(10%) ␦COEHC (69%) ␦COEHE+(25%) ␯COE (28%) ␦COEHE+(22%) ␯CTC9+(20%)␯COE (1161–1175)a,b CCOOstretchb, skeletalstretcha,b, CH2 twista (1171–1176)a,c,d COOHc,dC C stretcha 1170d COOHd

(12)

M.O. Bensaid et al. / Vibrational Spectroscopy 74 (2014) 20–32 31 1150 1131 1122 1131 (44%)␯asOECT+(22%) ␯asCOE+(15%)␦OECTHC (47%)␯OECT+(19%) ␯CTC9+(13%) ␦CTCTHC (58%)␯COE+(27%) ␦COEHE (32%)␯COE+(29%) ␦COEHE+(14%) ␦HCCTC9

1120b C Cstretchb (1066–1122)a,g C–Ostretchg␣CH3

stretcha 1130i CHbendi 1046 1051 1052 – (33%)␶␻HCCTC9+(31%) ␯CTC9+(13%)␶␻CTCTHC (41%) ␳HMC9HM+(27%) ␯CTC+(15%)␯CTC9 (43%) ␳HMC9HM+(14%) ␯CTC9+(12%)␦CCT – 1050b(721–1038)a,b C CstretchbCH2 rocka 1010–1057a CH3 rocka 1026f CH2 rockf 957 956 949 940 (32%)␳CTCTHC (␣CH3)+(22%) ␳HMC9CT+(17%) ␯CTC+(15%) ␯CTCT+(10%)␯COE (37%) ␳HCCTHC+(20%) ␳HMC9CT+(10%) ␯CTC (43%)␥OE HE++(22%) ␦HCCTC9 (39%)␥OE HE+(22%)␦HCCTC9 956b CH3 rockb (933–950)a,c,g CH2 wagg,␣CH3c, OHoutofplane benda 945i OHbendi 839 848 855 842 (30%)␳HMC9CT+(26%) ␳CTCTHC+(16%) ␯COE+(13%) ␯C9CT+(11%)␯CTCT (46%)␯CTC+(18%) ␳CTC9HM (49%)␯CTCT+(29%) ␦CTC9HM+(18%) ␦HCCTC9 (22%)␯CTC+(14%) ␦CTC9HM

844a C COOstretcha 857c CCH3c (830–846)e,f,i C COOH stretche,f,CH bendi 796 824 799 812 (24%)␯sOECT+(21%) ␯sCOE+(19%) ␯CTCT+(10%)␳HMC9CT (32%) ␳CTCTHC+(24%) ␳CTC9HM+(15%) ␯C9CT (47%)␯CTC+(15%) ␶␻HMC9CT (35%)␯CTC+(28%) ␶␻CTC9HM 825b CH3 rockb 800a,c C COOHa,c,CC stretchc (800–804)e,f,i C COOstretche,i, CH2 twistandCH bendi 742 744 730 745 (42%)␥CO+(13%) ␯COE+(13%) ␦OCOE+(10%) ␯CTCT+(10%) ␯C9CT+(10%)␯CTC (44%) ␳CTC9HM+(32%) ␥CO+(11%) ␯COE+(11%) ␦OCOE (50%) ␦CTC9CT+(12%) ␦OCOE (55%) ␦CTC9CT+(23%) ␦OCOE

721a755b CH2 rocka,b 721c CCCskeletaldefc (COH) 745i CHbendi – 631 636 630 – (44%)␥CO+(30%) ␦CTCO+(10%) ␯CTCT (28%) ␦CTC9CT+(22%) ␦OCOE (36%) ␦OCOE+(26%) ␦CTC9CT+(20%) ␦CTCO 625b CH3OCO out-of-planebendb (631–642)c,g C–HvinylwaggCCC skeletaldefc(COH)

607 608 593 584 (44%)␦COECT+(30%) ␯CTCT (51%)␥CO+(25%) ␦CTCO+(10%) ␯CTCT (55%)␥CO+(33%) ␦CTCO+(10%) ␯CTCT (53%)␥CO+(29%) ␦CTCO+(11%) ␯CTCT 584a C Ooutofplane benda 595c584a CCCskeletaldefc C Ooutofplane benda 501 511 511 512 (35%)␦COECT+(30%) ␯CTCT (23%) ␦COECT+(15%) ␦OCOE+(13%) ␦C9CTCT+(12%) ␯CTCT (37%)␦CTCO+(15%) ␻CTCOE+(13%) ␦CTCTC (17%) ␦CTCOE+(13%) ␦CCTCT+(12%) ␯CTCT

