• Aucun résultat trouvé

Updating $\bar m_{c,b}(\bar m_{c,b})$ from SVZ-moments and their ratios

N/A
N/A
Protected

Academic year: 2021

Partager "Updating $\bar m_{c,b}(\bar m_{c,b})$ from SVZ-moments and their ratios"

Copied!
6
0
0

Texte intégral

(1)

HAL Id: hal-01861906

https://hal.archives-ouvertes.fr/hal-01861906

Submitted on 1 Jun 2021

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Updating ¯

m_c, b( ¯

m_c, b) from SVZ-moments and their

ratios

Stephan Narison

To cite this version:

Stephan Narison. Updating ¯

m_c, b( ¯

m_c, b) from SVZ-moments and their ratios. Physics Letters B,

(2)

Contents lists available atScienceDirect

Physics

Letters

B

www.elsevier.com/locate/physletb

Updating

m

c

,

b

(

m

c

,

b

)

from

SVZ-moments

and

their

ratios

Stephan Narison

LaboratoireUniversetParticules,CNRS-IN2P3,Case 070,PlaceEugèneBataillon,34095,MontpellierCedex 05,France

a

r

t

i

c

l

e

i

n

f

o

a

b

s

t

r

a

c

t

Articlehistory:

Received30May2018

Receivedinrevisedform12July2018 Accepted3August2018

Availableonline6August2018 Editor:A.Ringwald

Keywords:

QCDspectralsumrules Perturbativeandnon-perturbative calculations

Heavyquarkmasses Gluoncondensates

Using recent values of

α

s, the gluon condensates 

α

sG2 and g3fabcG3 and the new data onthe

ψ/ϒ-families, we update our determinations of the M S running quark masses mc,b(mc,b) from the

SVZ-moments Mn(Q2) and their ratios [1,2] by including higherorder perturbative(PT) corrections,

non-perturbative(NPT)termsuptodimensiond=8 andusingthedegreen-stabilitycriteriaofthe(ratios of)moments.Optimalresultsfromdifferent(ratiosof)momentsconvergetotheaccuratemeanvalues:

mc(mc)=1264(6)MeV andmb(mb)=4188(8)MeV inTable 4,whichimproveandconfirmourprevious

findings [1,2] andtherecentonesfromLaplacesumrules [3].Commentsonsomeotherdeterminations ofmc(mc)and

α

sG2fromtheSVZ-(ratiosof)momentsinthevectorchannelaregiveninSection5.

©2018TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. IntroductionandSVZ-moments

In Refs. [1,2], we have used different

M

n

(Q

2

)

moments and

theirratiosrn

/r

n+jintroducedbySVZ [4,5]1forextractingthe val-uesofthecharmandbottomrunningquarkmassesmc,b

(m

c,b

)

and

thedimension4:



α

sG2



and6:



g3fabcG3



gluoncondensates.

Us-ingtherecentvaluesofthe gluoncondensatesfromLaplacesum rules [3,15] and newdata on the

ψ/ϒ

-families massesand lep-tonic widths [16], we shall improve in this paper our previous results for the quark masses. Here, we shall be concerned with thetwo-pointcorrelator:



gμνq2

qμqν







(

q2

)

i



d4x e−iqx



0

|

T



(

x

)





(0)



|

0

,

(1) associatedtothe 

= ¯

γ

μ



(



c,b)heavyquarkneutral vec-torcurrent.Thecorrespondingmomentsare2:

E-mailaddress:snarison@yahoo.fr.

1 Forreviews,seee.g. [6–14].

2 Weshallusethesamenormalizationas[17] andsomeoftheexpressionsgiven

there.

M

n



q2

Q2



4

π

2

(

1) n n

!



d d Q2



n

(

Q2

)

=



4m2 Q dt R

(

t

,

m 2 c

)

(

t

+

Q2

)

n+1

.

