• Aucun résultat trouvé

Optimized Parameters of Optimized Schwarz Waveform Relaxation Methods for The Heat Equation

N/A
N/A
Protected

Academic year: 2021

Partager "Optimized Parameters of Optimized Schwarz Waveform Relaxation Methods for The Heat Equation"

Copied!
197
0
0

Texte intégral

(1)

HAL Id: hal-00589252

https://hal.archives-ouvertes.fr/hal-00589252

Submitted on 28 Apr 2011

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Optimized Parameters of Optimized Schwarz Waveform Relaxation Methods for The Heat Equation

Minh-Binh Tran

To cite this version:

Minh-Binh Tran. Optimized Parameters of Optimized Schwarz Waveform Relaxation Methods for

The Heat Equation. 2011. �hal-00589252�

(2)

Methods for The Heat Equation

INTERNAL REPORT

Minh-Binh TRAN

Laboratoire Analyse G´ eom´ etrie et Applications Institut Galil´ ee, Universit´ e Paris 13, France

Email: binh@math.univ-paris13.fr

April 28, 2011

(3)

Contents

1 Introduction 3

2 Optimized Schwarz Waveform Relaxation Methods For The

One Dimensional Heat Equation 4

2.1 Optimized Schwarz Waveform Relaxation Methods For The One Dimensional Heat Equation With Robin Transmission

Condition . . . . 4

2.1.1 Proof of the Theorems in the Overlapping Case . . . . 11

2.1.2 Proof of the Theorems in the Non-Overlapping Case . 20 2.2 Optimized Schwarz Waveform Relaxation Methods For One Dimensional Heat Equation With First Order Transmission Condition . . . 23

2.2.1 Proof of the Theorems in the Overlapping Case . . . . 28

2.2.2 Proof of the Theorems in the Nonoverlapping Case . . 40

2.3 Numerical Results . . . 43

2.3.1 Test 1 . . . 43

2.3.2 Test 2 . . . 45

2.3.3 Test 3 . . . 47

2.3.4 Test 4 . . . 49

2.3.5 Test 5 . . . 52

2.3.6 Test 6 . . . 57

2.3.7 Test 7 . . . 60

2.3.8 Test 8 . . . 63

2.4 Optimization of The Convergence Factor: A Theoretical At- tempt . . . 65

2.4.1 The results . . . 65

2.4.2 Proofs of the results . . . 70

1

(4)

Condition . . . 99

3.1.1 Proof of the Theorems in the Overlapping Case . . . . 107

3.1.2 Proof of the Theorems in the Nonoverlapping Case . . 121

3.2 Optimized Schwarz Waveform Relaxation Methods For The Two Dimensional Heat Equation With Ventcell Transmission Condition . . . 128

3.2.1 Proof of the Theorems in the Overlapping Case . . . . 136

3.2.2 Proof of the Theorems in the Nonoverlapping Case . . 151

3.3 Numerical Results . . . 163

3.3.1 Test 1 . . . 163

3.3.2 Test 2 . . . 165

3.3.3 Test 3 . . . 176

3.3.4 Test 4 . . . 181

3.3.5 Test 5 . . . 184

3.3.6 Test 6 . . . 187

3.3.7 Test 7 . . . 190

3.3.8 Test 8 . . . 192

4 Acknowledgements. 194

2

(5)

Chapter 1 Introduction

The Schwarz domain decomposition methods is a procedure to parallelize and solve partial differential equations numerically, where each iteration involves the solutions of the original equations on smaller subdomains. It was original proposed by H. A. Schwarz [7] in 1870 as a technique to prove the existence of a solution to the Laplace equation on a domain which is a combination of a rectangle and a circle. The idea was then used by P. L. Lions [4], [5], [6] as parallel algorithms in solving partial differential equations. Since then, many kind of domain decomposition methods have been developped, to im- prove the performance of the classical domain decomposition method. One of the main streams in this direction is to replace the Dirichlet transmission condition by Robin and Ventcell transmission conditions and then calculate the convergence rates. Using different transmissions condition gives different convergence rates and we need to optimize to get the best transmission con- ditions, the methods are then called the optimized Schwarz methods. In [1]

and [2], D. Bennequin, M. Gander and L. Halpern show that the problem of optimizing the convergence rates is in fact a new class of best approximation problems and suggest a new method to solve this class of problems. The au- thors consider the model problem of optimizing the convergence factors for advection-diffusion equations. In this report, we use their methods to check the results announced in [3] and then extend the results to optimized Robin and Ventcell transmission conditions for 2 dimensional heat equations.

3

(6)

Optimized Schwarz Waveform Relaxation Methods For The One Dimensional Heat

Equation

2.1 Optimized Schwarz Waveform Relaxation Methods For The One Dimensional Heat Equation With Robin Transmission Con- dition

In this section, we consider the optimized Schwarz waveform relaxation method. The algorithm is

 

 

(∂

t

− ν∂

xx

)u

k1

= f in Ω

1

× (0, T ), u

k1

(x, 0) = u

0

(x) in Ω

1

,

(∂

x

+

p

)u

k1

(L, .) = (∂

x

+

p

)u

k21

(L, .) in (0, T ),

(2.1.1)

 

 

(∂

t

− ν∂

xx

)u

k2

= f in Ω

2

× (0, T ), u

k2

(x, 0) = u

0

(x) in Ω

2

,

(∂

x

p

)u

k2

(0, .) = (∂

x

p

)u

k11

(0, .) in (0, T ).

4

(7)

Let h

L

and h

0

be given in oH

34

(0, T ). Let (e

1

, e

2

) be the solution in H

3,32

(Ω

1

× (0, T )) × H

3,32

(Ω

2

× (0, T )) of the problem

 

 

(∂

t

− ν∂

xx

)e

1

= 0 in Ω

1

× (0, T ), e

1

(x, 0) = 0 in Ω

1

,

(∂

x

+

p

)e

1

(L, .) = h

L

in (0, T ),

(2.1.2)

 

 

(∂

t

− ν∂

xx

)e

2

= 0 in Ω

2

× (0, T ), e

2

(x, 0) = 0 in Ω

2

,

(∂

x

p

)e

2

(0, .) = h

0

in (0, T ).

