• Aucun résultat trouvé

the H O–CO collision system Laboratory measurements and calculations of line shape parameters of Journal of Quantitative Spectroscopy & Radiative Transfer

N/A
N/A
Protected

Academic year: 2021

Partager "the H O–CO collision system Laboratory measurements and calculations of line shape parameters of Journal of Quantitative Spectroscopy & Radiative Transfer"

Copied!
10
0
0

Texte intégral

(1)

ContentslistsavailableatScienceDirect

Journal of Quantitative Spectroscopy & Radiative Transfer

journalhomepage:www.elsevier.com/locate/jqsrt

Review

Laboratory measurements and calculations of line shape parameters of the H 2 O–CO 2 collision system

L. Régalia

a,

, E. Cousin

a

, R.R. Gamache

b

, B. Vispoel

b

, S. Robert

c

, X. Thomas

a

aGroupe de Spectrométrie Moléculaire et Atmosphérique, UMR CNRS 7331, UFR Sciences Exactes et Naturelles, Moulin de la Housse, BP 1039 – 51687 Reims Cedex 2, France

bDepartment of Environmental, Earth, and Atmospheric Sciences, University of Massachusetts Lowell, 1 University Avenue, Lowell, MA 01854, USA

cPlanetary Aeronomy, Royal Belgian Institute for Space Aeronomy, 3 Avenue Circulaire, 1180 Brussels, Belgium

a rt i c l e i nf o

Article history:

Received 27 February 2019 Revised 27 March 2019 Accepted 8 April 2019 Available online 11 April 2019 Keywords:

High resolution infrared spectroscopy Line shape parameters

Modified Complex Robert-Bonamy calculations, planetary atmospheres Water vapor-carbon dioxide

a b s t ra c t

Fordecades, the remotesensing measurements have beenmadeinplanetary atmospheresinthe So- larSystemandbeyond.Astheperformanceofthespaceinstrumentsimproves,theatmosphericscience communityismoreandmoreinneedofaccuratespectroscopicdata.Thecurrentdatabasesoffersome parametersfornon-Earth atmospheresbutarefarfromcompletefor allsituations.Forexample,mea- suredH2OlineparametersinCO2-richatmospheressuchasMarsandVenusaremissingwhiletheyare ofprimeimportancetolearnabouttheevolutionoftheatmospheres.NewFourierTransformSpectrom- eterspectrawererecordedrespectivelyaround2.7and6μm,usingaConnes’typeFTspectrometerbuilt inReims.Thespectrawereanalysed usingamultispectrumfittingproceduretoobtaintheline-shape parametersofH2ObroadenedbyCO2.ModifiedComplexRobert-Bonamycalculationsofthehalf-width, lineshift,andtheirtemperaturedependenceweremadeinthespectralregionfrom1300to5000cm−1. Themeasurementsandcalculationsarepresentedandcomparedwithdataavailableintheliterature.

© 2019ElsevierLtd.Allrightsreserved.

1. Introduction

Waterisakeymolecule inthesearchforlifeonother planets.

Theoriginsofwater onEartharenot yetwell understood.In or- dertogaininsightsintothistopic,theSolarsystemmustbecon- sideredasa wholeandthe watercontents of thedifferentplan- etary andcometarybodies characterized. Thisstudy includesthe understandingofthewatercycle,thedeterminationofthevolume mixingratioandthedistributionwithaltitudeofthedifferentiso- topologuesofwater.Inparticular,theratioofdeuteriumtohydro- gen(D/H)isa keydiagnostic to characterizingthe Solarsystem’s evolution.

SeveralspaceinstrumentshaveflownorareflyingaroundMars and Venus. While these planets are our closest neighbors, they haveaverydifferentatmosphericstructureandcomposition.Nadir viewing,provided that the spectral resolution andthe SNR tech- nique are adequate, andsolar occultation viewing allow probing an atmospherelayer by layerto give vertical profile information.

Thesolaroccultationtechniquehastheadvantageofextremelylo- calizedsensitivityto thetrueatmosphericstate(i.e. measuredby AveragingKernels), highlypeaked on the impact tangent height.

Corresponding author.

E-mail address: laurence.regalia@univ-reims.fr (L. Régalia).

These profiles allow isotopic ratios, such as D/H, to be studied.

Considering Mars, the ratio is an important evolutionary tracer forthe atmosphere, surface, andtheir interactions in theclimate system. The isotopic ratios are very usefulbecause they are not asaffected by modification relatedto the chemistry occurringin Mars’ atmosphereaselementalabundances are [1].Investigations oftheD/H ratiowithaltitudehasledto interesting results[2-7]. Studyingthespatialdistribution ofthe D/Hratioscan alsogener- ate interesting data. Villanueva etal. [8]used these 2D maps to studystrongwaterisotopicanomaliesintheMartianatmosphere;

Good etal. [9]looked atD/H isotope ratiosin the globalhydro- logiccycle;andYangetal.[10]modeledtheD/Hratioofwaterin thesolarnebuladuringitsformationandevolution.Theseresults could be refined if better line parameters were used, especially H2ObroadenedbyCO2lineshapeparameters.Thecurrentparame- tersusedbytheplanetarycommunityrelyonempiricaladaptation ofother linelists oron scaling other broadeningspeciesdata.In thisstudy,weuseourlaboratoryset-upandmultispectrumproce- dure toprovidemeasured lineshape parametersandmake state- of-the-art Modified Complex Robert-Bonamy (MCRB) calculations ofthehalf-width,lineshift,andtheirtemperaturedependencefor theH2O–CO2collisionsystem.

Twospectralrangesofinterestwere identifiedaround 2.7and 6 μmand spectrarecorded. The 6 μmband wasanalyzed previ- ouslybyBrownetal.[11]in2007,whilethe2.7μmbandwasthe https://doi.org/10.1016/j.jqsrt.2019.04.012

0022-4073/© 2019 Elsevier Ltd. All rights reserved.

