• Aucun résultat trouvé

Measurements on air porosity of sea ice

N/A
N/A
Protected

Academic year: 2021

Partager "Measurements on air porosity of sea ice"

Copied!
9
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Annals of Glaciology, 4, pp. 204-208, 1983

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Measurements on air porosity of sea ice

Nakawo, M.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=60d30e49-7444-4955-a98c-8e21b54254cd

https://publications-cnrc.canada.ca/fra/voir/objet/?id=60d30e49-7444-4955-a98c-8e21b54254cd

(2)

- -

Ser

lor%

THI

National Research

Conseil national

N21d

*

Council Canada

de recherches Canada

no. 1129

c .

2

,

BZDG

'

- - --A

MEASUREMENTS ON AIR POROSITY OF SEA ICE

by

M.

Nakawo

Reprinted from

Annals of Glaciology, Vol. 4, 1983

p.

204

-

208

DBR Paper No.

1

129

Division of Building Research

Price $1.00

Canad's

4 ~ 0

gb

97

OTTAWA

ANALYZED

NRCC 22615

(3)

La t e n e u r e n a i r d e l a g l a c e marine p e u t S t r e mesur'ee

d i r e c t e m e n t

e n

f a i s a n t f o n d r e un G c h a n t i l l o n e t e n

r'ecup'erant l ' a i r lib'er'e,

B

c o n d i t i o n q u e l ' o n c o n n a i s s e l e

r a p p o r t d e s a t u r a t i o n d e l ' a i r d a n s l ' e a u d e f o n t e .

Les

e x p ' e r i e n c e s o n t m o n t r s q u e l e r a p p o r t d e s a t u r a t i o n d'epend

d e t r o i s p a r a m s t r e s :

l e

t e m p s 6coulZi a p r Z s q u e

1 ' C c h a n t i l l o n d e g l a c e a f o n d u , l a t a i l l e moyenne d e s

b u l l e s , e t l a p o r o s i t g

B

l ' a i r d e l ' g c h a n t i l l o n .

Cornme l e

d e r n i e r

param'et

re

d o i t

S t

re

dgtermin'e,

une

m'ethode

i t ' e r a t i v e a E t g employge pour c a l c u l e r l a p o r o s i t k .

On

a

suppos'e que l a p r e s s i o n d a n s

l e s

b u l l e s

E t a i t

d e une

atmosph'ere.

Un p r o f i l v e r t i c a l d e l a p o r o s i t g a a i n s i

G t B

o b t e n u pour

l e s

g l a c e s d e premi'ere ann'ee d e l l A r c t i q u e .

L e s r g s u l t a t s s o n t e n a c c o r d a v e c

les

B v a l u a t i o n s d e l a

p o r o s i t ' e f a i t e s

3

p a r t i r d e s v a l e u r s d e l a d e n s i t ' e mesur'ee

s u r

l e s

mSmes G c h a n t i l l o n s ,

ce

q u i i n d i q u e q u e l a p r e s s i o n

dans

les

b u l l e s

e s t

v o i s i n e d e une atmosphsre.

(4)

Annals of Glaciology 4 1983

O International Glaciological Society

MEASUREMENTS ON AIR POROSITY OF SEA ICE

Masayoshi Nakawo*

(Geotechnical Section, Division of Building Research, National Research Council Canada, Ottawa, Ontario K 1 A OR6, Canada)

ABSTRACT

Tne a i r c o n t e n t o f sea i c e can be measured d i r e c t l y by m e l t i n g a sample and c o l l e c t i n g t h e r e l e a s e d a i r , p r o v i d e d t h e a i r s a t u r a t i o n r a t i o i n t h e m e l t w a t e r i s known. The s a t u r a t i o n r a t i o was found e x p e r i m e n t a l l y t o be a f u n c t i o n o f t h r e e para- meters: t h e t i m e a f t e r an i c e sample was melted, t h e average bubble size, and t h e a i r p o r o s i t y o f t h e sample. Since t h e l a s t parameter i s t h e term t o be determined, an i t e r a t i o n method was employed i n c a l c u - l a t i o n s of p o r o s i t y . The bubble p r e s s u r e was assumed t o be a t one atmospheric pressure. The v e r t i c a l p r o - f i l e of a i r p o r o s i t y was t h u s o b t a i n e d f o r f i r s t - y e a r sea i c e i n t h e A r c t i c . The r e s u l t s were i n good agree- ment w i t h e s t i m a t i o n s o f p o r o s i t y made from d e n s i t y valrres measured f o r t h e same samples. T h i s i n d i c a t e s t h a t t h e bubble pressure i s near one atmospheric pressure.