(2)

Theirratiosread:

rn/n+1

(

Q2

)

=

M

n

(

Q2

)

M

n+1

(

Q2

)

,

rn/n+2

(

Q2

)

=

M

n

(

Q2

)

M

n+2

(

Q2

)

,

(3) where the experimental sidesare more precise than that of the moments

M

n

(Q

2

)

. It has been noticed by [18,19] thatthe OPE

of

M

n

(

0

)

breaks down for highervalues of n, while it has also

been mentioned in [1,2] that low moments n

3 are sensitive tothewayforparametrizingthehigh-energypartofthespectral function(hereaftercalledQCDcontinuum)makingtheresults ob-tainedfromlowmomentsmodel-dependent.Therefore,oneshould lookforcompromise valuesofn (stabilityinn)whereboth prob-lems are avoided. Another wayout is to work with the Q2

=

0 moments [11] wheretheOPEconvergesfasterwhiletheQCD con-tinuumcontributionsarestronglysuppressed.

2. ExpressionsoftheSVZ-moments

M

n

(

Q2

)

TheQCD expressionsofthemomentscanbederived fromthe onesofR.Theon-shellexpressionofthespectralfunctionis trans-formedintotheM S-schemebyusingtheknownrelationbetween https://doi.org/10.1016/j.physletb.2018.08.003

(3)

262 S. Narison / Physics Letters B 784 (2018) 261–265 Table 1

QCDparameters.

Dimension d Name Values [GeVd] Refs.

0 αs(MZ) 0.1182(19) [3,16,20–22] 4 αsG2 (6.35±0.35)10−2 [3] 6 g3f abcG3 (8.2±1.0)GeV2αsG2 [15] 8 G4 (0.75±025)G22 [19,23] Table 2

Massesandelectronicwidthsofthe J/ψfamilyfromPDG16[16]. Name Mass [MeV] J/ψe+e−[keV]

J/ψ(1S) 3096.916(11) 5.55(14) ψ(2S) 3686.097(25) 2.34(4) ψ(3770) 3773.13(0.35) 0.262(18) ψ(4040) 4039(1) 0.86(7) ψ(4160) 4191(5) 0.48(22) ψ(4415) 4421(4) 0.58(7)

the on-shelland M S-scheme runningquark masses. The sources ofdifferentPT contributionsuptoorder

α

3

s for

M

n

(Q

2

=

0

)

and

up to order

α

2

s for

M

n

(Q

2

=

0

)

are quoted in [1] and will not

be re-quoted here. The same for the different NP contributions up to dimensiond

=

8 whereone notice that thed

=

4 conden-sate contributionisknown to NLO.Some explicit numericalQCD expressions of the moments can be found in Ref. [1]. We shall usetheQCDparametersgiveninTable1.Tothevalueof

α

s

(M

Z

)

quotedthere,correspond:

α

s

(

mc

)

=

0.397(15) and

α

s

(

mb

)

=

0.227(7) , (4)

where we have used the recent determinations from a recent globalfitofthe(axial-)vectorand(pseudo)scalarcharmoniumand bottomiumsystemsusingLaplacesumrules [3]:

mc

(

mc

)

=

1264(10)MeV

,

mb

(

mb

)

=

4.184(9)MeV. (5)

Thelow-energy partofthespectral functioniswell described by the sum of different resonances contributions within a narrow widthapproximation(NWA).Forthec-quarkchannel,itreads:

Rc

(

t

)

4

π

Imc

(

t

+

i

)

=

π

Nc Qc2

α

2

J/ψ

ψe+e

δ



t

M2ψ



,

(6) whereNc

=

3; and

ψe+e− arethemassandleptonicwidth

ofthe J/ψmesons; Qc

=

2

/

3 isthecharmelectricchargeinunits

of e;

α

=

1

/

133

.

6 is the running electromagnetic coupling eval-uated at M2

ψ. We shall use the experimental values of the J/ψ

parameterscompiledinTable2.

Weshallparametrizethecontributionsfrom

tc

≥ (

4

.

5

±

0

.

1

)

GeVusingeither:

Model1: TheapproximatePTQCD expressionofthespectral function to order

α

2

s up to order

(m

2c

/t)

6 given in [24] and the

α

3

s contributionfromnon-singletcontributionuptoorder

(m

c2

/t)

2

givenin[25].