We have

Fe

1

(x, ω) = 2ν

√ 4iων + p Fh

L

exp(

r iω

ν (x − L)), (2.1.3) and

Fe

2

(x, ω) = − 2ν

√ 4iων + p Fh

0

exp( − r iω

ν x). (2.1.4) We have also

F(g

D

(h

L

, h

0

)) = F((∂

x

e

2

+ p

2ν e

2

)(L, .), (∂

x

e

1

− p

2ν e

1

)(0, .)). (2.1.5) We have

x

Fe

2

(L, ω) + p

2ν Fe

2

(L, ω) = − 2ν 2 √

iων + p ( − r iω

ν ) exp( − r iω

ν L)Fh

0

− 2ν 2 √

iων + p p

2ν exp( − r iω

ν L)Fh

0

= 2 √

iων − p 2 √

iων + p exp( − r iω

ν L)Fh

0

, (2.1.6) and

x

Fe

1

(0, ω) − p

2ν Fe

1

(0, ω) = 2ν 2 √

iων + p r iω

ν exp( − r iω

ν L)Fh

L

− 2ν 2 √

iων + p p

2ν exp( − r iω

ν L)Fh

0

= 2 √

iων − p 2 √

iων + p exp( − r iω

ν L)Fh

L

. (2.1.7)

5

(8)

Therefore

F(g

2D

(h

L

, h

0

)) = ( 2 √

iων − p 2 √

iων + p )

2

exp( − 2L r iω

ν )F(h

L

, h

0

). (2.1.9) Consequently

| F(g

2D

(h

L

, h

0

)) | = | ( 2 √

iων − p 2 √

iων + p )

2

exp( − 2L r iω

ν ) || F(h

L

, h

0

) | (2.1.10)

= exp( − L q

2|ω|

ν

)

(

2|ω|ν−p)2+2|ω|ν (

2|ω|ν+p)2+2|ω|ν

| F(h

L

, h

0

) | . Thus for k ∈ N ,

| Fg

2kD

(h

L

, h

0

) | (ω) = exp( − kL r 2 | ω |

ν )( ( p

2 | ω | ν − p)

2

+ 2 | ω | ν ( p

2 | ω | ν + p)

2

+ 2 | ω | ν )

k

| F(h

L

, h

0

) | (ω).

Therefore

|| g

2kD

h

L

||

H34(R)

=

Z

+∞

−∞

(1 + | ω |

2

)

34

| Fg

2kD

h

L

(ω) |

2

=

Z

+∞

−∞

(1 + | ω |

2

)

34

exp( − 2kL r 2 | ω |

ν ) ×

× ( ( p

2 | ω | ν − p)

2

+ 2 | ω | ν ( p

2 | ω | ν + p)

2

+ 2 | ω | ν )

2k

| Fh

L

(ω) |

2

dω.

Using the Lebesgue dominated convergence theorem with the notice that (

(

2|ω|ν−p)2+2|ω|ν (

2|ω|ν+p)2+2|ω|ν

)

2k

< 1, we can see that {|| g

2kD

h

L

||

H34(R)

} converges to 0 when k tends to ∞ . Similarly, {|| g

2kD

h

0

||

H34(R)

} converges to 0 when k tends to ∞ .

For k ∈ N ,

| Fg

2kD

(h

L

, h

0

) | (ω) = exp( − kL r 2 | ω |

ν )( ( p

2 | ω | ν − p)

2

+ 2 | ω | ν ( p

2 | ω | ν + p)

2

+ 2 | ω | ν )

k

| F(h

L

, h

0

) | (ω).

6

(9)

We define the convergence factor by ρ(ω; p, L) = exp( − L

r 2 ω

ν ) (

νp

− p

2

ων

)

2

+ 2

ων

(

νp

+ p

2

ων

)

2

+ 2

ων

. (2.1.11) Put

ων

= ¯ ω,

νp

= ¯ p and ¯ ρ(¯ ω; ¯ p, L) = ρ(ω; p, L), we need to consider the following min-max problem

min

p¯∈R

max

¯

ω∈[¯ωmin,¯ωmax]

ρ(¯ ¯ ω; ¯ p, L), (2.1.12) where ¯ ω

min

=

2T νπ

, ¯ ω

max

=

2∆tνπ

. Since

exp( − L √

2¯ ω) ( | p ¯ | − √

2¯ ω)

2

+ 2¯ ω ( | p ¯ | + √

2¯ ω)

2

+ 2¯ ω ≤ exp( − L √

2¯ ω) ( −| p ¯ | − √

2¯ ω)

2

+ 2¯ ω ( −| p ¯ | + √

2¯ ω)

2

+ 2¯ ω , so the minimum is attained for ¯ p ≥ 0, we only need to consider problem (2.1.12) in the case ¯ p ≥ 0, or the following problem

min

p¯≥0

max

¯

ω∈[¯ωmin,¯ωmax]

ρ(¯ ¯ ω; ¯ p, L). (2.1.13) We have the following theorems for the overlapping case (L > 0)

Theorem 2.1.1. We suppose that L is small and ω ¯

max

is large.

a) For L(¯ ω

max

)

34

small (which means L ∽ C (¯ ω

max

)

34γ

, γ > 0), problem (2.1.13) has a unique solution

¯

p

∽ 2 √

2(¯ ω

min

ω ¯

max

)

14

then

|| ρ(¯ ¯ ω, p ¯

, L) ||

∽ 1 − 2 √

2( ω ¯

min

¯ ω

max

)

14

,

where the asymptotic expansion is based on the scale of (ω

max

)

1

.

b) For L(¯ ω

max

)

34

large (which means L ∽ C(¯ ω

max

)

34

, γ > 0) and L <

ν q

10√ 2−12

¯

ωmin

, the problem (2.1.13) has a unique solution

¯

p

∽ (4¯ ω

min

)

13

(L)

13

, then

|| ρ(ω, ¯ p ¯

, L) ||

∽ 1 − 4( ω ¯

min

2 )

16

(L)

13

, where the asymptotic expansion is based on the scale of L.

7

(10)

¯

p

∽ 2 √ π

(2T C

2

ν

2

)

14

∆x

14

, then

|| ρ(¯ ¯ ω, p ¯

, L) ||

∽ 1 − 2 √ 2C

1 4

2

2T

14

∆x

41

+ O(∆x

12

).

For L = C

1

∆x, ∆t = C

2

∆x

2

, ∆x ≤ min

π22T(C1ν1)4 4C23

12

,

(10π(C21ν14)2T1)2

12

, then problem (2.1.13) has a unique solution

¯

p

∽ 4π 2T C

1

ν

13

∆x

13

, then

|| ρ(¯ ¯ ω, p ¯

, L) ||

∽ 1 − 4 πC

12

ν

1

4T

16

∆x

13

+ O(∆x

23

).

Remark 2.1.1.

