• Aucun résultat trouvé

Fluxnet and regional carbon flux modeling, spatial integration and regional fluxes, spatial scales of coherence, network-scale analysis

N/A
N/A
Protected

Academic year: 2021

Partager "Fluxnet and regional carbon flux modeling, spatial integration and regional fluxes, spatial scales of coherence, network-scale analysis"

Copied!
59
0
0

Texte intégral

(1)

HAL Id: hal-01189430

https://hal.archives-ouvertes.fr/hal-01189430

Submitted on 7 Jun 2020

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Fluxnet and regional carbon flux modeling, spatial integration and regional fluxes, spatial scales of

coherence, network-scale analysis

Philippe Ciais, Markus Reichstein, Kenneth Davis, Toshinobu Machida, Dario Papale, Galina Churkina, Scott Denning, Gen Inoue, Ivan Janssens, Natasha

Miles, et al.

To cite this version:

Philippe Ciais, Markus Reichstein, Kenneth Davis, Toshinobu Machida, Dario Papale, et al.. Fluxnet and regional carbon flux modeling, spatial integration and regional fluxes, spatial scales of coherence, network-scale analysis. FLUXNET Workshop ”Celebrating 10 years Since La Thuile and Planning for the Future”, Dec 2004, Firenze, Italy. 58 pl. �hal-01189430�

(2)

Fluxnet and regional carbon

flux modeling

(spatial integration and regional

fluxes, spatial scales of coherence,

network-scale analysis),

Ph. Ciais, M. Reichtein, K. Davis, T. Machida, D. Papale, S. Arshimov, G. Churkina, S. Denning, G. Inoue, I. Janssens, N. Miles, S. Richardson, K. Trusilova, R. Valentini, N. Viovy, A. Granier (4), J. Ogée (5), V. Allard (6), M. Aubinet (7) , Chr. Bernhofer (8), A. Carrara

(9), F. Chevallier (1), N. De Noblet (1), A. Friend (1), T. Grünwald (8), B. Heinesch (7), P.

Keronen (10), A. Knohl (11,12), D. Loustau (5), G. Manca (2), G. Matteucci (13), F. Miglietta (14),

J.M. Ourcival (15), K. Pilegaard (16), S. Rambal (15), G. Seufert (13), J.-F. Soussana (6), M.-J.

(3)

Estimating regional fluxes

Ill posed problem Errors amplification

Completeness

Not traceable to processes

Héterogeneities Variability Incompleteness Traceable to processes Downscaling Upscaling

Flux models

Data -driven Process -driven

Atmospheric

inversions

Remote sensing

Biophysics Phenology Land cover

Biometric

studies

Eddy

Covariance

Towers

(4)

Inversions

Sources xb + errors transport H Simulated Concentrations Observationsy o + errrrs Forward model

S

-

∇ • ( ρ C V ) = (ρ C)

∂t

Inversion

Estimation :

Error :

H x = y

x

a

= x

b

+ H

(

T

R

−1

H + P

−1

)

−1

H

T

R

−1

(y

0

− Hx

b

)

Pa = ( H R H + P ) t -1 -1 -1

(5)

Joint constraints! Complementary

methods : 1. Continental budgets

Upscaling Downscaling Chamber flux Global Ecosystem Models Flux towers Forest inventory Global Inversions year month hour day Time Scale Spatial Scale (1m)2 = 10-4ha (1000km)2 = 108ha (100km)2 = 106ha (10km)2 = 104ha (1km)2 = 102ha Rearth Introduce Processes testing Process atrribution

(6)

Inversion of Continental Fluxes

Apportionment of NH sink in longitude

Sources of

uncertainties

- Data errors

- Network density

- Transport biases

seasonal vertical advection

-Inversion set-up

Prior flux aggregations Prior errors

Prior estimate

North America

Eurasia PacificNorth AtlanticNorth

(7)
(8)

IAV of global fluxes

(9)
(10)