(2)

L. Régalia, E. Cousin and R.R. Gamache et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 231 (2019) 126–135 127 Table 1

Experimental conditions of recorded spectra with the Connes’ type FTS (“DDM max” is the maximum of path difference for the interferogram measurement).

Spectral region 2.7 μm iris radius (aperture) = 2.25 mm

Cell length (cm) DDM max (cm) Total Pressure in Torr P(H 2O) in Torr P(CO 2) in Torr Temperature in Kelvin

13.6 46 504.2 2.05 502.2 295.5

61 300.9 1.22 299.7 295.5

88 99.3 0.40 98.9 295.6

417.2 35 503.5 2.03 501.5 292.7

41 300.5 1.21 299.3 292.9

59 99.9 0.40 99.5 293.2

817.8 29 507.1 2.10 505.0 293.3

33 300.7 1.24 299.4 293.4

59 96.6 0.40 96.2 293.3

Spectral region 6 μm iris radius (aperture) = 2.5 mm

Cell length (cm) DDM max (cm) Total Pressure in Torr P(H 2O) in Torr P(CO 2) in Torr Temperature in Kelvin

13.6 46 502.9 2.07 500.8 295.4

69 298.3 1.23 297.1 295.4

70 100.3 0.41 99.9 295.5

target of a similar study, herein Reims, some twenty years ago [12].The spectrometer inReims nowhasa better signal tonoise ratio(∼1000)than previously[12]andthesoftwaredevelopedto analyse thespectraina multispectrumprocedure [13]allowsthe retrievalofmoreconsistentlineshapeparameters.Forthedeuter- ated speciesofwater, HDO,measurements were madeon transi- tions inthe

ν

2.

ν

1, and

ν

3 bands[14–16]andMCRB calculations were madeforthe rotation,

ν

2.

ν

1,and

ν

3 bands[14–17].Inthe presentstudy,thenewlymeasuredspectrawereanalyzedinorder todetermineaccuratelineshapeparametersofH2Obroadenedby CO2.We compared our measured resultsto the dataavailable in theliteratureandwiththeMCRBcalculationsdescribedbelow.

Section 1 describes the experimental conditions of the mea- suredspectraandexplainsthelineparametersretrievalprocedure.

Section 2 presents thetheory andthe calculationsmade. Finally, wewillpresentourlineshapemeasurementsandcalculationsand comparethemwithliteraturevalues.

2. Experimentalconditions 2.1. Spectrarecording

Sixteenspectra were measured atroom temperaturewiththe Connes’ type Fourier TransformSpectrometer (FTS) [18–20] built in the Group of Molecular and Atmospheric Spectrometry labo- ratory (GSMA) in Reims, France. This instrument had a 3-meter maximum path difference allowing a non-apodizedresolution of 0.0017 cm1.Table1summarizes therecordingconditionsofthe spectra inthe twostudied spectral regions. In the2.7μmregion, allspectrawererecordedwiththefollowingopticalsetup:aCaF2 beamsplitter,somelensesandBaF2 windowsandtwoInSbdetec- tors,whileinthe6μmregionwe usedtwoHgCdTedetectors.We alwayscheckedinspectralregionsnear10μmifthesampleorthe window emission couldperturb thestudy butinthe statedsitu- ation,we didn’tobserveanything. Inadditiontothis,inthe6μm spectral regiontoeliminatesome wavesonthe100%oftransmis- sionofthespectraduetoopticalwindowsintheopticalpath,we hadtodividebyaspectrumrecordedwithanemptycell.Weused two different optical spectral filters to selectthe recording spec- tralregions,thetransmissionwindowsare1350– 2300cm−1 and 3060– 4370cm1respectivelyforthe6μmand2.7μmspectralre- gion.Duringtheexperiment, theabsorptionpathwasmaintained undervacuumandthepressureandthetemperaturewerecontin- uously monitored. Twoabsorption cells were used: a single-path cellwithanopticalpathlengthof13cmanda1-meterWhitecell

[21]to achieve absorption path lengthsof 4 and8 m.As shown inTable1,forallspectra,thepartialpressureofwatervaporwas kept very low inorder to neglect asmuch aspossible theinflu- enceoftheself-broadeningduetotheH2Opressureinthedeter- minationof theline-shapeparameters. Inaddition tothe spectra listed inTable 1,we recordeda spectrum foreach length of the cell,withonlyalow H2Opressure(1Torr).Thesespectraallowed ustochecktheinstrumentallineshapeandwereusedtocalibrate thewavenumberscaleofthespectradescribedinTable1.Forthe spectralcalibration,thelinepositionsgiveninLoosetal.[22]were usedasreference.Thiscalibrationisnotcrucial,asthemultispec- trumprocedureallows discrimination ofthe differentshiftsfora givenrecordingcell. Indeed,astheparameters arefittedsimulta- neouslyonseveralspectraindifferentexperimentalconditions,the shiftduetotheopticalset-upisaparameterwiththesamevalue forall spectra,whiletheshiftduetothepressureofthegas(ab- sorbingorforeign)isdependingonthestudiedspectrum.

ThecarbondioxidebuffergaswassuppliedbyAirLiquidecom- pany with a stated purity of 99.9999%. The pressure was mea- suredwithanuncertaintylessthan0.3%usingtwoMKSBaratron manometerswith10and1000Torrfullscale.Thetemperaturewas measured with a platinum probe with an uncertainty less than 0.5K.