8

(11)

Figure 2.1.1

Figure 2.1.2

9

(12)

the two boundaries to get p ¯

(figure 2.2).

For the non-overlapping case, we have the following result

Theorem 2.1.3. Problem (2.1.13) has one and only one solution which is given by ω ¯ = ¯ ω

min

and ω ¯ = ¯ ω

max

; p ¯ = 2

π

(2T ν2)14

∆t

14

. min

max

¯

ω

ρ ¯ ∽ 1 − ( 32C

1

T )

14

∆t

14

.

10

(13)

2.1.1 Proof of the Theorems in the Overlapping Case

Putting

h

L

(¯ p) = max

¯

ω∈[¯ωmin,¯ωmax]

ρ(¯ ¯ ω, p, L) = ¯ || ρ(¯ ω; ¯ p, L) ||

,

we recall that (¯ p

, h

L

(¯ p

)) is a strict local minimum of h

L

(¯ p) if and only if there exists ǫ positive such that for all ¯ p in (¯ p

− ǫ, p ¯

+ ǫ), we have h

L

(¯ p) >

h

L

(¯ p

).

In order to prove the theorems, we need the following lemma as in [1]

Lemma 2.1.1. If (¯ p

, h

L

(¯ p

)) is a strictly local minimum of h

L

(¯ p), then it is the global minimum of h

L

(¯ p) and p ¯

is the unique solution of (2.1.13).

Proof of Lemma 2.1.1

We denote D (z

0

, δ) = { z ∈ C , |

z+zzz00

| < δ } , and D

δL

= { p | h

L

(p) ≤ δ } . We first prove that D

Lδ

is a convex set. Let ¯ p

1

and ¯ p

2

be to elements of D

Lδ

, we have that

|| exp( − L √ i ω) ¯

¯ p1

ν

− 2 √ i¯ ω

¯

p

1

+ 2 √

i ω ¯ ||

≤ δ.

Thus ∀ ω ¯ ∈ [¯ ω

min

, ω ¯

max

],

| exp( − L √

i¯ ω) p ¯

1

− 2 √ i¯ ω

¯ p

1

+ 2 √

i ω ¯ | ≤ δ.

Hence

exp( − L r ω ¯

2 ) | p ¯

1

− 2 √ i ω ¯

¯

p

1

+ 2 √

i ω ¯ | ≤ δ.

Therefore

| p ¯

1

− 2 √ i¯ ω

¯ p

1

+ 2 √

i¯ ω | ≤ δ exp(L r ω ¯

2 ).

This means ¯ p

1

∈ D (2 √

i¯ ω, δ exp(L q

¯ ω 2

)).

Similarly, we have also ¯ p

2

∈ D (2 √

i ω, δ ¯ exp(L q

¯ ω

2

)).

According to Lemma 2.1 in [1], D (z

0

, δ) is the interior of the circle with center at

1+δ1δ22

z

0

and radius

|1δ2|

| z

0

| and the exterior otherwise.

11

(14)

If δ exp(L

ω¯2

)) ≥ 1, using Lemma 2.1 in [1], we can see that for ¯ p

1

, ¯ p

2

≥ 0, θ ∈ [0, 1], we have θ p ¯

1

+ (1 − θ) ¯ p

2

∈ D (2 √

iω, δ exp(L q

¯ ω

2

)). Thus for θ ∈ [0, 1], we have θ p ¯

1

+ (1 − θ) ¯ p

2

∈ D

δL

.

Therefore D

δL

is convex.

Suppose that (¯ p

, h

L

(¯ p

)) is a strictly local minimum of h

L

(¯ p), we prove that it is a global minimum of h

L

(¯ p). Suppose the contrary that there ex- ists (¯ p

∗∗

, h

L

(¯ p

∗∗

)) such that h

L

(¯ p

) ≥ h

L

(¯ p

∗∗

). Then there exists a convex neighborhood U of ¯ p

, such that ∀ s ∈ U , s 6 = ¯ p

and h

L

(s) > h

L

(¯ p

). Since

¯

p

∗∗

∈ D

hLLp∗∗)

⊂ D

LhLp)

,we have that ∀ θ ∈ [0, 1], θ p ¯

+ (1 − θ)¯ p

∗∗

∈ D

LhLp)

. For θ small enough, we have that θ p ¯

∗∗

+ (1 − θ)¯ p

∈ U . This is a contradic- tion.

Thus ¯ p

is the unique solution of (2.1.13).

12

(15)

Proof of theorem 2.1.1

Case 1: For L(¯ ω

max

)

34

large and L < q

10√ 2−12

¯ ωmin

.

Firstly, we will prove that || ρ(¯ ¯ ω, p, L) ¯ ||

= max { ρ(¯ ¯ ω

min

, p, L), ρ(¯ ¯ ω

2

, p, L) ¯ } when ¯ p is closed enough to ¯ p

= (4¯ ω

min

)

13

L

13

.

We have that

¯

p

ω¯

(¯ ω, p, L) = ¯ −

√ 2

2 exp( − L √

2¯ ω) 16L ω ¯

2

− 16¯ p ω ¯ + L¯ p

4

+ 4¯ p

3

(4¯ ω + 2 √

2¯ ω p ¯ + ¯ p

2

)

2

. We consider the function:

f(¯ ω) = 16L ω ¯

2

− 16¯ p¯ ω + L¯ p

4

+ 4¯ p

3

.

This is a quadratic equation in ¯ ω. We will prove that ∆

= 64¯ p

2

− 16L(L p ¯

4

+ 4¯ p

3

) = 16¯ p

2

(4 − 4L p ¯ − L

2

p ¯

2

) > 0. Since ¯ p is closed to ¯ p

, we only need to prove that 4 − 4L¯ p

− L

2

p ¯

2

> 0, or L¯ p

< 2 √

2 − 2.

Since L <

q

10√ 2−12

¯

ωmin

, we have that

L¯ p

= L(4¯ ω

min

)

13

(L)

13

= (4¯ ω

min

)

13

L

23

< (4¯ ω

min

)

13

( 10 √ 2 − 14

¯ ω

min

)

13

= 2 √ 2 − 2.

Thus ∆

> 0.

Therefore the equation f = 0 has the following solutions:

¯

ω

1

= 2¯ p − p ¯ p

4 − 4L¯ p − L

2

p ¯

2

4L = 2¯ p − p ¯ p

4 − 4L p ¯ − L

2

p ¯

2

4L ,

¯

ω

2

= 2¯ p + ¯ p p

4 − 4L¯ p − L

2

p ¯

2

4L = 2¯ p + ¯ p p

4 − 4L¯ p − L

2

p ¯

2

4L .