INTRODUCTION

Mechanical p r o p e r t i e s o f sea i c e a r e h i g h l y dependent on a i r p o r o s i t y as w e l l as b r i n e p o r o s i t y

(e.g. Weeks and Assur 1967, Schwarz and Weeks 1977). The l a t t e r has been i n v e s t i g a t e d e x t e n s i v e l y i n r e l a t i o n t o s a l i n i t y and temperature (Assur 1958, Anderson 19601, b u t s t u d i e s on a i r p o r o s i t y a r e l i m i t e d (Kusunoki 1958). R e s u l t s o f mechanical t e s t s on sea i c e have been analyzed m a i n l y t o a s c e r t a i n t h e i n f l u e n c e o f b r i n e p o r o s i t y o r b r i n e volume, n e g l e c t - i n g t h e e f f e c t s o f a i r v o i d s (e.g. Schwarz and Weeks 1977), a l t h o u g h t h e dependence o f mechanical proper- t i e s on a i r p o r o s i t y has been i n d i c a t e d (Tabata 1958).

Two d i f f e r e n t approaches have been suggested f o r d e t e r m i n i n g t h e a i r p o r o s i t y o f a sample o f sea i c e . One approach i s t o compare t h e measured d e n s i t y o f t h e sample w i t h t h e t h e o r e t i c a l d e n s i t y f o r a i r - f r e e sea i c e (Anderson 1960, Ono 1968). Another approach i s by d i r e c t measurement o f t h e volume o f a i r which i s r e l e a s e d through me1 t i n g , assuming t h a t a i r bubbles i n t h e sample a r e a t atmospheric pressure (Kusunoki 1958, Save1 'yev 1954

1.

Both approaches i n v o l v e several problems t h a t must be c l a r i f i e d . I n t h e former approach, t h e r e a r e un- c e r t a i n t i e s i n t h e values o f p h y s i c a l q u a n t i t i e s used f o r c a l c u l a t i n g t h e t h e o r e t i c a l d e n s i t y f o r a i r - f r e e sea i c e (e.g. d e n s i t y o f b r i n e ) . I n t h e d i r e c t measure- ment o f a i r released, t h e a i r - b u b b l e pressure i s un- c e r t a i n . A pressure h i g h e r than one atmosphere c o u l d be generated i n a i r bubbles as t h e temperature a t a g i v e n

depth decreases w i t h i n c r e a s i n g t h i c k n e s s o f an i c e cover. I n a d d i t i o n , one has t o determine t h e amount o f d i s s o l v e d a i r i n m e l t w a t e r t h a t must be added t o t h e amount of 1 ib e r a t e d a i r t o o b t a i n t h e r e a l volume o f entrapped a i r . A p p l y i n g a s i m i l a r method t o measure t h e a i r c o n t e n t o f g l a c i e r i c e , Langway (1958) found t h a t t h e m e l t w a t e r was almost s a t u r a t e d w i t h a i r . F o r sea i c e , however, t h e s a t u p a t i o n r a t i o f o r m e l t w a t e r c o u l d n o t be near complete s a t u r a t i o n , s i n c e t h e a i r c o n t e n t o f sea i c e i s expected t o be s m a l l e r than f o r g l a c i e r i c e .

I n t h i s paper, experimental r e s u l t s on t h e s a t u r - a t i o n r a t i o o f a i r i n m e l t w a t e r a r e presented, and e s t i m a t i o n s o f p o r o s i t y by t h e two methods a r e com- pared, u s i n g d a t a o b t a i n e d on f i r s t - y e a r sea i c e from t h e A r c t i c .

COLLECTION OF AIR ENTRAPPED I N AN ICE SAMPLE The a i r entrapped i n an i c e sample can be c o l l e c t e d by me1 t i n g t h e sample, t h u s r e l e a s i n g t h e a i r . As e a r l y as 1925, A r n o l ' d - A l i a b ' y e v suggested a simple apparatus f o r c o l l e c t i n g t h e a i r and measuring i t s volume: r e l e a s e d a i r i s i n t r o d u c e d i n t o a b u r e t t e through a bottomless b o t t l e ( S a v e l ' y e v 1954). T h i s t y p e o f apparatus was used by Kusunoki (1958) f o r measuring t h e amount o f a i r i n very t h i n sea i c e

(<0.2 m t h i c k ) , where a r e l a t i v e l y l a r g e amount o f a i r was expected. Although a s i m i l a r amount o f a i r i s l i k e l y i n t h e upper p o r t i o n (say above 0.2 m i n depth) o f a f i r s t - y e a r sea-ice cover i n t h e A r c t i c , t h e deeper p o r t i o n i s considered t o c o n t a i n much l e s s . The A r n o l ' d - A l i a b ' y e v system, w i t h a b u r e t t e , would probably n o t be a c c u r a t e enough t o measure t h e small amount expected. A method developed by Nakaya (1956), t h e r e f o r e , was adopted f o r c o l l e c t i n g t h e a i r r e l e a s e d by m e l t i n g and measuring i t s volume.

The apparatus i s shown s c h e m a t i c a l l y i n F i g u r e 1. An i c e sample was p u t i n t o a c o n t a i n e r o f kerosene i n a c o l d room. A watch g l a s s was placed over t h e sample and t h e whole system was b r o u g h t i n t o a warm l a b o r a - t o r y . As t h e i c e melted, a i r i n t h e sample was r e l e a s e d and trapped under t h e watch glass. The l e v e l o f kerosene was a d j u s t e d t o be c l o s e t o t h e t o p o f t h e watch g l a s s so t h a t t h e p r e s s u r e o f t h e trapped a i r would be t h e same as t h e measured a i r pressure o f t h e l a b o r a t o r y . The temperature o f t h e kerosene was measured by a thermocouple a t a p o i n t c l o s e t o t h e trapped a i r .