TheFig.1showsanexampleoftherecordspectrainthe2.7μm spectralregion

2.2.Lineparametersretrieval

We used the multispectrum procedure developed at GSMA [13]todeterminethelineparameters. First,inordertominimize theeffect ofthe apparatusfunction on the retrievedparameters, theexperimentalvalueoftheMichelson’sinterferometeraperture wasdetermined usingspectra recordedatlow pressures (not re- portedinthe Table1). Theiris radius valuesoftheFTS areindi- catedinTable1.Wedidthisverificationevenifthechoiceofthe radiusvalue is lesscriticalthan intheDoppler regime, since the H2Ospectrawere broadenedby a pressure ofCO2 from100Torr to500Torr.Theverificationwasdoneonseverallinestakeninthe wholespectral regionallowing a checkofthe nominaliris radius thatcan beused.No specific signatureappeared ontheresiduals ofthefitduringthisverification.Thenominalirisradiusvaluewas thenusedinthefollowinganalysis.

Themultispectrum procedureenabled ustoobtain simultane- ouslythepositionoftheline,thelinestrength,thehalf-widthand the line shift. An example of the multispectral fitting procedure

(3)

Fig. 1. Example of recorded spectra in the 2.7 μm spectral region around 3956 cm −1, with an absorption path length of 817.8 cm (see Table 1 ).

Fig. 2. Example of the fit with the multispectrum procedure of a H 2O transition broadened by CO 2in the 2.7 μm spectral region. The three spectra have an absorption path length of 417.2 cm (see Table 1 ).

isshowninFig.2.Thefigure showsthesimultaneous fitofthree spectrawith an absorption path length of 417.2cmand different pressures (see Table 1) in the upper panel and the residuals of the fit in the lower panel. Just over ten isolated lines were fit usingtwo differentvalues of self-broadening coefficients(broad- ening due to the pressure of H2O) in order to assess the im- pactof this parameter. A modification of 20% of the fixed value ofself-broadeningcoefficient doesnot change theretrieved CO2-

broadening parameter. Therefore, the self-broadening coefficients werefixedtothevaluesoftheHITRAN2016databaseedition[23]. Theimpactoftheself-shiftparameterwasalsonegligible.

3. Theory

For the collision system under consideration, H2O–CO2, and temperatures of the study, quantum dynamical methods are too

(4)

L. Régalia, E. Cousin and R.R. Gamache et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 231 (2019) 126–135 129

slow to be practical even if adequate potential energy sur- faces were available. Thus, the calculations of the half-width and line shift for the H2O–CO2 collision system were done us- ingthesemi-classicalModifiedComplexRobert-Bonamyformalism [24,25](MCRB).Thehalf-widthandthelineshiftaregivenbythe realandimaginaryparts,respectively,oftheexpression

( γ

+i

δ )

fi= n2

2

π

c

0

v

f

( v )

d

v

0

2

π

b

×

1−eiS1+Im(S2)J2eRe(S2)J2

db. (1)

Inthisexpression,n2isthenumberdensityofbathmolecules, c is the speed of light, v is the relative velocity, f(v) is the Maxwell-Boltzmann distribution of velocity, < >J2 is an average overthestatesofthebathmolecules,andbistheimpactparam- eter. S1(imaginary) and S2(complex) are the first and second or- der terms inthe successiveexpansion of the Liouville scattering matrix, which depend on the ro-vibrational states in the optical transition, the associated collisionally induced jumps fromthese states, on the intermolecularpotential, andthe characteristics of the collisiondynamics.Note,semi-classical refers to thefact that the internal structure of the collidingmolecules is treatedquan- tum mechanicallyandthat the dynamics ofthe collision process are treatedby classical mechanics. Thus, in an optical transition fromfi,theactivemoleculewillundergocollisionswiththebath molecules, for which the trajectories are determined by classical mechanics.Inthesecollisions,theinitialandfinalstatesofthera- diatingmolecule, i andf,will undergocollisionally induced tran- sitions to states i’ and f’, interrupting the radiation and causing collisional broadeningand shifting.The statesi’ andf’ are called collisionallyconnectedstatesandaregivenbyselectionrulesdeter- mined by the wavefunctions and intermolecular potential. Given the large number of terms inthe intermolecular potential, there aremanystates,i’orf’,thatarepossible.Thequantummechanical componentsofthecalculationaretheenergyofthestatesinvolved in thecollisionally induced transitionsandthe wavefunctions for thestates,whichare usedtodetermine reducedmatrixelements (RME), whichgive the probability ofa collisionally induced tran- sition.Arecentstudy[26] showedthat MCRBcalculationsshould usethegroundstateRMEsforallvibrationalstates.

Theintermolecularpotentialusedinthecalculationswascom- prised of electrostatic terms, the induction and London disper- sionterms,andanatom-atomcomponentexpandedto20thorder andrank4.Theatom-atomparameterswereadjustedtobringthe MCRBcalculationsinagreement withmeasurementsofTretyakov andKoshelev[27].Thefinalatom-atomparameters(calledpot23) areachangeof

ε

H–O,

ε

H–C,

ε

O–O,

ε

O–Cby−30%,achangeof

σ

H–O

by −22.5% andachange of

σ

H–C,

σ

O–O,

σ

O–C by −25%fromthe combination rule [28] values. All other parameters are the rec- ommendedvaluesfromtheliterature:The dipolemomentofwa- ter and its vibrational dependence are taken from Shostak and Muenter [29]. The quadrupole moments come from Flygare and Benson [30].Thepolarizabilityanditsvibrationaldependenceare givenbyLuoetal.[31].Theionizationpotential ofwateristaken from Ref. [32] and is a vibrationally-independentvalue. For CO2, the quadrupole moment is fromthe work of Grahamet al.[33], the value of thepolarizability is fromBogaardand Orr [34], and the ionization potential isfromTanaka etal.[35]. Thenumerical values are giveninRefs. [36] and[11],for H2OandCO2,respec- tively.