565b CCOin-planebendb 512–533c CCCskeletaldefc

365 367 362 365 (35%)␦COECT+(32%) ␦CTC9CT+(17%) ␦CTCTCT+(14%)␦CTCTC (47%) ␦COECT+(29%) ␦CCTCT+(10%) ␯CTC (46%) ␦COECT+(23%) ␦CTCTC9 (49%) ␦CTCOE+(12%) ␦C9CTC9+(12%) ␯C9CT

470–480b COCin-planebendb 358h C–C–Cbend/twisth

– – 341 348 – – (55%)␶COE+(32%) ␦C9CTCT+(11%) ␦CTCOE (54%)␶COE+(14%) ␦C9CTC+(11%) ␦CTCO+(10%) ␦C9CTCT 345b COCout-of-plane torsionb 343c CCCskeletaldefc

Note1:␣CH3isthemethylgroupandOCH3istheestermethylgroup.

Note2:␯:stretching;␦:inplanebending;␥:outofplanebending;␶:torsion;␳,rocking;␯s:,symmetricstretching.

␯as:asymmetricstretching;␦s:symmetricdeformation;␦as:asymmetricdeformation;␶␻:twisting;␻:wagging␴:scissoring.

aRef.[57]. b Ref.[66]. c Ref.[67]. d Ref.[68]. eRef.[69]. f Ref.[70]. gRef.[71]. h Ref.[72]. i Ref.[73].

(13)

32 M.O.Bensaidetal./VibrationalSpectroscopy74(2014)20–32 polymerswecanstatethattheprincipleoftransferabilityproposed

byShimanouchi[18,74]isconfirmed.

5. Conclusion

In thepresent study, we carried out a complete vibrational assignmentsandanalysisofacrylicpolymersusingSPASIBAforce field.Theresultsofnormalcoordinateanalysishavebeendiscussed andcomparedtoprevioustheoreticalandexperimentalworks.We wereabletoreproduceallfundamentalvibrationalmodesandtheir assignmentsobserved inFTIRand FTRspectra.Theprinciple of transferabilityestablishedbyShimanouchihasbeenalsovalidated. Consequently,theparametersoftheSPASIBAforcefieldobtained fromourstudymightbeusefulforfurthervibrationalnormalmode calculationsofmoleculescontainingthesamechemicalsubgroups asouracrylicpolymers.

References

[1]R.Sinha,OutlinesofPolymerTechnology,Prentice-HallbyIndiaPrivateLtd., NewDelhi,2002.

[2]A.Soldera,N.Metatla,Compos.A:Appl.Sci.Manuf.36(2005)521.

[3]F.LaMantia(Ed.),HandbookofPlasticsRecycling,1sted.,RapraTechnology Ltd.,Shropshie,2002.

[4]J.A.Brydson,PlasticsMaterials,6thed.,Butterworth-Heinemann,Oxford,1995, pp.411.

[5]S.Saha,S.Pal,J.Biomech.17(7)(1984)467–478.

[6]B.Kaczmarczyk,B.Morejko-Buz,A.Stolarzewicz,FreseniusJ.Anal.Chem.370 (2001)899–903.

[7]M.Sevegney,R.Kankan,A.Siedle,R.Naik,V.Naik,Vib.Spectrosc.40(2006) 246–256.

[8]F.J.Boerio,J.L.Koenig,J.Macromol.Sci.C7(1972)209. [9]G.Zifferer,A.Kornherr,J.Chem.Phys.122(2005)204906. [10]K.Tasaki,Macromolecules29(1996)8922.

[11]J.Ennari,J.Hamara,F.Sundholm,Polymer38(1997)3733. [12]L.J.A.Siqueira,M.C.C.Ribeiro,J.Chem.Phys.122(2005)194911. [13]J.Pozuelo,F.Mendicuti,W.L.Mattice,Macromolecules30(1997)3685. [14]R.Khare,M.E.Paulaitis,Macromolecules28(1995)4495.

[15]M.Mondello,H.-J.Yang,H.Furuya,R.-J.Roe,Macromolecules27(1994)3566. [16]J.J.L.Cascales,T.F.Otero,J.Chem.Phys.120(2004)1951.