The c a p t u r e d a i r under t h e watch g l a s s took a form s i m i l a r t o an o b l a t e spheroid and was c i r c u l a r *Present address: Department o f A p p l i e d Physics, F a c u l t y o f Engineering, Hokkaido U n i v e r s i t y ,

Sapporo 060, Japan. 204

(5)

Nakawo: Air porosity of sea ice

travelling

~ ~ C ~ O S C O D ~ thermocou~le.

melt water

/

Fig.1. Experimental apparatus f o r d e t e r m i n i n g a i r content.

i n t h e h o r i z o n t a l plane. The diameter o f t h e c i r c l e was measured u s i n g a t r a v e l l i n g microscope, and t h e diameter converted t o volume o f a i r by means o f t h e e q u a t i o n g i v e n i n F i g u r e 2, which was o b t a i n e d by i n j e c t i n g a i r o f known volume under t h e watch glass.

DISSOLVED AIR I N MELTWATER

The d i s s o l v e d a i r i n me1 t w a t e r was e s t i m a t e d as f o l l o w s . B l o c k s o f a i r - f r e e columnar-grained i c e were grown i n t h e l a b o r a t o r y (Gold 1972). Specimens o f 40 t o 70 g i n w e i g h t ( t h e same range as f o r t h e sample f o r p o r o s i t y measurements, described i n t h e n e x t s e c t i o n ) were prepared and h o l e s were made w i t h a d r i l l from one s i d e o f each block. A p i e c e o f i c e was f r o z e n t o t h i s s i d e a f t e r d r i l l i n g . The volume o f t h e c a v i t i e s t h u s pre- pared was determined by measuring t h e i r dimensions w i t h a t r a v e l l i n g microscope. F o r some blocks, t h e p o r o s i t y ( t h e volume o f t h e c a v i t i e s ) was e s t i m a t e d by measuring t h e d e n s i t y a c c u r a t e l y w i t h a procedure described by Nakawo (1980). These b l o c k s w i t h c a v i t i e s o f known volume were m e l t e d i n kerosene as described i n t h e p r e v i o u s section. The volume o f a i r r e l e a s e d from t h e b l o c k s and c a p t u r e d under t h e watch g l a s s was always s m a l l e r t h a n t h e pre-determined volume o f t h e c a v i - t i e s . The d i f f e r e n c e was considered t o be t h e amount o f a i r d i s s o l v e d i n t h e me1 twater.

D u r i n g t h e experiment, t h e volume o f t h e c a p t u r e d a i r ( h o r i z o n t a l diameter o f t h e a i r ) was found t o de- crease c o n t i n u o u s l y w i t h time. T h i s decrease i n d i c a t e s t h a t a i r can be absorbed by t h e kerosene, even though t h e s o l u b i l i t y o f a i r i n kerosene i s very small. The c a p t u r e d a i r under t h e watch glass, t h e r e f o r e , can d i f f u s e toward t h e m e l t w a t e r o r toward t h e atmosphere. The l a t t e r c o u l d t a k e p l a c e because t h e c o n c e n t r a t i o n o f a i r i n kerosene would be l a r g e r near t h e trapped

a i r t h a n a t t h e p l a n a r t o p s u r f a c e o f kerosene because o f t h e e f f e c t o f curvature. When a i r was i n j e c t e d under t h e watch g l a s s when no w a t e r was underneath, however, no decrease i n t h e volume o f t h e trapped a i r was observed f o r a couple o f days. I t i s considered, t h e r e f o r e , t h a t t h e amount o f a i r escaping t o t h e atmosphere i s n e g l i g i b l e , and t h a t t h e movement i s p r i m a r i l y t o t h e me1 t w a t e r , i n c r e a s i n g i t s s a t u r a t i o n r a t i o .

With t h i s assumption, t h e a i r c o n t e n t o f t h e me1 t-

w a t e r was c a l c u l a t e d from t h e d i f f e r e n c e i n volume between t h e c a v i t i e s i n an i c e b l o c k b e f o r e me1 t i n g and t h e c a p t u r e d a i r under t h e w a t t h g l a s s a f t e r m e l t i n g . Because t h e volume o f t h e captured a i r k e p t decreasing as described above, t h e a i r c o n t e n t o f t h e m e l t w a t e r was assumed t o i n c r e a s e w i t h time.