Joint constraints! Complementary

methods : 2. sub-continental budgets

Global Models Flux towers Forest inventory year month hour day Time Scale Spatial Scale (1m)2 = 10-4ha (1000km)2 = 108ha (100km)2 = 106ha (10km)2 = 104ha (1km)2 = 102ha Rearth Global Inversions

Sub

continental

Inversions

Upscaling Downscaling Airborne Campaigns

Global Transport Model grid

(11)

Daily fluxes over

Europe at 50 km

(

over the rest of globe on

large regions )

Sources of Uncertainty

- Transport

Synoptic horizontal Diurnal vertical

- Prior Fluxes

Scales of coherence Diurnal Cycle Synoptic variability

- Representiveness

- Network density

Flux correction

Error Reduction from Prior (%)

Correlation length = 1000 km Correlation length = 300 km

50%

5%

Carouge et al. 2004

Inversions on the model grid

Regional scale Fluxes

(12)

NOAA CMDL Carbon Cycle Greenhouse Gases

MEASUREMENT PROGRAMS - 2007

(13)

Linking bottom up observations ?

(14)
(15)

Secular increase in primary productivity

from satellite NDVI over the past 25 years

Nemani et al., Science 2003 (% per year)

Will the greening continue if more frequent climate

extremes impact productivity and net fluxes ?

(16)

Historical temperature records in Switzerland

Shär et al., Nature 2003

Summer temperature reconstruction from harvest dates in Burgundy

Chuine et al., Nature, 2004

(17)

Integrating Regional Carbon Budgets

• Eddy covariance fluxes

• Crop yield statistics

• Remote sensing

• Atmospheric concentration

• Tree rings

(18)

Multiple Constraint Observations

Spatial

representativity resolutionTemporal

Information on

processes Long term record

Flux

Towers

Network

-( ++

from processes and network

)

+++

+++

-Crop

yields

+

Averaged at the resolution of yield data

--

---

+++

Remote

sensing

But only

+++

GPP, NPP

+++

But only GPP, NPP

-

+

From different sensors

(19)

QuickTime™ et un décompresseur TIFF (LZW) sont requis pour visionner cette image. Two Beech forests

Hainich Eastern Germany 150 years Hesse Eastern France 30 yrs

(20)

QuickTime™ et un décompresseur TIFF (LZW)

sont requis pour visionner cette image.

QuickTime™ et un décompresseur TIFF (LZW)

sont requis pour visionner cette image.

Mediterranean forests

(21)

Annual GPP and TER ...

... and even the difference 2003-2002.

are coupled...

0 1 2 3 4 5 6 7 8 0 2 4 6 8 GPP Re c o -3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3 GPPdiff Re c o _ d if f 2002 2003

(22)

Tower

fluxes

Measured NEE, ET Derived GPP, NPP

Model

GPP, TER

Model

ET

Model

NPP

Model LAI

ORCHIDEE

model

ORCHIDEE

model

Global Climate

1901-2003

Hourly 30-100 km

Global Climate

1901-2003

Hourly 30-100 km

Tower

Climate

hourly

Tower

Climate

hourly

Tower

Climate

hourly

Tower

Climate

hourly

Tower

Climate

2002-2003

hourly

Tower

Climate

2002-2003

hourly sp ace time

EOS-MODIS

FAPAR Spatial average at 30-100 km

EOS-MODIS

FAPAR Spatial average at 30-100 km

Crop Yield

Country Average / species

Crop Yield

Country Average / species Spatial average

Model FAPAR

Grid point

2003 modelling system

(23)

Global biospheric model ORCHIDEE

ORCHIDEE

SECHIBA

energy & water cycle photosynthesis ∆t = 1 hour LPJ spatial distribution of vegetation (competition, fire,…) ∆t = 1 year STOMATE

vegetation & soil carbon cycle (phénologie, allocation,…) ∆t = 1 day NPP, biomass, litterfall vegetation types LAI, roughness, albedo soil water, surface temperature, GPP

rain, température, humidity, incoming radiation, wind, CO2

meteorological forcing

sensible & latent heat fluxes, CO2 flux, net radiation

output variables

prescribed vegetation

vegetation types

(24)

Gross and net

fluxes in 2002

(25)

Abnormal

Climate and

Productivity in

2003

Model

verification with

EOS-MODIS

FAPAR

(26)

QuickTime™ et un décompresseur TIFF (LZW) sont requis pour visionner cette image.