The MCRB calculations included all real and imaginary com- ponents, atom-atomcomponentexpandedtohighorderandrank, trajectories determined solvingHamilton’s equations,andexplicit velocityaveragingovertheBoltzmanndistribution.

Table 2

The number of lines in each cold band from 1300 to 5000 cm −1for the three principal iso- topologues of H 2O.

Band H 216O H 218O H 217O 0 0 0 ← 0 0 0 112 7 0 0 1 0 ← 0 0 0 2326 1297 915 0 2 0 ← 0 0 0 2150 971 493 1 0 0 ← 0 0 0 2479 1320 781 0 0 1 ← 0 0 0 2950 1593 1096 0 1 1 ← 0 0 0 424 165 94 0 3 0 ← 0 0 0 783 368 86 1 1 0 ← 0 0 0 383 163 57

total 11,607 5884 3522

4. MCRBcalculations

UsingHITRAN2016,all cold-bandtransitions forH216O, H218O, andH217Ointherange1300–5000cm1withJ”≤22andwithfull quantumassignments(note,intheUCLabinitiodata [37]onHI- TRANonlyJandsymmetry are goodquantumnumbers, sosome transitionsdonothaveallquantumnumbers.)wereextracted.The numberoflinesineach coldband islistedinTable2.The MCRB formalism includes the vibrational dependence of the lineshape parameters, thus calculations were made for each band listed in Table 2. The calculations of the half-width and line shift were madeat 13 temperatures from 200 to 3000K in order to deter- mine the temperaturedependence ofthese parameters. Foreach band, the unique rotational transitions were determined for the threeprincipalisotopologues;thencalculationsweremadeforthe H216O isotopologue. These half-width and line shift values were usedforthethreeisotopologuesofthisstudysincethelineshape parametersareroughlyequalforallthree.Thelaststepwastouse thelineshapeparameterdataatthe13temperaturestodetermine thetemperaturedependenceby theGamache-Vispoelmodel[38]. Thesedatawere usedto createanimproved linefileforapplica- tionsforwatervaporinCO2-richatmospheres.ThepreviousH2O–

CO2linefile[17]neglectsvibrationaldependenceforH216O,H218O, andH217Otransitions andusesthe rotation band half-widthsfor all transitions.The line shifts,dueto their strong vibrationalde- pendence,werefromasemi-empiricalalgorithm[39]orfromscal- ing.

5. Resultsandcomparisons 5.1. Spectralregionaround6μm

Inthisspectralregion,linehalf-widthsandshiftsofH2Obroad- enedbyCO2werecomparedtopreviouslaboratorymeasurements ofBrownetal.[11]forthe

ν

2 fundamentalbandandtotheMCRB calculationsdonehere.ThedatasetsareshowninFigs.3and4re- spectivelyforthehalf-widthsandthepressure-inducedlineshift.

Intotal105lineswereanalyzed.ShowninFig.3arethemeasured half-widthswitherrorbars(bluesolidtrianglesymbols),theMCRB calculatedhalf-widthsshifted slightlytothe left(black open dia- mondsymbols), andthemeasured half-widthsfromBrown etal.

[11]witherrorbars shiftedslightlytothe right(redopensquare symbols)versuswavenumberofthetransition.Comparingthecur- rent measurements and calculationsfor 105 transitions gives an averagepercentdifference(APD)of−2.9%andastandarddeviation (SD)of 4.9%. Comparingour measurements withthose of Brown etal.for100transitionsgivesan APDof−3.2%andaSDof3.0%.

ComparingthemeasurementsofBrownetal.withourMCRBcal- culations for 100 transitions gives an APD of 0.17% and a SD of 5.5%.Thus,thehalf-widthdataofthesetwoinvestigationsandthe calculationsareingoodagreement.

(5)

Fig. 3. CO 2-broadened half-widths (cm −1atm −1) of H 216O transitions in the 6 μm region versus wavenumber of the transition. Shown are measurements (Exp) done in this work (blue solid triangle symbols), MCRB calculations from this work (black open diamond symbols), and the measurements of Brown et al. [11] (red solid circle symbols).

The error bars given for the measurements correspond to the 2 σstatistical uncertainty provided by the fit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In Fig. 4, the measured line shifts with error bars (blue solid triangle symbols), the MCRB calculated line shifts shifted slightlyto the left (black open diamond symbols), andthe mea- sured line shifts from Brown et al. [11] with error bars shifted slightly to the right (red open square symbols) are plotted ver- sus wavenumber of the transition. A comparison of our mea- surements and calculations for 105 transitions shows an av- erage deviation of −0.0043 cm1atm1 and a standard devia- tionof 0.0048 cm1 atm1. Comparing ourshift measurements with those of Brown et al. for 100 transitions gives an aver- agedeviationof−0.0035cm1atm1 andastandard deviationof 0.0029cm1atm1.Comparingthemeasurements ofBrownetal.

withourMCRBshiftcalculationsfor100transitionsgivesanaver- agedeviationof−0.00065cm−1atm−1andastandarddeviationof 0.0040cm1 atm1.Again,showingexcellent agreementbetween thisstudyandthatofBrownetal.

Brown et al. [8] presented Complex Robert-Bonamy calcula- tions,whichdemonstratethat,whenvibrationaldependenceisig- nored,pairsoftransitionswiththesamerotationalquantumnum- bersinterchangedhaveexactlythesamehalf-widthvaluesandthe lineshifts haveexactly thesame magnitudewith opposite signs.

For asymmetric rotors, Brown et al. extended this property for pairsto ananalysis ontheparameters KmandJm,definedasthe maximumvaluesofKaandJ,respectively,inthetransitionquanta.