Model2: The asymptoticPT expressionof thespectral func-tion known to order

α

3

s where the quark mass corrections are

neglected.3

Model3: Fitsofdifferentdataabovethe

ψ(

2S

)

mass:weshall takee.g.the resultsin[25] whereacomparisonofresultsfrom dif-ferentfittingprocedurescanbefoundinthispaper(seee.g. [26]).

3 OriginalpapersaregiveninRefs.317to321ofthebookinRef. [7].

Fig. 1. Valuesofmc(mc)fromMn(0)fordifferentvaluesofn usingtheQCDinput

parametersinTable1andthethreemodelsgivenpreviouslyfortheQCDcontinuum parametrization.

Fig. 2. Valuesofmc(mc)fromtheratiosofmomentsrn/n+1(0)andrn/n+2(0)for

dif-ferentvaluesofn usingtheQCDinputparametersinTable1andModel1given previously for theQCD continuum parametrization.In then axis: 1≡r1/2,2≡ r2/3,3≡r2/4,4≡r3/4,5≡r3/5,6≡r4/5.

3. Runningmc

(

mc

)

charmquarkmassfrom

M

n

(

0

)

– Using the previous models for parametrizing the QCD con-tinuum,we show inFig.1 thevaluesofmc

(m

c

)

from

M

n

(

0

)

for

differentvaluesofn.WehaveusedtheMathematicaprogramFind Rootforextractingthevaluesofmc

(m

c

)

leftasafreeparameterin

theOPEincluding1

/m

8c corrections.

–Onecanseethatthemodel-dependenceoftheresults disap-pear forn

3 wherestabilityinn isobtained.NotingthatModel 1 gives themost conservativeresult andappears (apriori) to be a good approximationofthe spectral functionasit includeshigher orderradiative

masscorrections,weshallonlyconsiderModel 1 intherestofthepaper.Atthestabilitypointn

3

4,wededuce theoptimalestimate(inunitsofMeV):

mc

(

mc

)

|

40

=

1266(8.8)ex

(0.7)

αs

(5.2)

α4

s

(0.1)

G2

(0.3)

G3

(1.5)

G4

.

(7)

–Wedoasimilaranalysisfortheratiosofmomentsrn/n+1

(

0

)

andrn/n+2

(

0

)

.Theresultsversusthedegreeofmomentsareshown inFig.2.Wededuce,atthestability pointn

4,thevalue(inunits ofMeV):

mc

(

mc

)

|

03/4

=

1264(0.1)ex

(2.7)

αs

(9.9)

α4

s

(0.3)

G2

(0.2)

G3

(4.3)

G4

,

(8) whereonecannoticethattheexperimentalerrorisreduced com-paredtothe momentresultswhiletheonesinduced bytheQCD parametershaveincreased.

–Theerrorsfromthe

α

4

s-termisassumedtobeaboutthesize

ofthecontributionfromtheknown

α

3

s termwhichisagenerous

(4)

Fig. 3. Valuesofmc(mc)fromthemomentsMn(4mc2)andtheirratiosrn/n+1(4m2c)

andrn/n+2(4m2c)fordifferentvaluesofn usingtheQCDinputparametersinTable1

andModel1givenpreviouslyfortheQCDcontinuumparametrization.Inthen axis:

7≡r7/8,8≡r7/9,9≡r8/9,10≡r8/10,11≡r9/10,12≡r9/11,13≡r10/11.

Fig. 4. Valuesofmc(mc)fromthemomentsMn(8mc2)andtheirratiosrn/n+1(8m2c)

andrn/n+2(8m2c)fordifferentvaluesofn usingtheQCDinputparametersinTable1

andModel1givenpreviouslyfortheQCDcontinuumparametrization.Inthen axis:

14≡r14/16,15≡r15/16,16≡r15/17,17≡r16/17,18≡r16/18,19≡r17/18.