Verification

against

crops yield

national

data

(27)

-21%

2003 is the

largest

productivity

crash of the

past 100

years

(28)

Independent tree ring verification

Hesse: seasonal variation of tree circumference as measured on beech trees among the dominant and codominant crown classe during the period 1999-2003 (the same trees were measured eac

year). 0 5 10 15 20 25 60 120 180 240 300 DOY 1999 2000 2001 2002 2003

(29)

Independent Atmospheric Verification of NEE

(in progress)

(30)
(31)

Did Rainfall deficit drives the GPP decrease ?

QuickTime™ et un décompresseur TIFF (LZW) sont requis pour visionner cette image.

(32)

Heat

Drought

GPP

TER

NEE

Transpiration

Soil water

limitations

Stomatal

closure

Atmospheric

water

stress

+

+/-

-+

+

+

-+0.5 GtCy

-1

anomaly

+

-20%

-30%

(33)

Breda et al. 1999

Soil water content variation model and observations indicate large water stress at all sites in 2003 with Root Extractable Water (REW) < 0.4 0 50 100 150 200 0 60 120 180 240 300 360 DOY (2003) ext ra ct ab le w a te r (mm ) Vielsalm Hyytiala Hainich Hesse SorØ Tharandt Braschaat Fougères Bray Lille Grillenburg Loobos

(34)

Hesse daily canopy conductance 0.0 0.2 0.4 0.6 0.8 1.0 100 150 200 250 300 DOY (2003) gc* ( c m s -1 ) 0.0 0.2 0.4 0.6 0.8 1.0 REW gc* REW

Granier et al. analysis confirms water-stress controls

0,0 0,2 0,4 0,6 0,8 1,0 150 180 210 240 270 300 DOY gc_2002 gc_2003

Canopy conductance in 2003 at

Hesse was 15% of its 2002 value !

Canopy conductance correlates with soil water

(35)

Modellers, be brave !

test your best parameters for 2003!

See also Wang et al. , Poster by

See also Wang et al. , Poster by SantarenSantaren, etc.., etc..

Deciduous broadleaf forest

Evergreen needle leaf forest

ecophysiological parameters n or m aliz ed v alu e n or m aliz ed v alu e Model Results Model Results BIOME

BIOME--BGC Model ParametersBGC Model Parameters

kgC/m 2/da y diment ionless NEE

Leaf Area Index

month

Trusilova and Churkina

in preparation

Parameter range before optimization

Parameter range after optimization

(36)

Joint constraints! Complementary

methods 3. Regional Inversions

Chamber f lux Global Models Flux towers Forest inventory year month hour day Time Scale Spatial Scale (1m)2 = 10-4ha (1000km)2 = 108ha (100km)2 = 106ha (10km)2 = 104ha (1km)2 = 102ha Rearth Upscaling Downscaling Airborne campaigns

Regional

Inversions

Sub Continental Inversions Global Inversions High resolution mesoscale Model grid (1 km)

(37)

WLEF tall tower (447m)

CO

2

flux measurements at:

30, 122 and 396 m

CO

2

mixing ratio measurements at:

11, 30, 76, 122, 244 and 396 m

WLEF CO

2

flux and mixing ratio observatory

K. Davis and colleagues

(38)

ChEAS Regional Flux Experiment Domain

= LI-820 sampling from 75m above ground on

communication towers.

= 40m Sylvania flux tower with high-quality standard gases.

= 447m WLEF tower. LI-820, CMDL

in situ and flask measurements.