Brownetal.alsodefine

τ

and

τ

” as

τ

= Ka + Kc – J forusein their analysis.We observed similarbehaviors asthat seen inTa- ble8 ofBrown et al.[11]. Examplesare given in Table3, where pairtransitions are shownfor themeasured and calculated half- widthsandlineshifts.Table3showsthatasafunctionofJmand Km the half-widths are nearly equal and the line shifts approxi- matelyequalbutoppositeinsign.Agoodexampleisthesequence forJm=4andKm=2.Theexceptioniswhenthelineshiftisvery

small,forwhichthemeasurementsandcalculationsaredifficultto make.

ThegoodagreementwiththepreviousmeasurementsofBrown etal.[11] validatesthe choiceof theexperimental conditionsfor themeasuredspectra,aswellastheintermolecularpotentialused intheMCRBcalculations.

5.2. Spectralregionaround2.7μm

As indicated in Table 1, for this spectral region, we recorded nine spectra with 2 different cells. We fitted simultaneously the spectrawiththesamecelllength,itallows ustoobtain linespa- rametersfortransitions ina lineintensityrangefrom3.2×1022 to9.6×10−20cm/molec.: 60transitionsbelong tothe

ν

3 band,23 to the 2

ν

2 band and 15 to the

ν

1 band. We did not find re- cent laboratory measurements for this spectral region in the lit- erature.WecomparedourmeasurementandMCRBcalculationre- sults to the data from the Mars database [17]. Fig. 5 shows the half-widthsincm1atm1fromourmeasurementswitherrorbars (blue solid triangle symbols), ourMCRB calculations (black open diamondsymbols),andthepreviouscalculationsofGamacheetal.

[17](redopensquaresymbols)versusalinecount.Thedataarear- rangedsuchthatthefirst16pointsare

ν

1banddata,points17–40 are2

ν

2banddata,andpoints41–105are

ν

3banddata.Thestatis- ticsfortheagreementare givenintoppartofTable4.TheMCRB calculations made here include the vibrational dependence that wasneglectedinRef.[17]andtheintermolecularpotentialwasop- timizedfortheH2O–CO2collision systemasdiscussedabove.The resultisthatthecalculationsmadehereagreewellwithmeasure- ments with an APD of −1.1, −1.8, and −3.1 forthe

ν

1,2

ν

2, and

ν

3bands,respectively.Thecalculationsthatneglectthevibrational dependencehave−13.8,−12.0,and−11.8APDsforthesamedata.

(6)

L. Régalia, E. Cousin and R.R. Gamache et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 231 (2019) 126–135 131

Fig. 4. CO 2pressure-induced line shifts (cm −1atm −1) of H 216O transitions in the 6 μm region versus wavenumber of the transition. Shown are measurements (Exp) from this work (blue solid triangle symbols), MCRB calculations from this work (black open diamond symbols), and the measurements of Brown et al. [11] (red solid circle symbols).

The error bars given for the measurements correspond to the 2 σstatistical uncertainty provided by the fit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 3

Example of measured CO 2broadened H 2O coefficients for “pair’ transitions in the spectral region around 6 μm.

Rotational assignment Jm Km τ τ γExp.cm −1/atm γMCRBcm −1/atm δExp.cm −1/atm δMCRBcm −1/atm

1 1 0 1 0 1 1 1 0 0 0.2037 0.2106 0.02340 0.03271

1 0 1 1 1 0 1 1 0 0 0.2040 0.2098 −0.03270 −0.03144

4 4 0 3 3 1 4 4 0 1 0.0989 0.0988 −0.01060 −0.00610

3 3 1 4 4 0 4 4 1 0 0.0963 0.0980 −0.00393 0.00157

4 4 1 3 3 0 4 4 1 0 0.1025 0.1027 −0.01370 −0.00934

3 3 0 4 4 1 4 4 0 1 0.0946 0.0987 0.00312 0.00747

4 3 1 3 2 2 4 3 0 1 0.1094 0.1198 0.00948 0.00990

3 2 2 4 3 1 4 3 1 0 0.1092 0.1203 −0.02590 −0.01575

4 2 2 4 1 3 4 2 0 0 0.1681 0.1712 0.03050 0.02413

4 1 3 4 2 2 4 2 0 0 0.1689 0.1715 −0.03820 −0.02234

3 1 2 4 2 3 4 2 0 0 0.1428 0.1524 −0.00528 −0.0 0 038

4 2 3 3 1 2 4 2 0 0 0.1535 0.1561 −0.00341 0.00110

4 2 3 4 1 4 4 2 0 0 0.1104 0.1245 0.00870 0.01069

4 1 4 4 2 3 4 2 0 0 0.1265 −0.01342

3 2 1 2 1 2 3 2 0 1 0.1615 0.1685 0.03390 0.02876

2 1 2 3 2 1 3 2 1 0 0.1595 0.1711 −0.03750 −0.02604

4 0 4 3 1 3 4 1 0 1 0.1182 0.1357 −0.00883 0.0 0 092

3 1 3 4 0 4 4 1 1 0 0.1236 0.1348 0.0 0 028 0.0 0 026

3 2 1 3 1 2 3 2 0 0 0.1679 0.1710 0.00803 0.01775

3 1 2 3 2 1 3 2 0 0 0.1641 0.1708 −0.02920 −0.01647

2 0 2 1 1 1 2 1 0 1 0.1801 0.1889 −0.01770 −0.01626

1 1 1 2 0 2 2 1 1 0 0.1833 0.1902 0.01380 0.01658

6 2 5 5 1 4 6 2 1 0 0.1332 0.1326 0.02190 0.01900

5 1 4 6 2 5 6 2 0 1 0.1201 0.1289 −0.03240 −0.01947

7 1 7 6 0 6 7 1 1 0 0.0862 0.0829 0.00939 0.01197

6 0 6 7 1 7 7 1 0 1 0.0818 0.0805 −0.01280 −0.00807

7 0 7 6 1 6 7 1 0 1 0.0814 0.0820 0.00160 0.0 090 0

6 1 6 7 0 7 7 1 1 0 0.0812 0.0799 −0.00583 −0.00562

8 1 8 7 0 7 8 1 1 0 0.0755 0.0712 0.00601 0.01111

7 0 7 8 1 8 8 1 0 1 0.0774 0.0685 −0.01010 −0.00614

(7)