4. Runningmc

(

mc

)

charmquarkmassfrom

M

n

(

Q2

=

0

)

Previousanalysiscan be extended tothe caseof Q2

=

0 mo-mentswhereabetterconvergenceoftheOPEisexpected [11] and wheretheQCDcontinuumcontributiontothemomentsissmaller aswe shall work with higher moments at which the n-stability isreached. The PTexpression isknown hereup toorder

α

2

s.We

showtheresultsfromthe(ratiosof)momentsinFigs.3and4for

M

n

(Q

2

=

4m2c

)

and

M

n

(Q

2

=

8m2c

)

.We concludethatthe most

stableresults comefromthe momentsfromwhichwe deduceto order

α

2

s (inunitsofMeV):

mc

(

mc

)

|

104m2 c

=

1263(1.6)ex

(0.3)

αs

(1.3)

α3 s

(0.2)

G2

(0.3)

G3

(1)

G4

,

mc

(

mc

)

|

168m2 c

=

1261(1)ex

(0)

αs

(0.3)

α3 s

(0.1)

G2

(0.1)

G3

(0.8)

G4

.

(9)

ThepreviousresultsarecollectedinTable4. 5. Commentsonmc

(

mc

)

and



α

sG2



from

M

n

(

Q2

)

–Onecan noticeinFig.1that thevaluesofmc

(m

c

)

fromthe

moments

M

n≤2

(

0

)

are strongly affected by the QCD continuum parametrizationthough agree within theerrors withthe onesin [25–28]. Forthecaseofn

=

1 moment used byprevious authors toextracttheirfinalresults,onecandeducefromFig.1:

mc

(

mc

)

|

10

=

1262(59)MeV

,

(10) wheretheerrorisdominatedbythedifferentparametrizationsof theQCDcontinuummodels.Onecancomparethisresultwiththe

one mc

(m

c

)

=

1275

(

23

)

MeV from [25] andthe improved recent

estimate 1279(10) MeV from [26] obtained for

α

s

(M

Z

)

=

0

.

118

from theanalogous n

=

1 moment. The sensitivityof the results onthehighenergypartofthespectralfunctionmayquestionthe accuracyoftheresultsquotedinthesepapersfrom

M

1

(

0

)

.

–Instead,inthen

stabilityregion,theQCD continuum-model-dependenceofthe resultdisappears(see Fig. 1) andleads to the optimalandmoreaccuratevaluegiveninEq. (7):

mc

(

mc

)

|

40

=

1266(9)MeV

.

(11) The error due to the parametrization of the spectral function is evenreducedwhenworkingwiththeratioofmoments(seeFig.2) leadingtotheresultinEq. (8):

mc

(

mc

)

|

30/4

=

1264(11)MeV

,

(12)

but the errors due to the QCD parameters have increased com-paredtotheoneofthemoment.

–OnecanalsonoticefromtheTablesinRef. [26] thatthe sta-bility of the central values is reached from

M

n=2,3

(

0

)

which is about 10MeV belowtheir favoured choice from

M

1

(

0

)

.A such valueisinabetteragreementwithourpreviousresultsquotedin Eq. (7).

–Weestimate theerrorsinthetruncationofthePTseriesby includingthe

α

4

s contributionassumedto be ofthesamesize as

the

α

3

s one (a geometric growth of the coefficient observed for

massless quarks [29] may not be extrapolatedforheavy quarks). The inducederroris about5MeV whichissmaller thantheone of 19MeV quoted in Ref. [25] estimated usingsome iterativeor contour improvedprocedures wherethe effectof thesubtraction scale

μ

isalsoincluded.

– However, it is not clear that moving the subtraction scale frommc

(m

c

)

tohighervalues,say3GeV [25–28] forimprovingthe

convergenceofthePTseriescanhelpduetotheambiguityofthe charmquarkmassdefinitionsusedintheOPE[

(

1

/m

c

)

expansion].

IndeedaparttheWilsoncoefficientof



α

sG2



knowntoNLO [30],

the ones of the high-dimension condensates are only known to LO. Refs. [26–28] choose towork withthe polemass inthe OPE which, asemphasized in [25] is ambiguousdue to the IR renor-maloncontribution.Then,theuseoftherunningmassintheOPE canbebetterjustifiedwhichisalsoconsistentwiththeuseofthe runningmassinthe PTcontributions. However,ifone movesthe subtractionscale

μ

frommc

(

μ

)

=

1

.