We will prove that in this case ¯ ω

max

> ω ¯

2

(¯ p). In order to do that, we only need to prove that ¯ ω

max

> ω ¯

2

(¯ p

).

Since L(¯ ω

max

)

34

is large, then L > (

ω¯ωmin3

max

)

14

, we have L

4

> ω ¯

min

2¯ ω

max3

. Thus

¯

ω

max3

> ω ¯

min

2 L

4

.

13

(16)

This means that in order to prove ¯ ω

max

> ω ¯

2

(¯ p

), we only have to prove that

16L¯ ω

2max

− 16¯ p

ω ¯

max

+ L¯ p

4

+ 4¯ p

3

> 0.

This inequality is equivalent to

16L¯ ω

2max

− 16(4¯ ω

min

)

13

L

13

ω ¯

max

+ L(4¯ ω

min

)

43

(L)

43

+ 16¯ ω

min

L

1

> 0, or

¯

ω

max2

L

23

)

3

− 2( ω ¯

min

2 )

13

ω ¯

max

L

23

+ ( ω ¯

min

2 )

43

L

23

+ ¯ ω

min

=

= ¯ ω

max

L

23

[¯ ω

max

L

43

− 2( ω ¯

min

2 )

13

] + ( ω ¯

min

2 )

43

+ ¯ ω

min

> 0.

This is true.

Hence ¯ ω

max

> ω ¯

2

(¯ p

) and ¯ ω

max

> ω ¯

2

(¯ p) for ¯ p closed enough to ¯ p

. Therefore || ρ(¯ ¯ ω, p, L) ¯ ||

= max { ρ(¯ ¯ ω

min

, p, L), ¯ ρ(¯ ¯ ω

2

, p, L) ¯ } .

Next, we will prove that ¯ p

is an asymptotic solution to the equation

¯

ρ(¯ ω

min

, p, L) = ¯ ¯ ρ(¯ ω

2

, p, L). Let ¯ p is a number closed to ¯ p

, and suppose that

¯

p has the form ¯ p ∽ C(

Lν

)

γ

, we have that

¯

ρ(¯ ω

min

, p, L) = exp( ¯ − L √

2¯ ω

min

) ( √

2¯ ω

min

− CL

γ

)

2

+ 2¯ ω

min

( √

2¯ ω

min

+ CL

γ

)

2

+ 2¯ ω

min

= exp( − L √

2¯ ω

min

) 4¯ ω

min

− 2 √

2¯ ω

min

CL

γ

+ C

2

L

4¯ ω

min

+ 2 √

2¯ ω

min

CL

γ

+ C

2

L

= exp( − L ν

√ 2ω

min

ν)

minν

C2

(

Lν

)

2Cωmin

L

γ

+ 1

4¯ωmin

C2

L

+

2Cωmin

L

γ

+ 1

∽ 1 − L √

2¯ ω

min

− 4 √ 2¯ ω

min

C L

γ

+ 16¯ ω

min

C

2

L

. We also have that

¯

ρ(¯ ω

2

, p, L) = exp( ¯ − L √

2¯ ω

2

) ( √

2¯ ω

2

− CL

γ

)

2

+ 2¯ ω

2

( √

2¯ ω

2

+ CL

γ

)

2

+ 2¯ ω

2

.

14

(17)

We have

exp( − L √

2¯ ω

2

) = exp( − s

2L

2

2¯ p + ¯ p p

4 − 4L¯ p − L

2

p ¯

2

4L )

= exp( − s

2¯ pL + ¯ pL p

4 − 4L¯ p − L

2

p ¯

2

2 )

∽ 1 − p

2¯ pL ∽ 1 − √

2CL

12γ

, and

( √

2¯ ω

2

− p) ¯

2

+ 2¯ ω

2

ν ( √

2¯ ω

2

+ ¯ p)

2

+ 2¯ ω

2

= 1 −

p¯ω2

+

p¯ω22

1 +

p¯ω2

+

p¯ω22

∽ 1 − 2¯ p

√ 2¯ ω

2

. Moreover, we have that

¯

√ p 2¯ ω

2

= p ¯

q

2¯p+¯p

4−4L¯p−L22 2L

=

s 2¯ pL 2 + p

4 − 4¯ pL − p ¯

2

L

2

∽ r C

2 L

12γ

. Therefore

( √

2¯ ω

2

− p) ¯

2

+ 2¯ ω

2

( √

2¯ ω

2

+ ¯ p)

2

+ 2¯ ω

2

∽ 1 − √

2CL

1−γ2

+ CL

1γ

. Thus

¯

ρ(¯ ω

2

, p, L) ¯ ∽ (1 − √

2CL

1−γ2

+ 2CL

1γ

)(1 − √

2CL

1−γ2

+ CL

1γ

∽ 1 − 2 √

2CL

12γ

+ 5CL

1γ

.

Equilibrate ¯ ρ(¯ ω

2

, p, L) and ¯ ¯ ρ(¯ ω

min

, p, L), we get ¯ ¯ p

.

Finally, we prove that this ¯ p

is a stricly local minimum of || ρ(¯ ω, p, L) ¯ ||

. We have that

¯

ρ(¯ ω

2

, p ¯

, L) = 4 √ 2 √

¯

ω

2

exp ( − L √ 2 √

¯ ω

2

) (¯ p

2

+ 2 √

2 √

¯

ω

2

ν p ¯

+ 4¯ ω

2

ν)

2

(¯ p

2

− 4¯ ω

2

) ω ¯

2

¯ p < 0, and

¯

ρ(¯ ω

min

, p ¯

, L) = 4 √ 2 √

¯

ω

min

exp ( − L √ 2 √

¯ ω

min

) (¯ p

2

+ 2 √

2 √

¯

ω

min

p ¯

+ 4¯ ω

min

)

2

(¯ p

2

− 4¯ ω

min

) > 0.

15

(18)

cording to Lemma 2.1.1 it is also the global minimum. And

¯

p

∽ (4¯ ω

min

)

13

L

13

,

|| ρ(¯ ¯ ω, p ¯

, L) ||

∽ 1 − 4( ω ¯

min

2 )

16

L

13

. Case 2: L¯ ω

3

max4

is small

In this case, we can see that ¯ ω

2

> ω ¯

max

. Thus

|| ρ(¯ ¯ ω, p, L) ¯ ||

= max { ρ(¯ ¯ ω

min

, p, L), ¯ ρ(¯ ¯ ω

max

, p, L) ¯ } .