Fig. 5. CO 2-broadened half-widths (cm −1atm −1) of H 216O transitions in the 2.7 μm region versus line count. For each vibrational band the points are ordered by the upper and lower state energy ordered index; index = J ( J + 1) + Ka -Kc + 1. Shown are measurements (Exp) from this work (blue solid triangle symbols), MCRB calculations from this work (black open diamond symbols), and the previous calculations of Gamache et al. [17] (red solid circle symbols). The data are arranged such that the first 16 points are ν1band data, points 17–40 are 2 ν2band data, and points 41–105 are ν3band data. The error bars given for the measurements correspond to the 2 σ statistical uncertainty provided by the fit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 4

Comparison of the measured half-widths and line shifts with the MCRB calculations of this work and with the calculations of Gamache et al. [17] in the spectral region around 2.7 μm. Given are the average percent difference (APD) and standard deviation (SD) in percent for the half-widths and the average deviation (Adev) and standard deviation in cm −1atm −1for the line shifts.

Band 1 0 0 ← 0 0 0 0 2 0 ← 0 0 0 0 0 1 ← 0 0 0

# points 16 24 66

Half-width

Exp-MCRB APD −1.1 −1.8 −3.1

SD 5.7 4.9 6.0

Exp-Gamache

et al. [32] . APD −13.8 −12.0 −11.8

SD 9.7 8.5 9.4

Line shift

Exp-MCRB Adev −0.0037 −0.0014 −0.0025

SD 0.0056 0.0062 0.0060

Exp-Gamache et al. [32] .

Adev −0.0750 −0.0666 −0.0848

SD 0.0623 0.0683 0.0664

in units of cm −1atm −1.

Thestandarddeviationsshowsimilarfeatures.Giventherelatively largevalueofthequadrupole momentofCO2,itcould beargued thatthe vibrationaldependenceofthehalf-widths shouldnot be toolarge. However, looking at the calculations to adjust the po- tential, theaverage difference betweenthe potential used inRef.

[17]andtheresultsfromthefinal potential ofthiswork (pot23) isroughly9%.Thisresultsuggeststhatthevibrationaldependence forthese bands is ∼3–4%. We will study the vibrational depen- denceofthehalf-widthinafuturework.

Fig.6isaplotofthemeasuredlineshiftswitherrorbars(blue solid triangle symbols), our MCRB calculations (black open dia- mondsymbols),andthedataof Gamacheetal.[17].Because the studyof Gamacheetal.[17] onlymadecalculationsforthe rota- tionband,thevaluesoftheshiftsinthedatabasearefromvarious approximateschemesfromthe workofJacquemartetal.[39],or scaleddirectlyfrom

δ

airfromHITRAN2012[40](

δ

CO2=

δ

air4.211).

In theplot, the red open starsymbols correspond toJacquemart et al.’sSection 4.2.3 approximation; the red open circlesymbols correspond to Jacquemart etal.’s Section 4.1 approximation; the red open plus symbols correspond to Jacquemart et al.’s Section 4.2.1 approximation; andthe red asterisksymbols correspond to scaling the air-induced pressure shift.The statistics for thecom- parison of the line shifts are in the bottom partof Table 4. The averagedeviationbetweenthemeasuredandcalculatedlineshifts goesbetween−0.001 to−0.004 cm1 atm1 withstandard devi- ationsaround0.006cm−1atm−1 forthe3vibrationalbandsstud- ied. The comparison with the approximateschemes used in Ref.

[17] showsmuch largeraverage deviations,−0.07 to −0.08cm1 atm−1, andstandard deviations,∼0.065cm−1 atm−1. This figure andthestatisticsdemonstratetheneedforprimary measurement orcalculation toobtaingoodlineshifts.Ithasbeenshownbefore [11,41,42]that scaling techniques leadto very large errors, and it

(8)

L. Régalia, E. Cousin and R.R. Gamache et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 231 (2019) 126–135 133

Fig. 6. CO 2pressure-induced line shifts (cm −1atm −1) of H 216O transitions in the 2.7 μm region versus line count. For each vibrational band the points are ordered by the upper and lower state energy ordered index; index = J ( J + 1) + Ka -Kc + 1. Shown are measurements (Exp) from this work (blue solid triangle symbols), MCRB calculations from this work (black open diamond symbols), from Gamache et al. [17] : the red open star symbols correspond to Jacquemart et al.’s [39] Section 4.2.3 approximation; the red open circle symbols correspond to Jacquemart et al.’s Section 4.1 approximation; the red open plus symbols correspond to Jacquemart et al.’s Section 4.2.1 approximation;

and the red asterisk symbols correspond to scaling the air-induced pressure shift. See text for details. The data are arranged such that the first 16 points are ν1band data, points 17–40 are 2 ν2band data, and points 41–105 are ν3band data. The error bars given for the measurements correspond to the 2 σstatistical uncertainty provided by the fit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Comparison of the half-widths (cm −1atm −1) from the measurements (Exp) blue solid triangle, open triangle, and open diamond symbols for our ν1, 2 ν2, and ν3

band data, respectively), the MCRB calculations (black solid star, open star, and star of David symbols for our ν1, 2 ν2, and ν3band data, respectively), and the Borkov et al.