[17]S.J.Weiner,P.A.Kollman,D.T.Nguyen,D.A.Case,J.Comput.Chem.7(1986) 230.

[18]T.Shimanouchi,PhysicalChemistryVIIMolecularProperties,AcademicPress, NewYork,1970(Chapter6).

[19]M.Chhiba,G.Vergoten,J.Mol.Struct.384(1996)55–71.

[20]P.Derreumaux,G.Vergoten,J.Chem.Phys.102(21)(1995)8586–8605. [21]M.Chhiba,P.Derreumaux,G.Vergoten,J.Mol.Struct.317(1994)171. [22]P.Derreumaux,M.Dauchez,G.Vergoten,J.Mol.Struct.295(1993)203. [23]M.Chhiba,G.Vergoten,J.Mol.Struct.326(1994)35.

[24]M.Meziane-Tani,P.Lagant,A.Semmoud,G.Vergoten,J.Phys.Chem.A110 (2006)11359–11370.

[25]F.Tristram,V.Durier,G.Vergoten,J.Mol.Struct.377(1996)47–56. [26]F.Tristram,V.Durier,G.Vergoten,J.Mol.Struct.378(1996)249. [27]M.Chhiba,F.Tristram,G.Vergoten,J.Mol.Struct.405(1997)113.

[28]Z.Cherrak,P.Lagant,N.Benharrats,A.Semmoud,F.Hamdache,G.Vergoten, Spectrochim.ActaA61(2005)1419–1429.

[29]V.Durier,F.Tristram,G.Vergoten,J.Mol.Struct.(Theochem.)395–396(1997) 81–90.

[30]M.J.Frisch,G.W.Trucks,H.B.Schlegel,P.M.W.Gill,B.G.Johnson,M.W.Wong,J.B. Foresman,M.A.Robb,M.Head-Gordon,E.S.Replogle,R.Gomperts,J.L.Andres, K.Raghavachari,J.S.Binkley,C.Gonzalez,R.L.Martin,D.J.Fox,D.J.Defrees,J. Baker,J.J.P.Stewart,J.A.Pople,Gaussian92,Gaussian,Inc.,Pittsburgh,PA,1993. [31]H.A.Willis,V.J.I.Zichy,P.J.Hendra,Polymer10(1969)737.

[32]X.S.Xu,Opt.Commun.199(2001)89.

[33]X.Xu,H.Ming,Q.Zhang,Y.Zhang,J.Opt.A:PureAppl.Opt.4(2002)237–242. [34]H.Nagai,J.Appl.Polym.Sci.7(1963)1697–1714.

[35]H.MasRosemal,S.MasHaris,S.Kathiresan,Mohan,Pharm.Chem.2(2010) 316–323.

[36]A.Neppel,I.S.Butler,J.RamanSpectrosc.15(1984)257–263.

[37]H.Tadokoro,K.Tai,M.Yokoyama,M.Kobayashi,J.Polym.Sci.Polym.Phys.Ed. 11(1973)825.

[38]P.R.Sundararajan,P.J.Flory,J.Am.Chem.Soc.96(16)(1974)5025–5031. [39]D.J.Ward,G.R.Mitchell,Phys.Scr.T57(1995)153–160.

[40]M.A.Mora,M.F.Rubio-Arroyo,R.Salcedo,Polymer35(5)(1994)1078–1083. [41]F.Bosscher,G.tenBrinke,A.Eshuis,G.Challa,Macromolecules15(1982)1364. [42]E.Schomaker,G.Challa,Macromolecules22(8)(1989)3337–3341. [43]M.Vacatello,P.J.Flory,Macromolecules19(1986)405.

[44]A.Jain,R.M.Mishra,P.Tandon,V.D.Gupta,J.Macromol.Sci.45(2006)263. [45]S.K.Dirlikov,J.L.Koenig,Appl.Spectrosc.33(1979)551–555.

[46]S.K.Dirlikov,J.L.Koenig,Appl.Spectrosc.33(1979)555–561. [47]I.Lipschitz,Polym.Plast.Technol.Eng.19(1982)53.

[48]B.Schneider,J.Stokr,P.Schmidt,M.Mihailov,S.Dirlikov,N.Peeva,Polymer20 (1979)705.

[49]M.Mihailov,S.D.Mikov,N.Peeva,Z.Georgieva,Makromol.Chem.176(1975) 789.