As in the previous case, we will prove that ¯ p

is a solution of the equation

¯

ρ(¯ ω

min

, p, L) = ¯ ¯ ρ(¯ ω

max

, p, L). ¯

Let ¯ p be a number closed enough to ¯ p

. We have that

¯

ρ(¯ ω

min

, p, L) = exp( ¯ − L √

2¯ ω

min

) ( √

2¯ ω

min

− p) ¯

2

+ 2¯ ω

min

( √

2¯ ω

min

+ ¯ p)

2

+ 2¯ ω

min

ν

∽ (1 − L √

2¯ ω

min

+ L

2

2¯ ω

min

)(1 − 4

√ 2¯ ω

min

¯

p + 16¯ ω

min

¯ p

2

).

Since L¯ ω

3

max4

is small, then L < (

ω¯ωmin3

max

)

14

, we have that L √

2¯ ω

min

< ( ω ¯

min

2¯ ω

max3

)

14

2¯ ω

min

= 2

14

( ω ¯

min

¯ ω

max

)

34

,

and r

¯ ω

min

¯ p

2

r ω ¯

min

4 √

¯

ω

min

ω ¯

max

= 1 2 ( ω ¯

min

¯ ω

max

)

14

. Therefore

¯

ρ(¯ ω

min

, p, L) ¯ ∽ 1 − 4 √ 2¯ ω

min

¯

p .

16

(19)

We can suppose that 4¯ ω

min

< ω ¯

max

, then 2(¯ ω

min

ω ¯

max

)

14

< √

2¯ ω

max

. Thus

¯ p < √

2¯ ω

max

. Hence

¯

ρ(¯ ω

max

, p, L) = exp( ¯ − L √

2¯ ω

max

) ( √

2¯ ω

max

− p) ¯

2

+ 2¯ ω

max

( √

2¯ ω

max

+ ¯ p)

2

+ 2¯ ω

max

= exp( − L √

2¯ ω

max

) (1 −

ωp¯max

)

2

+ 1 (1 +

ωp¯

max

)

2

+ 1

= exp( − L √

2¯ ω

max

) 1 −

ωp¯max

+

ωp¯2

max

1 +

ωp¯

max

+

ωp¯2

max

∽ (1 − L √

2¯ ω

max

+ L

2

2¯ ω

max

)(1 − 2¯ p

√ 2¯ ω

max

+ p ¯

2

¯ ω

max

).

Since L ∽ C ω ¯

3 4+γ max

, then L √

2¯ ω

max

< C ( ω ¯

min

2¯ ω

max3

)

41

2¯ ω

max

ω ¯

maxγ

= C (¯ ω

min

)

14

2

14

ω ¯

1 4+γ max

. We have also

¯ p

2

¯

ω

max

∽ 4 √

¯

ω

min

ω ¯

max

¯ ω

max

= 4

r ω ¯

min

¯ ω

max

. Therefore

¯

ρ(¯ ω

max

, p, L) ¯ ∽ 1 − 2¯ p

√ 2¯ ω

max

.

Equilibrate the two asymptotic expansion ¯ ρ(¯ ω

max

, p, L) and ¯ ¯ ρ(¯ ω

2

, p, L) we ¯ have the equation

2¯ p

√ 2¯ ω

max

∽ 4 √ 2¯ ω

min

¯

p .

Thus ¯ p ∽ 2(¯ ω

min

ω ¯

max

)

14

or ¯ p

is an asymptotic solution of the equation

¯

ρ(¯ ω

max

, p, L) = ¯ ¯ ρ(¯ ω

2

, p, L). Using the same argument as in the previous ¯ section we have that this ¯ p

is a global minimum of || ρ(¯ ¯ ω, p, L) ¯ ||

. And

|| ρ(¯ ¯ ω

min

, p ¯

, L) ||

∽ 1 − 2¯ p

√ 2¯ ω

max

∽ 1 − 4(¯ ω

min

ω ¯

max

)

14

√ 2¯ ω

max

∽ 1 − 2 √

2( ω ¯

min

¯ ω

max

)

14

.

17

(20)

¯

p is closed to ¯ p

. We have that

ω¯

p(¯ ¯ ω; ¯ p, L) = −

√ 2

2 exp( − L √

2¯ ω) 16L¯ ω

2

− 16¯ p¯ ω + L p ¯

4

+ 4¯ p

3

(4¯ ω + 2 √

2¯ ω p ¯ + ¯ p

2

)

2

.

The function 16L¯ ω

2

− 16¯ p ω ¯ + L¯ p

4

+ 4¯ p

3

, is a quadratic function of ¯ ω and it has ∆

(¯ p) = 16¯ p

2

(4 − 4L¯ p − L

2

p ¯

2

). We will prove that ∆

(¯ p) > 0. Since ¯ p is closed to ¯ p

, we only need to prove that ∆

(¯ p

) > 0. We have that

∆x < (17 − 12 √

2)2T C

2

π

2

(C

1

ν

12

)

4

13

. This implies

∆x < ( √

2 − 1)

43

(2T C

2

)

13

( √

πC

1

ν

12

)

43

. Therefore

2 √

πνC

1

ν

1

(2T C

2

)

14

∆x

34

< 2 √ 2 − 2, or

L¯ p

< 2 √ 2 − 2.

Hence ∆

(¯ p

) > 0.

Therefore the equation f = 0 has the following solutions:

¯

ω

1

= 2¯ p − p ¯ p

4 − 4L¯ p − L

2

p ¯

2

4L = 2¯ p − p ¯ p

4 − 4L p ¯ − L

2

p ¯

2

4L ,

¯

ω

2

= 2¯ p + ¯ p p

4 − 4L¯ p − L

2

p ¯

2

4L = 2¯ p + ¯ p p

4 − 4L¯ p − L

2

p ¯

2

4L .

We prove that for ¯ p closed to ¯ p

, we also have

2Lp¯

>

∆tνπ

, which implies

¯

ω

2

>

∆tνπ

. In fact, we only need to prove that

2Lp¯

>

∆tνπ

. Since

∆x < C

23

π

2

(C

1

ν

12

)

4

2T ,

18

(21)

we have

2√ πν

(2T C2)14

∆x

14

2C

1

∆x > π C

2

∆x , or

2Lp¯

>

∆tνπ

.

Therefore

|| ρ(¯ ¯ ω, p, L) ¯ ||

= max { ρ( ¯ π

2T ν ; ¯ p, L), ρ( ¯ π

∆tν ; ¯ p, L) } .