An example of t h e r e s u l t s o f t h i s experiment i s shown i n F i g u r e 3, i n which the. temperature i s a l s o presented. The abscissa i n t h e f i g u r e i s t h e t i m e when t h e who1 e system was brought from t h e c o l d room

t o t h e warn1 l a b o r a t o r y ; to and te in d i c a t e respec-

t i v e l y when t h e i c e b l o c k m e l t e d completely and when

' 0

0

5 10 15

m

25

TIME, h

Fig.3. Time v a r i a t i o n o f a i r s a t u r a t i o n r a t i o i n m e l t w a t e r and kerosene temperature.

t = 0: t h e system was brought t o a warm l a b o r a t o r y .

t = to: an i c e sample was me1 t e d completely.

t = te: temperature reached room temperature.

t h e kerosene temperature a t a p o i n t c l o s e t o t h e captured a i r came t o room temperature. The kerosene temperature was 15°C even b e f o r e t h e i c e had m e l t e d completely, and subsequently reached t h e e q u i l i b r i u m v a l u e v e r y r a p i d l y . I t took a l o n g e r time, however, f o r t h e s a t u r a t i o n r a t i o t o reach e q u i l i b r i u m (com- p l e t e s a t u r a t i o n ) . The a i r c o n t e n t o f m e l t w a t e r was o n l y about 20 and 30% by volume o f i t s s a t u r a t i o n

v a l u e a t to and te, r e s p e c t i v e l y , i n t h i s example.

When t h e t o t a l s u r f a c e area o f t h e a i r c a v i t i e s i s l a r g e , t h e r e c o u l d be a g r e a t e r p o s s i b i l i t y d u r i n g m e l t i n g f o r a i r t o d i s s o l v e i n t o t h e meltwater. The degree o f a i r c o n t e n t o f t h e m e l t w a t e r a t a g i v e n time, t h e r e f o r e , c o u l d be a f u n c t i o n o f t h e t o t a l

--

<- 8 * / * - ,

---I-

-

- -

o 6.0.65 rnrn

.

d=O.95 rnm ad=3,90rnm

-

6-

~d.6.00 rnrn I 0 I 2 3 AIR POROSITY, %

Fig.2. The r e l a t i o n between diameter $I and volume v Fig.4. Dependence o f a i r s a t u r a t i o n on a i r p o r o s i t y

(6)

Naka~o: A i r porosity of sea i c e

s u r f a c e area o f t h e c a v i t i e s , and hence a f u n c t i o n of c a v i t y s i z e and b u l k p o r o s i t y . I n o r d e r t o examine t h i s , 23 b l o c k s having d i f f e r e n t p o r o s i t i e s were prepared u s i n g d i f f e r e n t s i z e d r i l l s. F o l l owing t h e above procedure, a i r s a t u r a t i o n a t to and t, was c a l c u l a t e d f o r these blocks.

The r e s u l t s a r e s h m n i n F i g u r e 4. Two d a t a p o i n t s connected by a v e r t i c a l b a r correspond t o each block, and t h e lower p o i n t represents t h e value a t to and t h e h i g h e r p o i n t a t t e r n D r i l l s i z e i s d i f f e r e n t i a t e d by d i f f e r e n t symbols. I t can be seen t h a t a i r s a t u r - a t i o n increased w i t h i n c r e a s i n g p o r o s i t y f o r t h e same s i r e o f c a v i t y . Blocks w i t h f i n e r c a v i t i e s prepared by small e r d r i 11 s r e s u l t e d i n a 1 a r g e r degree o f a i r s a t u r a t i o n i n t h e me1 t w a t e r i n comparison w i t h those b l o c k s having l a r g e c a v i t i e s w i t h t h e same p o r o s i t y . The two f i n e s o l i d l i n e s i n F i g u r e 4 are "eye f i t " curves f o r t h e s m a l l e r two d r i l l s i z e s (0.65 and 0.95 m) and t h e l a r g e r s i z e s (3.90 and 6.00

mn).

The small d i f f e r e n c e i n d r i l l s i z e d i d n o t g i v e a s i g n i - f i c a n t d i f f e r e n c e i n t h e a i r s a t u r a t i o n , although any change i n h o l e s i z e changes t h e s u r f a c e area o f t h e c a v i t i e s . The s c a t t e r o f t h e data f o r t h e curves i s about 2 5% by volume. which would cause an uncer-

t a i n t y o f about 0.15% i n p o r o s i t y .

F o r e s t i m a t i n g t h e a i r s a t u r a t i o n r a t i o i n m e l t - water by u s i n g t h e c a l i b r a t i o n curve given i n F i g u r e 4, one has t o know t h e average s i z e o f a i r bubbles and b u l k p o r o s i t y o f t h e sample. The former can be obtained by observation. Since t h e l a t t e r i s t h e term t h a t one i s t r y i n g t o determine, an i t e r a t i o n method has t o be employed. Assuming t h e t e n t a t i v e p o r o s i t y value t o be g i v e n o n l y by t h e volume o f c o l l e c t e d a i r , t h e a i r s a t u r a t i o n r a t i o i n meltwater i s o b t a i n e d u s i n g a curve i n F i g u r e 4. By adding t h e amount o f d i s s o l v e d a i r thus obtained t o t h e volume o f c o l l e c t e d a i r , t h e second t e n t a t i v e value f o r a i r p o r o s i t y o f t h e sample i s obtained. T h i s process can be repeated u n t i l t h e v a l u e f o r t h e p o r o s i t y converges. I t i s assumed, i n t h e above c a l c u l a t i o n , t h a t a i r bubbles i n an i c e sample a r e a t one atmospheric pressure.