[43] data (red solid circle, open circle, and open circle with a cross symbols for our ν1, 2 ν2, and ν3band data, respectively) versus line count. The data are arranged such that the first 13 points are ν1+ 2 ν2+ ν3band data, points 14–19 are 3 ν1band data, and points 20–45 are 2 ν1+ ν3band data. For each vibrational band the points are ordered by the upper and lower state energy ordered index; index = J ( J + 1) + Ka -Kc + 1. The error bars given for the measurements correspond to the 2 σ statistical uncertainty provided by the fit. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

(9)

wasstated [17] that the error fromthe semi-empirical line shift predictionroutinecanbelarge.

Thelinelistsforthetwopreviousspectralregionsaregivenin thesupplementarydata.

5.3.Comparisonswithdataaround0.95μm

Borkov et al. [43] have measured the broadening and shift parameters of the water vapor spectral lines in the 10,100–

10,800 cm1 region induced by pressure of carbon dioxide. We comparedthemeasurements andcalculationsmadehereto their resultsforthe half-width.Note, becausethe lineshiftis strongly dependent on vibration, a comparisonof our lineshifts to their datawasnot done. Borkov et al.made measurements fortransi- tionsinthe

ν

1+2

ν

2+

ν

3,3

ν

1,and2

ν

1+

ν

3bands.Thesedataare comparedwithour measurements andcalculationsinthe 2.7μm region (

ν

1, 2

ν

2, and

ν

3 bands). Fig. 7 shows the half-widths in cm1 atm1fortheourmeasurementswitherrorbars(bluesolid triangle, open triangle, and open diamond symbols for our

ν

1, 2

ν

2,and

ν

3banddata,respectively),theMCRBcalculationsshifted slightlyto the left (black solid star,open star, andstar of David symbolsforour

ν

1,2

ν

2,and

ν

3 band data,respectively), andthe Borkovetal.datawitherrorbarsshiftedslightlytotheright(red solidcircle, open circle, andopen circlewitha crosssymbolsfor their

ν

1+2

ν

2+

ν

3

ν

1, 3

ν

1, and 2

ν

1+

ν

3 band data, respectively) versus line count. The data are arranged such that the first 13 pointsare

ν

1+2

ν

2+

ν

3banddata,points14–19are3

ν

1banddata, andpoints20–45are2

ν

1+

ν

3banddata(labeledatthebottomof thefigure).Intotal45transitionswerecomparedbetweenthedata sets.The statisticsfor thecomparisonof ourmeasurements with thedataofBorkovetal.areanAPDof1.5%withaSDof7.3%;the comparisonofourcalculationstothedataofBorkovetal.arean APD of−3.9% witha SDof 3.4%. The statistics imply a constant shiftofourcalculations,within3–4%,fromtheBorkovetal.data.

Eventhoughthespectralregionsofthetwodatasetsareseparated byabout6000cm1,thereisgoodagreementamongthedatasets.

Thisresultimpliesthevibrationaldependenceisoforder∼3%, in agreementtotheresultsfromtheprevioussection.

6. Conclusion

Newlaboratorymeasurementsofline-shapeparametersofH2O broadened by CO2 were performed. Two spectral regions were probed,i.e.2.7and6μm,astheyareofinterestfortheplanetary atmospheresremotesensing.MCRBcalculationsofthehalf-width, lineshift, and their temperature dependence were made forthe coldbandsofH2Ointhespectralrange1300–5000cm1.There- sultswere comparedwiththeliteraturevalues[11,17,43].There is goodagreementbetweenthemeasuredandcalculatedhalf-widths andlineshiftswiththedataofBrownetal.inthe6μmregion.In the2.7μmregion,ourmeasurementsandMCRBcalculationsagree wellforboththehalf-widthsandlineshifts.Comparisonwiththe half-widthsandlineshiftsfromRef.[17]arenotasgood,showing theeffectsofneglectingvibrationaldependenceforthehalf-widths andusingapproximatepredictionroutinesforthelineshifts.Com- parisonsofourmeasuredandcalculatedhalf-widthswiththedata ofBorkov etal.[43] onthe 0.9μm regionshow good agreement.

Themeasurementsareavailableassupplementaryfiles.Thecalcu- lations in the range 1300–5000 cm1 are available as a supple- mentary file. In the future, the MARS database [17] will be up- datedwiththenewparametersfromthisworkandwillbe made publicly available, with a read_me.txt file, as a file from one of theauthorswebsite(faculty.uml.edu/robert_gamache).Note,using the improved model of temperature dependence [38], the same databasecan be usedforMars,Venus, oranyother planetaryat- mosphererichinCO2.

Acknowledgments

ThisworkwassupportedbytheProgrammeNationaldePlané- tologie (PNP) of CNRS-INSU co-funded by CNES. Several authors (RRG,BV) arepleasedtoacknowledgesupport ofthisresearch by theNational ScienceFoundationthrough GrantNo. AGS-1622676. Any opinions,findings, andconclusions or recommendations ex- pressedinthismaterialarethoseoftheauthor(s)anddonotnec- essarilyreflectthe viewsoftheNationalScience Foundation. The authorssincerelythankDrH.TranfromLMD(Paris)formanyuse- fuldiscussions,herexpertiseandadviceonthelineprofile.

Supplementarymaterials

Supplementary material associated with this article can be found,intheonlineversion,atdoi:10.1016/j.jqsrt.2019.04.012.

References

[1] de Bergh C . Isotopic ratios in planetary atmospheres. Adv Space Res 1995;15:427–40 .

[2] Owen T , Maillard JP , de Bergh C , Lutz BL . Deuterium on Mars: the abundance of HDO and the value of D/H. Science 1988;240:1767–70 .

[3] Carr MH . D/H on Mars: effects of floods, volcanism, impacts, and polar pro- cesses. Icarus 1990;87:210–27 .