Using the same argument as in Theorem 2.1.1, we have that problem (2.1.13) has a unique solution

¯

p

∽ 2 √ π

(2T C

2

)

14

∆x

14

, then

|| ρ(¯ ¯ ω, p ¯

, L) ||

= 1 − 2 √ 2C

1 4

2

(2T )

14

∆x

41

+ O(∆x

12

).

Case 2: L = C

1

∆x, ∆t = C

2

∆x

2

, ∆x ≤ min

π22T(C1ν1)4 4C23

12

,

(10π(C21ν14)2T1)2

12

. Firstly, we prove that || ρ( ¯

2T νπ

, p, L) ¯ ||

= max { ρ( ¯

2T νπ

, p, L), ¯ ρ(¯ ¯ ω

2

, p, L) ¯ } when ¯ p is closed to ¯ p

.

We have that

ω¯

p(¯ ¯ ω, p, L) = ¯ −

√ 2

2 exp( − L √

2¯ ω) 16L¯ ω

2

− 16¯ p¯ ω + L p ¯

4

+ 4¯ p

3

(4¯ ω + 2 √

2¯ ω p ¯ + ¯ p

2

)

2

.

Similar as in the previous case, we prove that ∆

(¯ p

) = 16¯ p

2

(4 − 4L¯ p

− L

2

p ¯

2

) > 0.

We have that

∆x ≤ (10 √

2 − 14)2T π(C

1

ν

1

)

2

12

. This leads to

4π(C

1

ν

1

)

2

2T ∆x

2

< 8(5 √

2 − 7).

Thus 4π(C

1

ν

1

)

2

2T ∆x

2

< 8(5 √

2 − 7) = 8( √

2 − 1)

3

.

19

(22)

We prove that in this case, ¯ ω

2

<

∆tνπ

. We have

∆x ≤ π

2

2T (C

1

ν

1

)

4

4C

23

12

. Hence

T (C

1

ν

1

)

4

∆x

2

≤ π

3

C

23

. Thus

(

2T C4πν21

)

13

∆x

13

C

1

∆x ≤ π

C

2

∆x

2

. Therefore

Lp¯

∆tνπ

, which means ¯ ω

2

<

∆tνπ

. Therefore

|| ρ(¯ ¯ ω, p, L) ¯ ||

= max { ρ( ¯ π

2T ν ; ¯ p, L), ρ(¯ ¯ ω

2

; ¯ p, L) } .

Equilibrate ¯ ρ(

2T νπ

, p, L) and ¯ ¯ ρ(¯ ω

2

, p, L), we get ¯ ¯ p

and using the same argument of the previous case, we can conclude that problem (2.1.13) has a unique solution

¯

p

∽ 2π T C

1

13

∆x

13

, then

|| ρ(¯ ¯ ω, p ¯

, L) ||

= 1 − 4 πC

12

4T

16

∆x

31

+ O(∆x

23

).

2.1.2 Proof of the Theorems in the Non-Overlapping Case

Proof of Theorem 2.1.3

Since ω ∈ [

2Tπ

,

∆tπ

], then x =

2ωνp

belongs to [ q

2πν p22T

, q

2πν p2∆t

].

Thus

ρ(ω) = f(x) = 2x

2

− 2x + 1

2x

2

+ 2x + 1 . (2.1.14)

20

(23)

We have

f

(x) = 4(2x

2

− 1)

(2x

2

+ 2x + 1)

2

. (2.1.15) We have the following cases

Case 1: q

2νπ

p22T

12

. We have that

max

ω

ρ = f (

r 2πν

p

2

∆t ), (2.1.16)

Since q

2νπ

p22T

12

, we have that q

2νπ

p2∆t

12

q

2T

∆t

>

1 2

. Thus

min

p

max

ω

ρ = f ( 1

√ 2 r 2T

∆t ), (2.1.17)

when ω =

∆tπ

and p = 2 p

νπ

2T

. Case 2: q

2νπ

p2∆t

12

. We have that

max

ω

ρ = f ( r πν

p

2

T ), (2.1.18)

Since q

2νπ

p2∆t

12

, we have that q

νπ

p2T

12

q

∆t

2T

<

12

. Thus

min

p

max

ω

ρ = f ( 1

√ 2 r ∆t

2T ) = f ( 1

√ 2 r 2T

∆t ), (2.1.19) when ω =

2Tπ

and p = 2 p

νπ

∆t

. Case 3: q

2νπ p2∆t

>

1

2

> q

2νπ p22T

.

We can see that if x > y and 2xy > 1, f(x) > f (y); and if x > y and 2xy < 1, f (x) < f (y); and if x > y and 2xy = 1, f(x) = f (y).

max

ω

ρ = max { f(

r 2πν p

2

2T ), f (

r 2πν

p

2

∆t ) } . (2.1.20) Case 3.1: q

2νπ p2∆t

. q

2νπ

p22T

12

, or q

2νπ p2∆t

. q

2νπ

p2∆t

12

q

2T

∆t

, or q

2νπ p2∆t

√1

2

(

2T∆t

)

14

>

1 2

.

max

ω

ρ = f (

r 2πν

p

2

∆t ). (2.1.21)

21

(24)

when ω =

∆t

and p = 2

(∆t2T)41

. Case 3.2: q

2νπ p2∆t

. q

νπ

p2T

12

, or q

νπ p2T

. q

νπ

p2T

12

q

∆t

2T

, or q

νπ p2T

√1

2

(

∆t2T

)

14

<

12

.

max

ω

ρ = f ( r πν

p

2

T ). (2.1.23)

Thus min

p

max

ω

ρ = f ( 1

√ 2 ( ∆t

2T )

14

) = f ( 1

√ 2 ( 2T

∆t )

14

) < f ( 1

√ 2 r 2T

∆t ), (2.1.24) when ω =

2Tπ

and p = 2

νπ

(∆t2T)14

.

22

(25)

2.2 Optimized Schwarz Waveform Relaxation Methods For One Dimensional Heat Equa- tion With First Order Transmission Con- dition

In this chapter, we consider the following algorithm

 

 

(∂

t

− ν∂

xx

)u

k1

= f in Ω

1

× (0, T ),

u

k1

(x, 0) = u

0

(x) in Ω

1

,

(∂

x

+

p

+ 2q∂

t

)u

k1

(L, .) = (∂

x

+

p

+ 2q∂

t

)u

k21

(L, .) in (0, T ),

(2.2.1)

 

 

(∂

t

− ν∂

xx

)u

k2

= f in Ω

2

× (0, T ),

u

k2

(x, 0) = u

0

(x) in Ω

2

,

(∂

x

p

− 2q∂

t

)u

k2

(0, .) = (∂

x

p

− 2q∂

t

)u

k11

(0, .) in (0, T ).