SALINITY, DENSITY, AND AIR POROSITY Sample d e s c r i p t i o n

Two c o r e samples, 75 mm i n diameter, were r e - covered from f i r s t - y e a r sea i c e a t E c l i p s e Sound, near Pond I n l e t , B a f f i n I s l a n d , Canada. The c o r i n g was done on 31 March 1980, when t h e a i r temperature was about -23°C. The recovered cores were 0.740 and 0.795 m i n l e n g t h . They were brought back t o t h e main camp a t Pond I n l e t , where t h e s h o r t e r c o r e ( c o r e 1 ) was analyzed t h e f o l l o w i n g n i g h t . The l o n g e r c o r e ( c o r e 2 ) was packed w i t h d r y i c e and shipped t o Ottawa f o r t h e l a t e r analyses, which were c a r r i e d o u t a f t e r storage f o r s i x months a t a temperature o f - 4 0 " ~ .

I n t h e w i n t e r o f 1979-80, t h e freeze-up d a t e was 16 October 1979. The growth o f t h e i c e i n t h e e a r l y p a r t o f t h e season was s i m i l a r t o t h a t o f o t h e r w i n t e r seasons: t h e growth r a t e o f sea i c e was i n t h e o r d e r of 0.2 um s - l (1.7 cm d - l ) w i t h r a t e decreasing w i t h t i m e I n e a r l y November, however, when t h e thickness o f t h e i c e had reached about 0.3 m, snow o f about 0.3 m depth was deposited on t h e ice, and stayed u n t i l t h e m e l t i n g season s t a r t e d . The presence o f t h e t h i c k snow l a y e r throughout t h e w i n t e r , except f o r t h e e a r l y period, c o n t r a s t e d w i t h t h e s i t u a t i o n i n o t h e r w i n t e r s . The growth r a t e o f t h e i c e decreased d r a m a t i c a l l y t o about 0.05 pm s-1 (0.4 cm d - l ) a f t e r t h e snow came, i.e. f o r i c e below 0.3 m i n depth. The growth r a t e was almost c o n s t a n t around t h e lower value (0.05 p s-I)

during t h e w i n t e r season. The thermal c o n d u c t i v i t y o f snow r s smaller than t h a t o f i c e by an o r d e r o f magni- tude, and a snow l a y e r o f 0.3 m t h i c k n e s s i s equi- v a l e n t i n

theraal

i n s u l a t i o n t o sea i c e o f about 3 w

thickness. I t i s considered t h a t t h e almost c o n s t a n t growth r a t e i n t h e w i n t e r i s due t o t h e f a c t t h a t t h e i n s u l a t i o n e f f e c t o f sea i c e , which increased w i t h time, i s very small i n comparison w i t h t h e l a r g e

i n s u l a t i o n e f f e c t o f t h e t h i c k snow l a y e r , which d i d n o t vary s i g n i f i c a n t l y w i t h time.

A continuous columnar-grained i c e was found below about 0.2 m depth l e v e l .

Measurements and r e s u l t s

A s i m i l a r procedure was f o l l o w e d i n determining s a l i n i t y , density, and a i r p o r o s i t y f o r b o t h t h e - - I

f i e l d measurements ( c o r e 1 ) and t h e l a b o r a t o r y meas- urements ( c o r e 2). The cores were sectioned i n t o seg- ments o f e i t h e r 50 m ( c o r e 1 ) o r 25 mn ( c o r e 2). The r a d i a l s u r f a c e o f each segment was trimmed, r e s u l t i n g i n t h e f i n a l w e i g h t o f each sample b e i n g between 40 and 70 g. Mass, volume, and d e n s i t y were determined a c c u r a t e l y u s i n g a h y d r o s t a t i c method, i n which t h e samples were weighed b o t h i n a i r and 2,2,4-trimethyl- pentane (Nakawo 1980). Measurements were made a t about -15'C f o r core 1 and a t about -28'C f o r c o r e 2. The accuracy o f t h e d e n s i t y measurement was +- 0.4 t o t0.8 k g r3.

I n t h e e s t i m a t e o f p o r o s i t y , t h e curve f o r t h e s m a l l e r two s i z e s (0.65 and 0.95

mm)

o f d r i l l shown i n F i g u r e 4 was adopted f o r c a l i b r a t i n g t h e d i s s o l v e d a i r i n me1 twater, s i n c e most o f t h e a i r bubbles i n t h e samples were approximately 0.5 t o 1.0 mn i n diameter. Large bubbles o f 2 t o 3

mm

i n diameter were found as w e l l as t h e s m a l l e r bubbles i n t h e samples from 0 t o 0.2 m depth. Using t h e curve f o r t h e smaller s i z e s o f c a v i t i e s c o u l d r e s u l t i n overestimating d i s s o l v e d a i r i n meltwater f o r these samples. The amount o f a i r c o l 1 ected from t h e s h a l l ow samples, however, was much l a r g e r than t h e amount o f d i s s o l v e d a i r , even f o r t h e c o n d i t i o n o f a i r - s a t u r a t e d meltwater. The f i n a l poro- s i t y value, t h e r e f o r e , was n o t i n f l u e n c e d s i g n i f i - c a n t l y by t h e overestirnation.