[4] Encrenaz T , Lellouch E , Paubert G , Gulkis S . The water vapor vertical distribu- tion on Mars from millimeter transitions of HDO and H 218O. Planet Space Sci 2001;49:731–41 .

[5] Encrenaz T , Bézard B , Owen T , Lebonnois S , Lefèvred F , Greathouse T , Richter M , Lacyg J , Atreyah S , Wongh AS , Forget F . Infrared imaging spec- troscopy of Mars: H 2O mapping and determination of CO 2 isotopic ratios.

Icarus 2005;179:43–54 .

[6] Bertaux JL , Vandaele AC , Korablev O , Villard E , Fedorova A , Fussen D , Quémerais E , Belyaev D , Mahieux A , Montmessin F , Muller C , Neefs E , Neve- jans D , Wilquet V , Dubois JP , Hauchecorne A , Stepanov A , Vinogradov I , Rodin A . A warm layer in Venus’ cryosphere and high-altitude measurements of HF, HCl, H 2O and HDO. Nature 2007;450:646–9 .

[7] Fedorova A , Korablev O , Vandaele A-C , Bertaux J-L , Belyaev D , Mahieux A , Neefs E , Wilquet WV , Drummond R , Montmessin F , Villard E . HDO and H 2O vertical distributions and isotopic ratio in the Venus mesosphere by solar oc- cultation at infrared spectrometer on board Venus Express. J Geophys Res 20 08;113:E0 0B22 .

[8] Villanueva GL , Mumma MJ , Novak RE , Käufl HU , Hartogh P , Encrenaz T , Tokunaga A , Khayat A , Smith MD . Strong water isotopic anomalies in the martian atmosphere: probing current and ancient reservoirs. Science 2015;348:218–21 .

[9] Good SP , Noone D , Kurita N , Benetti M , Bowen GJ . D/H isotope ratios in the global hydrologic cycle. Geophys Res Lett 2015;42:5042–50 .

[10] Yang L , Ciesla FJ , Alexander CMOD . The D/H ratio of water in the solar nebula during its formation and evolution. Icarus 2013;226:256–67 .

[11] Brown LR , Humphrey CM , Gamache RR . CO 2-broadened water in the pure ro- tation and ν2fundamental regions. J Mol Spectrosc 2007;246:1–21 . [12] Gamache RR , Neshyba SP , Plateaux JJ , Barbe A , Régalia L , Pollack JB .

CO 2-broadening of water-vapor lines. J Mol Spectrosc 1995;170:131–51 . [13] Plateaux JJ , Regalia L , Boussin C , Barbe A . Multispectrum fitting technique

for data recorded by Fourier transform spectrometer: application to N 2O and CH 3D. J Quant Spectrosc Radiat Transf 2001;68:507–20 .

[14] Devi VM , Benner DC , Sung K , Crawford TJ , Gamache RR , Renaud CL , Smith MAH , Mantz AW , Villanueva GL . Line parameters for CO 2broadening in the ν2band of HD 16O. J Quant Spectrosc Radiat Transf 2017;187:472–88 . [15] Devi VM , Benner DC , Sung K , Crawford TJ , Gamache RR , Renaud CL ,

Smith MAH , Mantz AW , Villanueva GL . Line parameters for CO 2- and self- -broadening in the ν3 band of HD 16O. J Quant Spectrosc Radiat Transf 2017;203:158–74 .

[16] Devi VM , Benner DC , Sung K , Crawford TJ , Gamache RR , Renaud CL , Smith MAH , Mantz AW , Villanueva GL . Line parameters for CO 2- and self- -broadening in the ν1 band of HD 16O. J. Quant. Spectrosc. Radiat. Transf 2017;203:133–57 .

[17] Gamache RR , Farese M , Renaud CL . A spectral line list for water isotopologues in the 1100–4100 cm −1 region for application to CO 2-rich planetary atmo- spheres. J Mol Spectrosc 2016;326:144–50 .

[18] Connes P , Michel G . Astronomical Fourier spectrometer. Appl Opt 1975;14:2067–84 .

[19] Plateaux JJ , Barbe A , Delahaigue A . Reims high resolution Fourier trans- form spectrometer. Data reduction for ozone. Spectrochim Acta Part A 1995;51:1153–69 .

[20] Régalia L , Oudot C , Thomas X , Von der Heyden P , Decatoire D . FTS im- provements and connection with a long White cell. Application: H 216O in- tensity measurements around 1200 cm −1. J Quant Spectrosc Radiat Transf 2010;111:826–42 .

Références

Documents relatifs

3: Differences between the absorptions computed, for the P P(6,6) doublet (alone) for 0.1% NH 3 diluted in Ar at various pressures, using the parameters of Table 1

On the other hand, the global coverage of ALTIUS is obtained by its multi-mode nature: the solar, stellar and planetary occultations provide sparse data at virtually all latitudes

Statistical distribution of the 50 retrievals (in the column mode) of CH 4 in the L1/L1 synergy case in the nadir mode with a low VMR (10 ppbv) on the left and a high VMR (60 ppbv)

Line shifts in cm -1 atm -1 for transitions in the ν 2 band from the measurement database (blue open circle symbols with measurement error bars), the MCRB calculated values

Peut faire un exposé sur un thème familier ou dans sa spécialité en mettant en relief les points qui lui semblent essentiels, quand il/elle peut

As in the similar setting of calcium beam clocks, this enhances dramatically the signal strength as compared to direct saturated fluorescence or absorption spectroscopy of the

Figure 1 shows the pressure broadening and shifting cross sections as a func- tion of the kinetic energy for various vibrational bands for the S v (1) and O v (3) lines, as well as

Improving older results, Engelking [4] has shown that each strongly zero-dimensional metrizable space is (necessarily hereditarily) stron- gly retractifiable.. Another class