264 to3 GeV, mc

(

μ

)

moves

from 1.264 to 0.972 GeV which can induce an enhancement of about 1

.

3d for the dimension d condensate contributions to the

moments. Therefore,a carefulanalysisincluding radiative correc-tionstotheWilsoncoefficientsofeachcondensateshould bedone when workingat highvaluesof

μ

. Tomy knowledge, thispoint hasnot yetbeencarefullystudied.In ordertocircumvent asuch large enhancement,whichdoesnotarise whenworkingwiththe Laplace sumrule [3] where an optimalvalue of

μ

has been de-rived,welimitheretothe(usualandnatural)choice

μ

=

mc and

donottrytomoveitarbitrarilyaroundthisvalue.

–CoulombiccorrectionshavebeenroughlyestimatedinRef. [1]. However,ithasbeenalsoarguedinRef. [17] thatthiscontribution, whichisnotunderagood control,canbesafelyneglected inthe relativisticsumrules.Therefore,weshallnotconsidersuch correc-tionsinthispaper.

–In [12,17],thesetofQCDparameters:

mc

(

mc

)

=

1275(15)MeV

,

0.7

≤ 

α

sG2

 ×

102

6.3 GeV4

,

(13)

obtainedfromthemoments usedherehasbeen favoured. Exam-iningFigs.4and5of [17],onecanseethatthevaluesofmc

(m

c

)

(5)

264 S. Narison / Physics Letters B 784 (2018) 261–265

Fig. 5. Valuesofmb(mb)fromthemomentsMn(0)andtheirratiosrn/n+1(0)and rn/n+2(0)fordifferentvaluesofn usingtheQCDinputparametersinTable1and

Model1givenpreviouslyfortheQCDcontinuumparametrization.Inthen axis:

1≡r1/2,2≡r2/3,3≡r2/4,4≡r3/4,5≡r3/5,6≡r4/5,7≡r4/6,8≡r5/6.

Fig. 6. Valuesofmb(mb)fromthemomentsMn(4mb2)andtheirratiosrn/n+1(4mb2)

andrn/n+2(4m2b)fordifferentvaluesofn usingtheQCDinputparametersinTable1

andModel1givenpreviouslyfortheQCDcontinuumparametrization.Inthen axis:

7≡r7/8,8≡r7/9,8≡r8/9,9≡r8/10,10≡r9/10,11≡r9/11,12≡r10/11,13≡r10/12.

of



α

sG2



due to the absence of mc

(m

c

)

stability versus



α

sG2



.

Thisfeaturehasbeenalsoobservedfromtheanalysisofthesame vectorcharmoniumusingLaplacesumrules [3] whereconstraints from some other charmonium channels are needed for reaching moreaccurateresults.

–Tothevalueof



α

sG2



giveninTable1whichisintheupper

endof the rangein Eq. (13), one can extract from Figs. 4and 5 of [17] thevalue:

mc

(

mc

)

1260 MeV

,

(14)

whichisconsistentwithintheerrors withourprevious resultsin Table4.

– The authors deduce their favorite resultin Eq. (13) from a commonsolutionof themoments andoftheir ratios, whereone cannotice,fromourFigs.3and4,that,atafixedvalueof



α

sG2



,

the value of mc

(m

c

)

from the ratios ofmoments meets the

mo-mentsoutsidethen-stabilityof

M

n

(Q

2

)

,whiletheratiosincrease

rapidlywithn.Thisfactindicatesthatasuchrequirementmaynot bereliable.

–BeyondtheOPE,wecanalsohavesomecontributionsdueto theso-calledDuality Violation,which ismodel-dependent.It can beparametrized (withinournormalization)as [31,32]:

R

D V

c

= (

4

π

2

)

tλve−(δv+γvt)sin(

α

v

+ β

vt

) ,

(15)

where the coefficientsare free parameters and come froma fit-tingprocedure.Foran approximateestimate ofthisadditional ef-fect, we compare its contribution with the QCD continuum one parametrizedbytheasymptoticexpressionofPTspectralfunction

Fig. 7. Valuesofmb(mb)fromthemomentsMn(8mb2)andtheirratiosrn/n+1(8m2b)

andrn/n+2(4m2b)fordifferentvaluesofn usingtheQCD inputparametersin

Ta-ble1andModel1givenpreviouslyfortheQCDcontinuumparametrization.Inthe

n axis:10≡r8/10,11≡r9/10,12≡r9/11,13≡r10/11,14≡r10/1215≡r11/12,16≡ r12/13,16≡r15/17,17≡r12/14,18≡r13/14.