A f t e r t h e measurements on p o r o s i t y , t h e r e s u l t i n g meltwater was used f o r

the

s a l i n i t y measurement by a

refractometer/salinometer.

A simple experiment, which Has c a r r i e d o u t b e f o r e t h e measurements, i n d i c a t e d t h a t a small amount of kerosene i n t h e water would n o t a f f e c t t h e s a l i n i t y readings. It was d i f f i c u l t , how- ever, t o t a k e a r e a d i n g when a l a r g e r amount o f kero- sene was p r e s e n t and so c a r e was taken t o remove as much as ~ o s s i b l e from t h e me1 twater. A1 thoush i t was n o t p o s s i b l e t o e l i m i n a t e i t completely, t h e remain- i n g kerosene was n o t s i g n i f i c a n t .

SALINITY. % AIR P0ROSITV;I. DENSITY, kg m-3

Fig.5. V e r t i c a l p r o f i l e s o f s a l i n i t y , d e n s i t y , and a i r p o r o s i t y f o r c o r e samples o f f i r s t - y e a r sea i c e . ( a ) : i n s i t u measurement a t -15'C ( c o r e 1 ) . ( b ) : l a b o r a t o r y measurement a t -28'C a f t e r 6 months o f storage a t -40°C ( c o r e 21.

(7)

Nakawo: Air porosity of sea ice

The r e s u l t s o f t h e measurements on s a l i n i t y , a i r p o r o s i t y , and d e n s i t y a r e shown i n F i g u r e 5 ( a ) f o r c o r e 1 and i n ( b ) f o r c o r e 2. I t was found t h a t b o t h s e t s o f d a t a agree w i t h each other. The s a l i n i t y decreased g r a d u a l l y from t h e t o p t o about t h e 0.3 m depth l e v e l , stayed almost c o n s t a n t through t h e body o f t h e i c e cover, and i n c r e a s e d s h a r p l y a t t h e l o w e r surface. A s i m i l a r p r o f i l e can be seen f o r a i r poro- s i t y , i n d i c a t i n g a p o s i t i v e c o r r e l a t i o n between t h e two q u a n t i t i e s . The v e r t i c a l p r o f i l e o f d e n s i t y , on t h e o t h e r hand, appears t o e x h i b i t an i n v e r s e propor-

ti onal i t y between d e n s i t y and s a l i n i t y o r a i r poro- s i t y , i .e. t h e small d e n s i t y corresponds w i t h t h e l a r g e s a l i n i t y and a i r p o r o s i t y , and v i c e versa. DISCUSSION

From t h e d e n s i t y values measured, a i r p o r o s i t y was c a l c u l a t e d by comparing w i t h t h e t h e o r e t i c a l d e n s i t y f o r a i r - f r e e sea i c e (Anderson 1960). The v a l u e f o r t h e t h e o r e t i c a l d e n s i t y was o b t a i n e d from t h e s a l i n - i t y v a l u e f o r each segment and t h e temperature (-15°C f o r c o r e 1 and -28°C f o r c o r e 2). The a i r p o r o s i t y values t h u s o b t a i n e d a r e compared w i t h those from t h e d i r e c t measurements i n F i g u r e 6. They a r e i n good agreement, i n d i c a t i n g t h a t a i r bubbles a r e approxi- mately a t atmospheric pressure, a1 though t h e assumed t h e o r e t i c a l d e n s i t y values s t i l l cause some uncer- t a i n t y , as d e s c r i b e d i n t h e i n t r o d u c t i o n . CORE CORE

(LE

4 0.2 0.2 0.4 0.6 0.8 1 2 4 6

AIR POROSITY DETERMINED BY COLLECTNG AIR, %

Fig.6. Comparison o f a i r p o r o s i t y between t h e values from d e n s i t y measurement and from t h e d i r e c t measurement o f a i r content.

I t was i m p o s s i b l e t o p r e v e n t t h e i n i t i a l b r i n e drainage completely when t h e cores were recovered from t h e i c e . A i r c o u l d have been i n t r o d u c e d i n t o some o f t h e b r i n e channels a t t h a t time, which would have t h e e f f e c t o f making t h e apparent average bubble p r e s s u r e c l o s e r t o t h e atmospheric pressure.