(39)
(40)

NEE and gross fluxes at ChEAS sites: 1997-2002

NEE (gC m-2) Respiration (gC m-2) Photosynthesis (gC m-2) WLEF 1997 27 991 964 WLEF 1998 48 986 938 WLEF 1999 100 1054 954 WLEF 2000 74 1005 931 WLEF 2001 141 1067 926 WLEF average 78 1021 942

Willow Creek average -297 717 1014

Lost creek 2001 1 759 758

Lost Creek 2002 -58 631 689

Lost Creek average -30 695 724

Willow Creek 2000 -347 762 1109

Willow Creek 2001 -108 741 849

(41)

ChEAS Regional Flux Experiment

• Derive daytime and daily seasonal fluxes using

regional atmospheric inversions and relatively

inexpensive in situ CO

2

sensors.

• Overarching goal – evaluate/merge multiple

approaches of studying terrestrial fluxes of CO

2

.

– Merge flux-tower based upscaling with downscaled inversion methodology. Regional integration and mechanistic

interpretation.

– Determine interannual variations in seasonal fluxes on a regional basis. Again, integrate with regional flux

measurements/mechanistic interpretations.

– If possible, derive net annual fluxes. Spatial resolution is limited by the magnitude of the annual signal.

(42)

Expected Regional Mixing Ratio Differences

(Winter to Summer)

2 to 5 ppm

~400 km

(full ring)

~24 hours

1 to 2 km

1 to 4

gC m

-2

d

-1

Diurnal

~0.2 ppm

1 to 5 ppm

Change in

ABL CO

2

400 km

(full ring)

~180 km

(half ring)

Advection

distance

~10 hours

Advection

time

~10 km

1 to 2 km

Mixing depth

~ 1

gC m

-2

d

-1

1 to 10

µmol m

-2

s

-1

Flux

magnitude

Annual

Daytime

Time scale

(43)

Climatology of influence functions for August 2000

z influence functions derived from RAMS/LPD model simulations z passive tracer

z different configurations of concentration samples - time series from

- a single level of WLEF tower - all levels of WLEF tower

- six additional towers

200 400 600 800 1000 x [km] 200 400 600 800 1000 y [ k m ]

WLEF tower - single level (76m)

200 400 600 800 1000 x [km] 200 400 600 800 1000

WLEF tower - all levels

200 400 600 800 1000 x [km] 200 400 600 800 1000 6 additional towers 0.01 0.02 0.05 0.1 0.2 0.5 1 2 5 10 20 [m-3s 10-10]

(44)

Regional Inversions

0 500 1000 1500 0 500 1000 1500

N

E

S

W

Separate estimation of

A(PAR), R(T), FF

• Bayesian inversion technique

• source areas defined in polar

coordinates centered at the WLEF tower

– a better coverage by atmospheric transport

• [RAMS -> LPD] long term simulations

– derivation of influence functions for concentration samples

• data: concentration time series from

the WLEF tower and additional towers

• CO2 flux decomposed into respiration

and assimilation fluxes

• CO2 inflow fluxes from a larger scale

model

– a priori estimations to be improved in inversion calculations

(45)

0 300 600 900 1200 0 300 600 900 1200

N

E

S

W

Example of estimation of NEE averaged for

August 2000

9

Inversion calculations for increasing number of concentration data

(time series from towers)

9NEE uncertainty presented in terms of standard deviation derived from posteriori covariance matrix

9 Inflow CO2 flux is assumed to be known from a large scale transport model

0 1 2 3 4 0 1 2 3 4 a -pr io ri N E E u n c e rt a int y 0 1 2 3 4 N E E e s ti m a ti o n u n c e rt ai n ty [ mo l/ s /m 2] distance [km] 0-100 100-200 200-300 300-400 WLEF 76m

(single level) WLEF all levels WLEF all levels

+ 6 additional towers

N E S W N E S W N E S W

DIRECTIONAL SECTOR

Configuration of source areas with WLEF tower in the center of polar coordinates

(46)