Table 3

MassesandelectronicwidthsoftheϒfamilyfromPDG16[16]. Name Mass [MeV] ϒe+e−[keV] ϒ(1S) 9460.30(26) 1.340(18) ϒ(2S) 10023.26(31) 0.612(11) ϒ(3S) 10355.2(5) 0.443(8) ϒ(4S) 10579.4(1.2) 0.272(29) ϒ(10860) 10891(4) 0.31(7) ϒ(11020) 10987(+113.4) 0.13(3)

(mc

=

0)(Model 2)fromthethreshold

tc=4.5GeV. Weusethe

coefficients:

λ

v

=

0, δv

3.6,

γ

v

0.6,

α

v

≈ −

2.3, βv

4.3

,

(16)

fixed from

τ

-decay data by assuming that they can be applied here. We found that, in theexample n

=

1 and Q2

=

0,this ef-fect is completely negligibleeven allowing a low value of

tc

=

1

.

65GeV atwhichthefitofthecoefficientshasbeenperformed. 6. Runningmb

(

mb

)

bottomquarkmassfrom

M

n

(

Q2

)

Thepreviousanalysisisextendedtotheb-quarkmass.Weshall use the data input in Table 3. Behaviours of the (ratios of) mo-mentsversusthedegreeofthemomentsaregiveninFigs.5to7. We deduce asoptimalvalues theoverlapping regions of the one fromthemomentsandtheratiosofmoments.Weobtaintoorder

α

3

s (inunitsofMeV):

mb

(

mb

)

|

60

=

4185.9(8.2)ex

(4)

αs

(1.7)

α4

s

(0.8)

G2

(0.2)

G3

(0.2)

G4

,

(17) andtoorder

α

2

s (inunitsofMeV):

mb

(

mb

)

|

104m2 b

=

4189.2(6.4)ex

(1.6)

αs

(3.6)

α3 s

(0.5)

G2

(0)

G3

(0)

G4

,

mb

(

mb

)

|

138m2 b

=

4187.7(4.3)ex

(1)

αs

(5.0)

α3 s

(0.3)

G2

(0.3)

G3

(0.3)

G4

.

(18) TheseresultsarequotedinTable4.

7. Conclusions

(6)

Table 4

Charmandbottomrunningmassesmc,b(mc,b)from

(ra-tiosof)moments.

Observables Mass [MeV] Charm M4(0) 1266(9.0) r3/4(0) 1264(11.1) M10(4m2 c) 1263(2.3) M16(8m2 c) 1261(1.3) Mean 1264(6) Bottom M6(0)r4/5(0) 4186(9.3) M10(4m2 b)r9/10(4m2b) 4189(7.5) M13 (8m2 b)r10/11(8m2b) 4188(6.7) Mean 4188(8)

useofthehighermomentsandtheirratiosreducenotablythe er-rorsinthemassdeterminations. Thoughitisdifficultto estimate thesystematicerrorsoftheapproach,wecanexpectthattheyare at most equal to the ones quoted in this paper. These new re-sultsarealsoinperfectagreementwiththeonesquotedinEq. (5) from a recent global fit of the (axial-)vector and (pseudo)scalar charmoniumandbottomiumsystemsusingLaplacesumrules [3]. Some comments on the existing estimates of the quark masses and gluon condensates from SVZ-(ratios of) moments are given inSection5.Ourresultsare comparablewithrecentresultsfrom non-relativisticapproaches [33] butmoreaccurate.

References

[1]S.Narison,Phys.Lett.B706(2012)412.

[2]S.Narison,Phys.Lett.B693(2010)559,Erratum:Phys.Lett.705(2011)544.