The measured s a l i n i t y o f about 0.3% i n samples below 0.3 m depth, f o r which t h e growth r a t e was about 0.5 pm s - l , i s s m a l l e r by 0.1% than t h e v a l u e expected f o r t h e growth r a t e from a r e g r e s s i o n c u r v e g i v e n by Nakawo and Sinha (19811, which was based on a s e r i e s o f o b s e r v a t i o n s made soon a f t e r c o r e samples Mere recovered. T h i s s a l i n i t y d i f f e r e n c e , t h e r e f o r e , c o u l d be due t o d e s a l i n a t i o n d u r i n g storage. I c e temp- e r a t u r e f o r t h e 1979-80 w i n t e r , however, was e x t r a - o r d i n a r i l y high, owing t o t h e t h i c k snow l a y e r on t h e i c e . S u b s t a n t i a l n a t u r a l d e s a l i n a t i o n , t h e r e f o r e , c o u l d have taken p l a c e b e f o r e c o r e recovery i n t h i s p a r t i c u l a r w i n t e r . A d d i t i o n a l b r i n e drainage d u r i n g s t o r a g e ( f r o m t h e c o r e recovery t o t h e t i m e o f t h e measurements) i s considered t o have been small,

because t h e p e r i o d was short, about 10 h, f o r c o r e 1

and t h e s t o r a g e temperature was low, -40°C, f o r c o r e 2.

I n a d d i t i o n t o t h e e f f e c t o f d e s a l i n a t i o n , mech- a n i c a l r e l a x a t i o n c o u l d a l s o cause decrease o f t h e bubble pressure, even i f i t were a t a h i g h e r p r e s s u r e than one atmosphere. A simple c a l c u l a t i o n i n d i c a t e s , however, t h a t i t takes l o n g e r than a y e a r f o r t h e p r e s s u r e t o decrease from several atmospheres t o near one atmosphere. Thus, t h e r e l a x a t i o n e f f e c t i s con- s i d e r e d t o be n e g l i g i b l e .

The bubble pressure, t h e r e f o r e , i s considered t o be near one atmosphere i n t h e i c e , some u n c e r t a i n t y b e i n g caused by t h e i n i t i a l b r i n e drainage t h a t may have taken p l a c e when t h e cores were removed. Samples of sea i c e t o be used f o r mechanical t e s t s a r e u s u a l l y s u b j e c t t o t h e same problem: i t i s d i f f i c u l t t o a v o i d t h e i n i t i a l b r i n e drainage completely. F o r such samples, a t l e a s t , t h e a i r bubbles can be considered t o be a t atmospheric pressure. T h i s i m p l i e s t h a t a i r p o r o s i t y can be determined from e i t h e r d e n s i t y meas- urements o r d i r e c t measurement o f a i r volume.

S a l i n i t y has a s t r o n g c o r r e l a t i o n w i t h growth r a t e (Cox and Weeks 1975, Nakawo and Sinha 1981). A i r p o r o s i t y a1 so c o u l d be dependent on growth r a t e . If a r e l a t i o n between them i s known, and w i t h i n f o r m a t i o n on growth r a t e only, t h r e e i m p o r t a n t f a c t o r s t h a t a f f e c t mechanical p r o p e r t i e s can be estimated, i.e. s a l i n i ty , d e n s i t y , and a i r p o r o s i t y , s i n c e d e n s i t y i s a f u n c t i o n o f s a l i n i t y and a i r p o r o s i t y . C a r t e (1961) and B a r i and H a l l e t t (1974) have i n v e s t i g a t e d e x p e r i m e n t a l l y t h e dependence o f a i r c o n t e n t o f i c e on growth r a t e , b u t t h e i r growth r a t e s a r e t o o l a r g e t o be used f o r n a t u r a l l y grown i c e .

The p r e s e n t r e s u l t s shown i n F i g u r e 5 suggest a dependence o f a i r p o r o s i t y on growth r a t e , t h e poro- s i t y decreasing w i t h decreasing growth r a t e ( 0 t o 0.3 m), and almost c o n s t a n t a i r p o r o s i t y f o r c o n s t a n t growth r a t e (0.3 t o 0.8 m). A c o r r e l a t i o n a n a l y s i s , however, was n o t made as t h e growth process was considered t o vary w i t h t i m e near t h e s u r f a c e o f t h e i c e , as was i n d i c a t e d by t h e c r y s t a l l o g r a p h i c t e x t u r e e x h i b i t e d i n a t h i n v e r t i c a l section, and t h e r e was l i t t l e v a r i a t i o n i n growth r a t e i n t h e lower, c o n t i n - uous columnargrained s t r u c t u r e . I t would be i n t e r e s t - i n g t o o b t a i n a v e r t i c a l p r o f i l e o f a i r p o r o s i t y i n sea i c e h a v i n g a continuous columnar-grained s t r u c - t u r e f o r which t h e growth r a t e v a r i e d s i g n i f i c a n t l y . ACKNOWLEDGEMENTS

Tne c o r e recovery and t h e i n s i t u measurements were made w i t h t h e h e l p o f S t e l t n e r nevelopment and M a n u f a c t u r i n g Company L t d . The a u t h o r wishes t o thank H A R S t e l t n e r f o r a r r a n g i n g those a c t i v i t i e s , and S Koonoo, M Komangapik, and E Pewaotulook f o r t e c h n i - c a l a s s i s t a n c e i n t h e f i e l d . The a u t h o r i s a l s o i n d e b t e d t o D r N K Sinha and t o

D

W r i g h t o f t h e D i v i s i o n o f B u i l d i n g Research, N a t i o n a l Research Council o f Canada, f o r encouraging him throughout t h e work and f o r t e c h n i c a l a s s i s t a n c e i n t h e l a b o r a t o r y measurements.