Similar as in the previous chapter, we consider the following problem

 

 

t

e

1

− ν∂

xx

e

1

= 0 in Ω

1

× (0, T ),

e

1

(x, 0) = u

0

(x) in Ω

1

,

(∂

x

+

p

+ 2q∂

t

)e

k1

(L, .) = (∂

x

+

p

+ 2q∂

t

)e

2

(L, .) in (0, T ),

(2.2.2)

 

 

t

e

2

− ν∂

xx

e

2

= 0 in Ω

2

× (0, T ),

e

2

(x, 0) = u

0

(x) in Ω

2

,

(∂

x

p

− 2q∂

t

)e

2

(0, .) = (∂

x

p

− 2q∂

t

)e

1

(0, .) in (0, T ).

From (2.2.2), we have that

iωFe

1

− ν∂

xx

Fe

1

= 0.

Therefore

Fe

1

= C

1

exp(

r iω

ν x) + C

2

exp( − r iω

ν x),

23

(26)

Fe

1

= C

1

exp( iω ν x).

From (2.2.2), we have that

x

Fe

1

(L, ω) + p

2ν e

1

(L, ω) + 2qiωFe

1

(L, ω) = Fh

L

(ω).

Thus

(C

1

r iω ν + C

1

p

2ν + C

1

2qωi) exp(

r iω

ν L) = Fh

L

(ω).

Hence

C

1

√ 4νωi + p + 4qωνi

2ν = Fh

L

exp( − r iω

ν L).

Thus

C

1

= 2ν

√ 4νωi + p + 4qωνi Fh

L

exp( − r iω

ν L).

Therefore

Fe

1

= 2ν

√ 4νωi + p + 4qωνi Fh

L

exp exp(

r iω

ν (x − L)).

From (2.2.2), we have that

iωFe

2

− ν∂

xx

Fe

2

= 0.

Therefore

Fe

2

= D

1

exp(

r iω

ν x) + D

2

exp( − r iω

ν x), where Re( q

iω ν

) ≥ 0.

Since x ∈ (0, ∞ ) and Fe

2

(x, .) ∈ L

2

( R ), we have D

1

= 0. Thus Fe

2

= D

2

exp( −

r iω ν x).

24

(27)

From (2.2.2), we have that

x

Fe

2

(0, ω) − p

2ν Fe

2

(0, ω) − 2q

ν iωFe

2

(0, ω) = h

0

(ω).

Thus

(D

2

r iω ν − D

2

p

2ν − D

2

2qωi) = Fh

0

(ω).

Hence

D

2

√ 4νωi − p − 4qωi

2 = Fh

0

.

Thus

D

2

= 2ν

√ 4νωi − p − 4qωνi Fh

0

. Therefore

Fe

2

= 2ν

√ 4νωi − p − 4qωνi Fh

0

exp(

r

− iω ν x).

Similar as in the previous chapter, we can define the convergence factor as

ρ(ω, p, q, L) = | 2 √

iων − p − 4qωνi 2 √

iων + p + 4qωνi exp( − √ iων L

ν ) |

2

.

Put ¯ ω =

ων

, ¯ p =

pν

and ¯ ρ(¯ ω, p, q, L) = ¯ ρ(ω, p, q, L), we need to solve the problem

min

¯

p,q∈R

max

¯

ω∈[¯ωmin,¯ωmax]

ρ(¯ ¯ ω, p, q, L). ¯ (2.2.3) Similar as in the previous chapter, we only need to solve the following problem

min

¯

p,q≥0

max

¯

ω∈[¯ωmin,¯ωmax]

ρ(¯ ¯ ω, p, q, L). ¯ (2.2.4) We have the following theorems for the Overlapping Case

Theorem 2.2.1. If we fix ω ¯

min

and ω ¯

max

, then for L small satisfying that L

85

ω ¯

max

is small and L¯ ω

max

is not small, the problem (2.2.4) has a unique solution

¯ p

∽ √

2¯ ω

3 8

min

ω ¯

1

max8

,

25

(28)

Theorem 2.2.2.

Case 1: For ∆x small enough L = C

1

∆x, ∆t = C

2

∆x, ω ¯ ∈ [

2T νπ

,

Cπ2ν

∆x

1

].

There exists a unique pair (¯ p

, q

) such that min

p,q¯ ≥0

max

ω¯[ π

2T ν,∆tνπ ]

ρ(¯ ¯ ω, p, q, L) = ¯ max

ω¯∈[2T νπ ,∆tνπ ]

ρ(¯ ¯ ω, p ¯

, q

, L). Then

¯ p

∽ √

2( π

4

T

3

C

2

ν

4

)

18

∆x

18

, q

∽ √

2( π

4

ν

4

T C

23

)

18

∆x

83

, min

¯

p,q≥0

max

¯

ω∈[2T νπ ,∆tνπ ]

ρ(¯ ¯ ω, p, q, L) ¯ ∽ 1 − 4( C

2

2T )

18

∆x

18

+ O(∆x

14

).

Case 2: For ∆x small enough L = C

1

∆x, ∆t = C

2

∆x

2

, ω ¯ ∈ [

2T νπ

,

C2πν4

∆x

2

].

There exists a unique pair (¯ p

, q

) such that min

p,q¯ ≥0

max

ω∈[2T νπ ,∆tνπ ]

ρ(¯ ¯ ω, p, q, L) = ¯ max

ω¯[ π

2T ν,∆tνπ ]

ρ(¯ ¯ ω, p ¯

, q

, L). Then

¯

p

∽ (4 π

2

ν

2

4T

2

(C

1

ν

1

)

1

)

15

∆x

15

, q

∽ (16(C

1

ν

1

)

3

2T

πν )

15

∆x

53

, min

¯

p,q≥0

max

¯

ω∈[2T νπ ,∆tνπ ]

ρ(¯ ¯ ω, p, q, L) ¯ ∽ 1 − 2

2110

( πν

2T )

101

(C

1

ν

1

)

15

∆x

15

+ O(∆x

25

).

Remark 2.2.1.

26

(29)

Figure 2.2.1.

Figure 2.2.2.

27

(30)

maximum point ω ¯

2

, ω ¯

4

of ρ) on the graph. In the first case ¯ ω ¯

4

> ω ¯

max

, we equilibrate the two boundaries and the maximal point ω ¯

2

to get (¯ p

, q

).

We have the following theorem for the nonoverlapping case Theorem 2.2.3. The equation (2.2.4) has a unique solution

¯ p

= √

2¯ ω

3 8

min

ω ¯

1

max8

= √

2( πν

1

2T )

38

(πν

1

)

18

∆t

18

, and

q

= √

2(ω

min

ν)

18

max

ν)

38

= √ 2( πν

2T )

18

(πν)

38

∆t

38

. Then, we have that

¯

min

p,q≥0

max

¯

ω∈[¯ωmin,¯ωmax]

ρ(¯ ω, p, q) = ¯ max

¯

ω∈[¯ωmin,¯ωmax]

ρ(¯ ω, p ¯

, q

) ∽ 1 − 4¯ ω

1 8

min

ω ¯

1

max8

∽ 1 − 4( 1

2T )

18

∆t

18

.

2.2.1 Proof of the Theorems in the Overlapping Case

In this section, we will consider the problem of optimizing (¯ p, q) in the overlapping case.

Putting

h

L

(¯ p, q) = max

¯

ω∈[¯ωmin,¯ωmax]

ρ(¯ ¯ ω, p, q, L) = ¯ || ρ(¯ ¯ ω, p, q, L) ¯ ||

,

we call that (¯ p

, q

, h

L

(¯ p

, q

)) is a strictly local minimum of h

L

(¯ p, q) if and only if there exists ǫ

1

, ǫ

2

positive such that for all (¯ p, q) in (¯ p

− ǫ

1

, p ¯

+ ǫ

1

) × (q

− ǫ

2

, q

+ ǫ

2

), we have h

L

(¯ p, q) < h

L

(¯ p

, q

).

In order to prove the theorems, we need the following lemma:

Lemma 2.2.1. If (¯ p

, q

, h

L

(¯ p

, q

)) is a strictly local minimum of h

L

(¯ p, q), then it is the global minimum of h

L

(¯ p, q) and (¯ p

, q

) is the unique solution of (2.2.4).

28

(31)

Proof of Lemma 2.2.1

We denote D (z

0

, δ) = { z ∈ C , |

zz+zz00

| < δ } , and D

δL

= { (¯ p, q) | h

L

(¯ p, q) ≤ δ } . We first prove that D

Lδ

is a convex set. Let (¯ p

1

, q

1

) and (¯ p

2

, q

2

) be to elements of D

Lδ

, we have that

|| 2 √

i¯ ω − p ¯ − q ωi ¯ 2 √

i ω ¯ + ¯ p + q ωi ¯ exp( − √ i ω ¯ L

ν ) ||

≤ √ δ.

Thus ∀ ω ¯ ∈ [¯ ω

min

, ω ¯

max

],

| 2 √

i ω ¯ − p ¯ − q ωi ¯ 2 √

i¯ ω + ¯ p + q ωi ¯ exp( − r ω ¯

2 L) | ≤ √ δ.

Hence

| 2 √

i ω ¯ − p ¯ − q ωi ¯ 2 √

i¯ ω + ¯ p + q ωi ¯ | exp( − r ω ¯

2 L) ≤ √ δ.

Therefore

| 2 √

i ω ¯ − p ¯ − q ωi ¯ 2 √

i ω ¯ + ¯ p + q ωi ¯ | ≤ √

δ exp(L r ω ¯

2 ).

This means ¯ p

1

+ q

1

ωi ¯ ∈ D (2 √ i¯ ω, √

δ exp(L q

¯ ω 2

)).

Similarly, we have also ¯ p

2

+ q

2

ωi ¯ ∈ D (2 √ i ω, ¯ √

δ exp(L q

¯ ω 2

)).

If √

δ exp(L q

¯ ω

2

) < 1, using Lemma 2.1 in [1], we can see that D (2 √ i ω, ¯

√ δ exp(L q

¯ ω

2

)) is convex. Thus for θ ∈ [0, 1], we have θ(¯ p

1

, q

2

)+(1 − θ)(¯ p

2

, q

2

)

∈ D

δL

. If √

δ exp(L q

¯ w

2

) ≥ 1, using Lemma 2.1 in [1], we can see that for

¯

p

1

, ¯ p

2

, q

1

, q

2

≥ 0, θ ∈ [0, 1], we have θ(¯ p

1

+ q

1

ωi) + (1 − θ)(¯ p

2

+ q

2

ωi) ¯

∈ D (2 √ i ω, ¯ √

δ exp(L q

¯ ω

2

)). Thus for θ ∈ [0, 1], we have θ(¯ p

1

, q

1

) + (1 − θ)(¯ p

2

, q

2

) ∈ D

δL

.

Therefore D

δL

is convex.

Suppose that (¯ p

, q

, h

L

(¯ p

, q

)) is a strictly local minimum of h

L

(¯ p, q ), we prove that it is a global minimum of h

L

(¯ p, q). Suppose the contrary that there exists (¯ p

∗∗

, q

∗∗

, h

L

(¯ p

∗∗

)) such that h

L

(¯ p

, q

) ≥ h

L

(¯ p

∗∗

, q

∗∗

). Then there exists a convex neighborhood U of (¯ p

, q

), such that ∀ s ∈ U, s 6 = (¯ p

, q

) and h

L

(s) > h

L

(¯ p

, q

). Since (¯ p

∗∗

, q

∗∗

) ∈ D

hL

L(¯p∗∗,q∗∗)

⊂ D

Lh

L(¯p,q)

,we have

29

(32)

30

Références

Documents relatifs

We provide in this paper the complete asymtotically optimized closed form transmission conditions for optimized Schwarz waveform relaxation algorithms applied to advection

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Thus the algorithm is dened as in the classical Schwarz case, but like in waveform relaxation, time dependent subproblems are solved, which explains the name of these methods..

Overlapping Schwarz Waveform Relaxation for the Heat Equation in n-Dimensions.. GANDER, Martin Jakob,

We showed for the zeroth order conditions that the asymptotic convergence rate of the optimized Schwarz method discretized with mesh parameter h is 1 − O(h 1/2 ), whereas for the

The theoretical value ( α ∗ , β ∗ ) is indicated by an asterisk while the numerically optimal value is located somewhere in the 10 −9 island nearby... The level lines represent

Using Theorem 2.1 the non overlapping Schwarz waveform relaxation algorithm for the wave equation with a discontinuity in the wave speed converges in I steps where I denotes the

There are five main techniques to prove the convergence of Domain Decomposition Algorithms and they are: Orthorgonal Projection used for a linear Laplace equation (see [16]), Fourier