1200 UTC

April 29, 2004

(47)

Joint constraints! Complementary methods :

Airborne campaigns

Flux towers Forest inventory year month hour day Time Scale Spatial Scale (1m)2 = 10-4ha (1000km)2 = 108ha (100km)2 = 106ha (10km)2 = 104ha (1km)2 = 102ha Rearth Upscaling Downscaling

Airborne Campaigns

Regional fine Inversions Regional coarse Inversions Chamber f lux Global Inversions COBRA (concentrations) COCA (conc. lagrangian) RECAB (fluxes)

(48)

Atmospheric and bottom-up

regional fluxes in Les landes

Tower

Regional flux lagrangian budget

Regional flux EOS-MODIS

(49)

Berezorechka

T. Machida and

Russian and

Japanese collegues

1) Flat

2) Homogenious

Vegetation

3) Far from Big

City

4) Tower

80m

40m

20m

5m

3000m

(2000m)

to

150m

(50)

Berezorechka village, West Siberia

(56゚N, 84゚E)

(51)

CO2 Measurement System by Air

High-Frequency

Measurement

Small

Automatic

An-2

Standard Gases Flow Sensor Pump Sample Cell Mg(ClO4)2 NDIR(LI-800) Valve Valve Pressure Sensor

(52)

Vertical CO2 profiles in 2002

Oct.’01-Jul.’02

Jul.’02-Dec.’02

(53)

Vertical CO

2

profiles in 2003

38 Flights in 2003

(54)

FT and PBL

0 0.5 1 1.5 2 374 376 378 380 382 384 -2 0 2 4 6 8 Altit u de (km ) CO2 (ppm) Potential Temperature Temperature -10 -7 -4 -1 2 5 CO2 Temp. PT

26 Mar. 2002

(55)
(56)

Comparison of Fitting Curves

Amplitude = 16ppm(FT) and 34ppm(PBL)

High concentration in Winter

(57)

Comparison between Tower and

Aircraft PBL

Substantial Difference

-->Aircraft conducts only in the good weather

Weather Bias

(58)

Comparison on the good weather condition

60% data are <+-2ppm

Without Daytime Inversion (Winter)

No Variable day (Summer)

(59)

Conclusions

Reconciling orthogonal perspectives

Inversion downscaling

Flux tower upscaling

Excellent spatial Intrinsically local

integration measurements.

Strong constraint on Difficult to upscale flux

flux magnitude magnitudes.Variability easier

Poor temporal Excellent temporal

resolution resolution

Limited mechanistic Strong mechanistic

understanding. understanding

Let’s fusion flux upscaling and Inversions !!!

CCDAS,

Coupling of energy budget parameters with transport

Coupling of soil respiration to atmosphere

Références

Documents relatifs

Transfusion is a cornerstone of the management of sickle cell disease but carries a high risk of hemolytic transfusion reaction, probably because of differences in erythrocyte

Bien que les effets de prédation en régime mixte ne soient pas additifs en général (la densité totale de prédateurs n’est pas la somme des densités à l’équilibre d’un

Nous avons étudié différents aspects de la bio- logie des Culicoides (Travail effectué, dans le cadre du Doctorat d'Etat en Sciences, au Laboratoire de

Volume XXI has a long appendix with documents on New York City’s massive celebration of the Constitution’s ratification on July 23, 1788, two days before the New York convention

Anomalous emanation of radon ( 222 Rn) was ob- served preceding large earthquakes and is considered to be linked to preseismic electromagnetic phenomena (e.g. great changes

In this study, we present the development of a multilayer peat hydrology and carbon model in the Organising Carbon and Hydrology In Dynamic Ecosystems (ORCHIDEE) land surface

Contrary to the existing models that reproduce IG waves in coastal regions, we consider here a very crude approximation of the IG wave evolution in shallow water, in order to cover

Models have been designed to quantify the distribution of CO2 fluxes and ecosystem carbon dynamics at the global scale, but these global vegetation models usually do not account