T h i s paper i s a c o n t r i b u t i o n from t h e D i v i s i o n o f B u i l d i n g Research, N a t i o n a l Research Council o f Canada, and i s p u b l i s h e d w i t h t h e approval o f t h e D i r e c t o r o f t h e D i v i s i o n .

REFERENCES

Anderson D L 1960 The p h y s i c a l c o n s t a n t s o f sea i c e .

Research 1 3 ( 8 ) : 310-318

Assur A 1958 Composition o f sea i c e and i t s t e n s i l e strength. In Arctic sea ice; conference held at Easton, MryZand

...

1958. Washington, DC, N a t i o n a l Academy o f Sciences. N a t i o n a l Research Council: 106-138 (Pub1 i c a t i o n 598)

B a r i S A, H a l l e t t J 1974 N u c l e a t i o n and growth o f bubbles a t an i c e - w a t e r i n t e r f a c e . Journal of CZacioZogy 13(69) : 489-520

C a r t e A E 1961 A i r bubbles i n i c e . Proceedings of

(8)

Nakauo: Air porosity of sea i c e

Cox G F N, Weeks W F 1975 B r i n e drainage and i n i t i a l s a l t entrapment i n sodium c h l o r i d e ice. CRREL Research Report 345

Gold L W 1972 The process o f f a i l u r e o f columnar- agrai ned ice. Philoso~hical Mzgazine 26(2) : 311-328 Kusunoki K 1958 ~ a i h y o c h i no k i h z r y z sokutei. I

[Measurement o f gas bubbles c o n t e n t i n sea i c e . I].

Low Temperature Science Ser A 17: 123-134

Langway C C J r 1958 Bubble pressures i n Greenland g l a c i e r ice. International Association of S c i e n t i f i c Hydrology Publication 47 (Symposium o f Chamoni x

-

Physics of the Movement of t h e I c e ) :

336-349

Nakawo M 1980 Density o f columnar-grained i c e made i n a l a b o r a t o r y . Canada. National Research Council. Division of Building Research. Building Research Note 168

Nakawo M, Sinha N K 1981 Growth r a t e and s a l i n i t y p r o f i l e o f f i r s t - y e a r sea i c e i n t h e h i g h A r c t i c .

Journal of Glaciology 27 (96) : 315-330

Nakaya U 1956 P r o p e r t i e s o f s i n g l e c r y s t a l s o f ice, r e v e a l e d by i n t e r n a l me1 t i ng. SIPRE Research Paper

13

Ono N 1968 K a i h y z no n e t s u t e k i s e i s h i t s u no kenkyi. I V . Kaihyo no n e t s u t e k i na s h o t e i s i [Thermal pro- p e r t i e s o f sea i c e . I V . Thermal constants o f sea

ice].

Low Tempemturn Science Ser A 26: 329-349 Savel'yev I3 A 1954 I n s t r u k t i v n y y e ukaraniya po

opredel e n i y u soderzhaniya tverdoy, z h l dkoy i

gazoobraznoy f a z y v zasol ennykh 1 'dakh. Mzteriaty po Laborntornym Isaledouaniyam Meralgkh Cmmtov.

Sbomik 2: 176-192 [ E n g l i s h t r a n s l a t i o n : ProcedumZ

notes on determination of content of solid, liquid and gaseous phases i n saline i c e . [Ottawa], Defence

Research Board. D i r e c t o r a t e o f S c i e n t i f i c Inform- a t i o n Services, 1960 (T344R)I

Schwarz J, Weeks W F 1977 Engineering p r o p e r t i e s o f sea ice. J o u m l of Glaciology 19(81): 499-531 Tabata

I

1958 Kaihyo no ryokugakuteki s e i s h i t s u no

kenkyu. 11. Shindzhz n i y o r u d a n s e i r i t s u no s o k u t e i [ S t u d i e s on mechanical p r o p e r t i e s o f sea ice. 11. Measurement o f e l a s t i c modulus by t h e l a t e r a l v i b r a t i o n method]. L a , Temperature Science Ser A 17: 147-166

Weeks W F, Assur A 1967 The mechanical p r o p e r t i e s o f sea ice. CRmL Monograph 11-C3

(9)

This publication is being distributed by the Division of Building R e s e a r c h of the National R e s e a r c h Council of Canada. It should not be reproduced in whole o r in p a r t without p e r m i s s i o n of the original publisher. The Di- vision would be glad t o be of a s s i s t a n c e in obtaining s u c h permission.

Publications of the Division m a y be obtained by m a i l - ing the a p p r o p r i a t e r e m i t t a n c e (a Bank, E x p r e s s , o r P o s t Office Money O r d e r , o r a cheque. m a d e payable t o the R e c e i v e r G e n e r a l of Canada, c r e d i t NRC) t o the National R e s e a r c h Council of Canada, Ottawa. K I A OR6. S t a m p s a r e not acceptable.

A l i s t of allpublications of the Division i s available and m a y be obtained f r o m the Publications Section, Division of Building R e s e a r c h , National R e s e a r c h Council of

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

&#34; Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers