• Aucun résultat trouvé

GRAIN BOUNDARY INTERDIFFUSION AND SURFACE COMPOUND FORMATION IN Al/Sb THIN FILM COUPLES

N/A
N/A
Protected

Academic year: 2021

Partager "GRAIN BOUNDARY INTERDIFFUSION AND SURFACE COMPOUND FORMATION IN Al/Sb THIN FILM COUPLES"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: jpa-00223157

https://hal.archives-ouvertes.fr/jpa-00223157

Submitted on 1 Jan 1983

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GRAIN BOUNDARY INTERDIFFUSION AND SURFACE COMPOUND FORMATION IN Al/Sb

THIN FILM COUPLES

R. Andrew, L. Baufay, Y. Canivez, A. Pigeolet

To cite this version:

R. Andrew, L. Baufay, Y. Canivez, A. Pigeolet. GRAIN BOUNDARY INTERDIFFUSION AND

SURFACE COMPOUND FORMATION IN Al/Sb THIN FILM COUPLES. Journal de Physique

Colloques, 1983, 44 (C5), pp.C5-495-C5-499. �10.1051/jphyscol:1983572�. �jpa-00223157�

(2)

Colloque C5, supplement au nOIO, Tome 44, octobre 1983 page C5-495

GRAIN BOUNDARY INTERDIFFUSION AND SURFACE COMPOUND FORMATION IN Al/Sb THIN FILM COUPLES

R. Andrew,

L .

Baufay, Y . Canivez and A . P i g e o l e t

FacuZtd des Sciences, Uniuersite' de Z'Etat, 23, Av. Maistriau, 7000 Mons, Be Zgiwn

Rdsum6 - Des f i l m s de 1000 1 c o n s t i t u 6 s d' A 1 e t de Sb en p r o p o r t i o n s t o e c h i o - mdtrique s o n t r e c u i t s de f a s o n 2 former l e compos& AlSb. Nous comparons r e c u i t thermique (au moyen d'un f o u r ) e t r e c u i t l a s e r e t nous dtudions l ' e f f e t d'un r e c u i t thermique B b a s s e tempdrature s u r 1'Bnergie s e u i l de l ' a u t r e . I1 e s t montr6 que l e s r d s u l t a t s s o n t compatibles avec un modzle pr6cCidemment dla- bord pour un r e c u i t l a s e r de t e l s systbmes. Nous Studions &galemerit, au moyen de mesures par d l e c t r o n s Auger, l ' d v o l u t i o n d e 1 ' A l P l a s u r f a c e de Sb pendant l e r e c u i t B basse tempdrature e t nous concluons que c e l a s e p r o d u i t p a r d i f f u - s i o n s u r l e s j o i n t s d e g r a i n e t par l a f o r m a t i o n d'une couche 2-d du composd B d e s tempgratures 2200°C.

A b s t r a c t - 1000 t h i c k f i l m s of A 1 and Sb i n s t o i c h i o m e t r i c r a t i o a r e annea- l e d t o form t h e compound AlSb. W e compare f u r n a c e and l a s e r a n n e a l i n g and s t u d y t h e e f f e c t of a low temperature furnace anneal on t h e energy t h r e s h o l d of t h e l a t t e r . The r e s u l t s

are

shown t o

be

c o n s i s t e n t w i t h a model p r e v i o u s l y formulated f o r l a s e r a n n e a l i n g of t h i s and s i m i l a r systems. We a l s o s t u d y , by Auger e l e c t r o n measurements, t h e e v o l u t i o n of A 1 a t t h e Sb s u r f a c e d u r i n g t h e low temperature a n n e a l and conclude t h a t t h i s o c c u r s by non r a t e l i m i t i n g g r a i n boundary d i f f u s i o n and formation of a 2-d compound l a y e r a t temperatures

2 200°C.

INTRODUCTION

Aluminium and Antimony r e a c t on h e a t i n g t o form t h e semiconducting compound AlSb.

The r e a c t i o n i s exothermic w i t h AH=-22kcal/mole [ l ] and a c t i v a t i o n e n e r g i e s f o r d i f - f u s i o n of A 1 o r Sb atoms a c r o s s an i n t e r v e n i n g compound l a y e r measured a s 1.78 eV and

1.52 eV [ 21 r e s p e c t i v e l y . W e have p r e v i o u s l y d e s c r i b e d [ 31 t h e formation of t h i n AlSb f i l m s by l a s e r i r r a d i a t i o n of sandwich-like s t r u c t u r e s of t h e components l a i d down i n t h e c o r r e c t s t o i c h i o m e t r i c r a t i o , and shown t h a t when t h e s e f i l m s a r e suppor- t e d by a t h e r m a l l y i n s u l a t i n g s u b s t r a t e t h e r e a c t i o n i s q u a s i - a d i a b a t i c ( i . e . i n a time s c a l e comparable t o t h e l a s e r p u l s e d u r a t i o n o r s p o t dwell t i m e ) . Under such c o n d i t i o n s t h e r e a c t i o n can be t r i g g e r e d by f u r n i s h i n g s u f f i c i e n t energy t o p a r t l y melt t h e m e t a l l i c f i l m s ; subsequent l i q u i d mixing and l i b e r a t i o n of a p a r t of t h e h e a t of formation e n s u r e s a r a p i d r i s e i n temperature and t h u s d r i v e s t h e r e a c t i o n t o completion. Furnace a n n e a l i n g , however, does n o t produce t h i s f a s t r e a c t i o n even a t temperatures w e l l above t h e m e l t i n g p o i n t of t h e components, and i t has been assu- med t h a t t h e slower r a t e of temperature r i s e a s s o c i a t e d w i t h a f u r n a c e anneal allows a t h i n f i l m of compound t o form b e f o r e t h e m e t a l l i c m e l t i n g p o i n t i s reached and t h a t t h i s f i l m t h e n p r e v e n t s l i q u i d mixing of t h e m e t a l s . I n t h i s paper we p r e s e n t f u r - t h e r experimental evidence t h a t t h i s h y p o t h e s i s must be e s s e n t i a l l y c o r r e c t . W e s t u - dy t h e e f f e c t of a pre-anneal on l a s e r t r a n s f o r m a t i o n t h r e s h o l d e n e r g i e s and c o r r e l a - t e t h i s w i t h e x p e r i m e n t a l l y observed g r a i n boundary d i f f u s i o n and compound formation.

EXPER I M E N S

1 ) F_u:nace a n n e a l i n g .

Specimens were prepared by vacuum e v a p o r a t i o n of 350 6 A 1 followed by 650 Sb onto s p u t t e r - c l e a n e d o p t i c a l microscope s l i d e s . Subsequent a n n e a l i n g i n an i n e r t gas f u r - nace r e s u l t s i n formation of t h e compound. as witnessed most simply by i t s t r a n s p a -

- - -

r e n c e t o orange l i g h t . I n f i g . 1 we p l o t t h e t r a n s f o r m a t i o n time a s a f u n c t i o n of i n v e r s e temperature. Also appearing h e r e i s t h e l i n e corresponding t o t h e lower

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1983572

(3)

C5-496 JOURNAL DE PHYSIQUE

activation energy of ref. 2, measured at "600°C.

We observe that temperatures above "500°C are required for transformation within an hour or so, that melting of the components has no effect on the reaction rate, and that the reaction time at the m.p. of A1 is a little more than 100s.

Fig. 1 Furnace annea- ling of Al/Sb couples.

2 ) Laser annealing.

Specimens prepared as above can be exposed to either pulsed or CW laser beams and a measure made of the threshold energy required to induce compound formation. We have previously shown [ 4 1 that this threshold energy corresponds to heating of the film to the m.p. of A1 660°c, combined with a reaction time which can be <lms, and our model which takes proper account of the heat of formation was developed to explain

the apparent inconsistency of this result with the furnace annealing data.

In the present work we have measured the laser threshold energy following a period of pre-annealing at different temperatures. Fig. 2 shows that a pre-anneal of up to 30 min. at 150°C has no effect on the threshold energy whereas a few minutes at-350°C raises the required threshold energy by -60%. We also indicate on Fig. 2 the energy which would correspond to heating the film to the m.p. of AlSb at -1083~C.

Fig. 2 Effect of pre-

anneal on laser thres-

hold transformation

energy.

(4)

Specimens were prepared by e v a p o r a t i o n i n UHV of 350 - 1 A 1 followed by 650 k Sb onto a 8x8x0.1 mm p o l i s h e d s / s p l a t e , which was t h e n t r a n s f e r r e d i n UHV t o a specimen manipulator and p r e s e n t e d t o a 4-grid hemispherical Auger a n a l y s e r . The specimen was held by clamping between r e t r a c t a b l e copper jaws and could be heated by p a s s i n g a D.C. c u r r e n t , measurement of which was used t o s e t t h e temperature. P r i o r c a l i b r a - t i o n of t h i s h e a t i n g system showed an a b s o l u t e e r r o r of -+-15'~ a t - 2 0 0 ' ~ f o l l o w i n g r e l e a s e and renewed clamping b u t a r e s e t t a b i l i t y of temperature once clamped t o +3OC w i t h a r a p i d response.

F i g . 3 Evolution of A 1 t o Sb s u r f a c e .

Immediately f o l l o w i n g p r e p a r a t i o n t h e Auger spectrum showed a p u r e and c l e a n Sb s u r - f a c e a s would be expected. We t h e n monitor t h e e v o l u t i o n of t h e A 1 Auger peak a t 68 eV w h i l s t h e a t i n g t h e specimen. F i g . 3 shows t h e e a r l y development of t h i s peak with t h e specimen maintained a t -220°C. A n e a t e r way t o perform t h e experiment i s t o f i x t h e a n a l y s e r v o l t a g e and t r a c k d i r e c t l y t h e development of t h e n e g a t i v e l o b e of t h e A 1 peak a s a f u n c t i o n of time, and t h e r e s u l t of one such experiment i s shown i n Fig. 4 about which we s h a l l comment i n some d e t a i l .

The temperature was f i r s t f i x e d a t 1 9 5 ' ~ ( h e a t i n g time 515s) and when no A 1 s i g n a l was d e t e c t e d a f t e r a few minutes i t w a s t h e n r a i s e d t o 2 3 5 O C . Approximately 40 s l a t e r

( h e a t i n g time 2-3s) t h e A 1 peak s t a r t e d t o grow q u i t e r a p i d l y . A t 1 min. t h e tempe-

r a t u r e was reduced t o 195°C where t h e peak growth i s now small b u t not z e r o . The

same temperature c y c l e i s r e p e a t e d a t 9 1 / 2 min., followed a t 13 min. by an interme-

d i a t e temperature of 2 1 5 O ~ and f i n a l l y by a r e t u r n a t -I6 min. t o 235OC where t h e A 1

peak r e a c h e s s a t u r a t i o n a t -25 min. Also marked h e r e i s t h e l e v e l corresponding t o

e x a c t l y one h a l f of t h e peak measured f r o m a p u r e A l s u r f a c e and we observe a t t h i s

s t a g e t h a t t h e Sb peak has a l s o decreased t o h a l f i t s i n i t i a l v a l u e . A t t h e l e f t of

Fig. 4 we p r e s e n t an alignment of t h e t h r e e segments a t 2 3 5 ' ~ . The experiment was

(5)

C5-498 JOURNAL DE PHYSIQUE

a l s o performed i n r e v e r s e , with Sb d i f f u s i n g through an A 1 l a y e r . The r e s u l t s a r e s i m i l a r b u t l e s s p r e c i s e due t o t h e reduced s e n s i t i v i t y of t h i s kind of a n a l y s e r a t t h e Sb peak energy.

F i g . 4 Evolution of A 1 t o Sb s u r f a c e . DISCUSSION

Our model f o r compound formation under l a s e r i r r a d i a t i o n supposes t h a t t h e r o l e of t h e l a s e r i s s i m p l y t o p a r t i a l l y melt t h e components s o t h a t t h e r e s u l t i n g l i q u i d mixing and concomitant AH l i b e r a t i o n can h e a t t h e f i l m up t o t h e m.p. of t h e compound.

This i d e a i s supported by t h e pre-anneal experiments which suggest t h a t i f t h e compo- n e n t s a r e prevented from mixing by a p r e - e x i s t i n g s o l i d AlSb b a r r i e r t h e n it i s ne- c e s s a r y t o h e a t t h e f i l m a l l t h e way t o 1083°C u s i n g t h e l a s e r . The same experiments suggest t h a t such a b a r r i e r w i l l form i n a few minutes a t temperatures 2 2 5 0 ' ~ . - The Auger experiments show t h a t a t temperatures above -200°C t h e Sb s u r f a c e i s g r a - d u a l l y covered by a l a y e r having t h e same s t o i c h i o m e t r y a s t h e compound. Quite e v i - d e n t l y t h i s cannot occur by a bulk e f f e c t ( c . f . F i g . l ) and must t h e r e f o r e presumably be due t o g.b. d i f f u s i o n of A 1 t o t h e s u r f a c e , a l t h o u g h such d i f f u s i o n cannot be t h e r a t e l i m i t i n g p r o c e s s s i n c e t h i s would imply a l i n e a r r i s e i n A 1 c o n c e n t r a t i o n with time. We suppose, more p r e c i s e l y , t h a t A 1 atoms w i l l n o t d i f f u s e a c r o s s an Sb s u r - f a c e ( g . b ' s i n t h e Sb f i l m a r e considered h e r e a s s u r f a c e s ) b u t w i l l i n s t e a d r e a c t i n d i v i d u a l l y t o form something a k i n t o a chemisorbed l a y e r o r 2-d compound a c r o s s which has a s i m i l a r h e a t of f o r m a t i o n , and i s t h e p r i n c i p a l reason why t h e s t i c k i n g c o e f f i c i e n t i n such c a s e s remains c l o s e t o u n i t y u n t i l n e a r l y monolayer formation i s achieved. I f we assume h e r e t h a t t h e compound l a y e r advances a t a f i x e d r a t e ~ ( c m / s ) a t f i x e d temperature, and t h a t t h e Sb f i l m i s composed of c i r c u l a r g r a i n s o f r a d i u s r t h e n t h e A 1 curve should grow t o a maximum S, according t o 2Kt ~ " t

O

~

S ( t )

=

s

(-

-

m ro 7)

which i s n o t t h e form of t h e experimental curve. However i f we allow a g a u s s i a n d i s t r i b u t i o n of g r a i n s i z e s P ( r ) about r , and t r u n c a t e d a t r = O , t h e n choosing

0 =

0.53 we o b t a i n t h e immaculate f i t sh8wn i n F i g . 4 . By f u r t h e r assuming t h a t t h e

d e l a y i n f i r s t observing the A 1 s i g n a l a f t e r h e a t i n g t o 23S°C corresponds $0 t h e

time taken t o extend t h e l a y e r compound through t h e f i l m t h i c k n e s s of 650 A we o b t a i n

(6)

on A 1 we have observed g r a i n s i n t h e pmrange f o r Sb f i l m s of t h i s t h i c k n e s s d e p o s i t e d onto SiO, and s i n c e Sb f i l m s a r e i n i t i a l l y amorphous on d e p o s i t i o n and c r y s t a l l i z e spontaneously when the t h i c k n e s s exceeds -200 1 one might expect t h e g r a i n s t r u c t u r e t o be l a r g e l y independent of t h e s u b s t r a t e . Hence t h i s v a l u e of r o might n o t be too unreasonable. Attempts t o deduce a n a c t i v a t i o n energy f o r t h e r e a c t i o n s t e p by assuming K

=

KO exp(-Q/kT) and p l o t t i n g I n v s -&meet with f a i l u r e s i n c e t h e t h r e e p o i n t s t h u s d e r i v e d do n o t l i e on any s t g a i g h t l i n e . I n t h i s r e s p e c t we may note t h a t changes by a f a c t o r of -50 over t h e temperature range 195-235"C, i . e . 8% on t h e a b s o l u t c s c a l e and t h u s i m p l i e s e i t h e r an unreasonably h i g h v a l u e of Q o r t h e i n t e r v e n t i o n of some more complicated process such a s a phase change.

The n a t u r e of t h i s l a t t e r i s of course q u i t e s p e c u l a t i v e but might p o s s i b l y be r e l a - t e d t o some kind of s u r f a c e r e c o n s t r u c t i o n , perhaps a change from a "chemisorbed"

l a y e r t o a t r u e 2-d compound.

CONCLUSIONS

Though t h e e x a c t p r o c e s s by which a s u r f a c e compound i s formed i s u n c e r t a i n i t has been e s t a b l i s h e d t h a t i n t e r d i f f u s i o n of t h e m e t a l s o c c u r s by g.b. d i f f u s i o n a t tem- p e r a t u r e s much below t h o s e n e c e s s a r y t o perform t h e bulk r e a c t i o n . Annealing of Al/Sb couples a t temperatures i n excess of -200°C r e s u l t s i n a f i l m s t r u c t u r e simi- l a r t o as-deposited b u t where t h e i n d i v i d u a l g r a i n s on e i t h e r s i d e a r e coated i n a l a y e r of compound. E v i d e n t l y t h i s honeycomb s t r u c t u r e i s s u f f i c i e n t t o mechanically s t a b i l i z e t h e f i l m above t h e m.p. of t h e components and p r e v e n t t h e occurence of t h e l a s e r t r i g g e r e d r e a c t i o n p r e v i o u s l y r e p o r t e d f o r t h i s m a t e r i a l and s i m i l a r systems.

ACKNOWLEDGEMENTS

We acknowledge h e l p f u l d i s c u s s i o n s w i t h our c o l l e a g u e s , p a r t i c u l a r l y P. ~ i g z o r and M. Wautelet. The work i s supported by programme "Energyw of t h e Belgian M i n i s t r y f o r Science P o l i c y .

REFERENCES

1. 0. Kubaschowki and E.L. Evans, M e t a l l u r g i c a l Thermochemistry (Pergamon, New York, 1958),

p .

123.

2. B.Y. P i n e s and E.F. Chaikovski, Sov. Phys. S o l i d S t a t e i 864 ( 1 958).

3. R. Andrew, M . Ledezma, M. Lovato, M. Wautelet and L.D. Laude, Appl. Phys. L e t t . 35 418 (1979).

4 . Andrew, L. Baufay, A. P i g e o l e t and L.D. Laude, J . Appl. Phys. 2, 4862 (1982).

Références

Documents relatifs

“negative” (and associated colouring) to the cables ; thus for a “negative beamline” set up for negatively charged particles, the “negative cable” is attached to the

Compared with the 350 ◦ C-annealed Te-Sb 2 Se 3 film, the reduced intensity of the diffraction peaks (221) and (211) for other crystalline films (Figure 2a) implies that they grew

Observed surface roughness (~ 3.9 nm) can be attributed to the higher substrate temperature during deposition. Figure 5 shows the hysteresis loops of the target in two

We study the effect of various determinants like socio demographic factors on these seven concerns: age, gender, highest diploma obtained by an individual,

Having shown that the PLAP gives reliable analysis of compound semiconductors, we have begun a study of composition variations in ternary and quaternary materials.. These are

In figure 3, we present the excitation functions for several states of 24Mg recorded at 9lab = 15°. At low incident energies the relative and absolute

To investigate the cleavage strength of the grain boundaries in the Mi3A1 crystal, we perform the total energy calculations for single crystal as well as for bi-crystals including

Kim YM, Yim CD, You BS (2007) Grain refining mechanism in Mg–Al base alloys with carbon addition. Qian M, Cao P (2005) Discussions on grain refinement of magnesium alloys by carbon