[3]S.Narison,Int.J.Mod.Phys.A33 (10)(2018)1850045.

[4]M.A.Shifman,A.I.Vainshtein,V.I.Zakharov,Nucl.Phys.B147(1979)385. [5]M.A.Shifman,A.I.Vainshtein,V.I.Zakharov,Nucl.Phys.B147(1979)448. [6]V.I.Zakharov,TalkgivenattheSakurai’sprice,Int.J.Mod.Phys.A14(1999)

4865.

[7]S. Narison,Camb.Monogr. Part.Phys.Nucl.Phys. Cosmol.17(2004)1–778, arXiv:hep-ph/0205006.

[8]S.Narison,WorldSci.Lect.NotesPhys.26(1989)1. [9]S.Narison,Phys.Rep.84(1982)263.

[10]S.Narison,ActaPhys.Pol.B26(1995)687.

[11]L.J.Reinders,H.Rubinstein,S.Yazaki,Phys.Rep.127(1985)1. [12]B.L.Ioffe,Prog.Part.Nucl.Phys.56(2006)232.

[13]E.deRafael,arXiv:hep-ph/9802448. [14]F.J.Yndurain,Phys.Rep.320(1999)287. [15]S.Narison,Phys.Lett.B707(2012)259.

[16]C.Patrignari,etal.,ParticleDataGroup,Chin.Phys.C40(2016)100001. [17]B.L.Ioffe,K.N.Zyablyuk,Eur.Phys.J.C27(2003)229.

[18]S.N.Nikolaev,A.V.Radyushkin,Nucl.Phys.B213(1983)285. [19]S.N.Nikolaev,A.V.Radyushkin,Phys.Lett.B110(1983)476.

[20]Forareview,seee.g.:S.Bethke,Nucl.Part.Phys.Proc.282–284(2017)149. [21]Forareview,seee.g.:A.Pich,arXiv:1303.2262 [PoSConfin.X,022(2012)]. [22]Forareview,seee.g.:G.Salam,arXiv:1712.05165 [hep-ph].

[23]E.Bagan,J.I.Latorre,P.Pascual,R.Tarrach,Nucl.Phys.B254(1985)55. [24]K.Chetyrkin,R.Harlander,J.H.Kuhn,M.Steinhauser,Nucl.Phys.B503(1997)

339.

[25]B.Dehnadi, A.H.Hoang,V.Mateu,S.M.Zebarjad,J.HighEnergyPhys. 1309 (2013)103.

[26]K.G.Chetyrkin,etal.,Phys.Rev.D80(2009)074010; K.G.Chetyrkin,etal.,Phys.Rev.D96(2017)116007. [27]A.Maier,etal.,Nucl.Phys.B824(2010)1.

[28]R.Boughezal,M.Czakon,T.Schutzmeier,Phys.Rev.D74(2006)074006. [29]S.Narison,V.I.Zakharov,Phys.Lett.B522(2001)266.

[30]D.J.Broadhurst,P.A.Baikov,V.A.Ilyin,J.Fleischer,O.V.Tarasov,V.A.Smirnov, Phys.Lett.B329(1994)103.

[31]D.Boito,etal.,Phys.Rev.D91 (3)(2015)034003.

Références

Documents relatifs

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

The approach used in the present analysis, based on the selection of four-b events, results in a smaller statistics, but the dependence on the Monte Carlo model is reduced,

The first one ( ±54 events) was computed by applying the same procedure to the simulated data, after having removed all events containing a genuine π ∗ , in order to verify that

[r]

For example (see figure 9) in the new DELPHI inclusive analysis the source of the charge correlation between the hemispheres has been investigated in the simulation and identified

[SS07] Seunghyun Seo and Heesung Shin, A generalized enumeration of labeled trees and reverse. Pr¨ufer

Les compléments oraux protéino-énergétiques permettent d’augmenter les apports alimentaires quotidiens et ont leur place dans cette stratégie de prise en charge du sujet dénutri

102 échantillons ont été analysés au laboratoire du contrôle de la qualité et de la Épression des fraudes'. Ces derniers provenaient de diftrentes