[50]O.N.Tretinnikov,K.Ohta,Macromolecules35(2002)7343–7353. [51]O.N.Tretinnikov,Macromolecules36(2003)2179–2182. [52]S.Havriliak,N.Roman,Polymer7(1966)387.

[53]J.Dybal,S.Krimm,Macromolecules23(1990)1301–1308.

[54]K.J.Thomas,M.Sheeba,V.P.N.Nampoori,C.P.G.Vallabhan,J.Opt.A:PureAppl. Opt.10(2008)055303.

[55]T.R.Manley,C.G.Martin,Polymer12(1971)524–531. [56]J.M.O’Reilly,R.A.Mosher,Macromolecules14(1981)602. [57]H.S.Bu,W.Aycock,B.Wunderlich,Polymer28(1987)1165–1176.

[58]N.O.Tretinnikov,K.Nakao,K.Ohat,R.Iwamoto,Macromol.Chem.Phys.197 (1996)753–765.

[59]Y.Grohens,R.E.Prud’homme,J.Schultz,Macromolecules31(1998)2545–2548. [60]H.S.Shin,Y.M.Jung,T.Y.Oh,T.Chang,S.B.Kim,D.H.Lee,I.Noda,Langmuir18

(2002)5953.

[61]D.Emmons,R.G.Kraus,S.S.Duvvuri,J.S.Thompson,A.M.Covington,J.Polym. Sci.B:Polym.Phys.45(2007)358–367.

[62]P.R.Sundararajan,Macromolecules19(1986)415.

[63]R.J.Loncharich,T.R.Schwartz,K.N.Houk,J.Am.Chem.Soc.109(1987)14–23. [64]P.E.Kireeva,G.A.Shandryuk,J.V.Kostina,G.N.Bondarenko,P.Singh,G.W.

Cleary,M.M.Feldstein,J.Appl.Polym.Sci.105(2007)3017–3036.

[65]M.M.Feldstein,T.I.Kiseleva,G.N.Bondarenko,J.V.Kostina,P.Singh,G.W.Cleary, J.Appl.Polym.Sci.112(2009)1142–1165.

[66]J.K.Haken,R.L.Werner,Br.Polym.J.3(1971)263.

[67]J.L.Koenig,A.C.Angood,J.Semen,J.B.Lando,J.Am.Chem.Soc.91(1969)7250. [68]J.C.Leyte,L.H.Zuiderweg,H.J.Vledder,Spectrochim.Acta23A(1967)1397. [69]A.M.Young,A.Sherpa,G.Pearson,B.Schottlander,D.N.Waters,Biomaterials

21(2000)1971–1979.

[70]J.Dong,Y.Ozaki,K.Nakashima,Macromolecules30(1997)1111–1117. [71]M.-K.Orgill,B.L.Baker,N.L.Owen,Spectrochim.ActaA55(1999)1021–1024. [72]E.S.Rufino,E.E.C.Monteiro,Polymer44(2003)7189–7198.

[73]J.Ostrowska,A.Narebska,ColloidPolym.Sci.257(1979)128–135. [74]T.Shimanouchi,I.Nakagawa,Ann.Rev.Phys.Chem.23(1972)217.

Figure

Fig. 3. The observed FTR spectrum of PMMA recorded from the central area.

Références

Documents relatifs

of present molecular statistical theories [1, 2] for an understanding of the experimental behaviour of the elastic constants of nematics.. Summarizing it can

homogeneous at the scale of the wavelength of the light, contrary to what is generally observed in neutral gels The companson of the time and ensemble averages of the

The important features which emerge out of this analysis are that the intermolecular frequency distri- bution, in molecular solids with 2 N molecules per unit cell,

Abstract.- Inelastic neutron scattering measurements are reported on polycrys- talline orthorhombic black phosphorous (0-black P) and on amorphous red phos-.. phorous (a-red

However, in comparison with the experimental data of PVA and PVC gels, it was found that the essential features of the behaviour of the Brillouin shift and width are well described

For example, combination of unsupervised learning (self-organizing map) and reinforcement learn- ing can be seen in several works such as [8] where the input signals of the

The study of a sea storm event with particular damaging consequences on Savona harbour structures, in the Gulf of Genoa (Italy) has been performed by using meteo-marine

Mais la photopile ou le module, bien qu'éléments fondamentaux, ne représentent cependant que l'un des maillons d'un ensemble plus complexe nommé "système