• Aucun résultat trouvé

Dynamic testing of cast-in-place piles

N/A
N/A
Protected

Academic year: 2021

Partager "Dynamic testing of cast-in-place piles"

Copied!
34
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Internal Report (National Research Council of Canada. Division of Building

Research), 1970-04-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE.

https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=43c831ed-ff76-43dc-baa0-2a247f1ad006 https://publications-cnrc.canada.ca/fra/voir/objet/?id=43c831ed-ff76-43dc-baa0-2a247f1ad006

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20386664

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Dynamic testing of cast-in-place piles

(2)

NATIONAL RESEARCH COUNCIL OF CANADA DIVISION OF BUILDING RESEARCH

DYNAMIC TESTING OF CAST -IN -PLACE PILES by

R. H. Ferahian

ANALYZED

Internal Report No. 376 of the

Division of Building Research

Ottawa April 1970

(3)

PREFACE

This is a preliminary inve stigation into the development of a simple test for determining the soundness of cast-in-place piles by examining the magnitude and frequency content of the response of the pile to forced excitations, namely vertical and horizontal impacts. The pile tested was a Franki cased-caisson type. It is hoped that in the near future, two uncased Franki piles can be

tested - a sound one and a similar pile with a built-in imperfection. If proved satisfactory, this test can be used to identify at the build-ing site those piles that need to be either discarded, or load tested to ascertain their load-carrying capacity.

Ottawa April 1970

N.B. Hutcheon Director

(4)

DYNAMIC TESTING OF CAST -IN -PLACE PILES by

R. H. Ferahian

Previous work by A. Dvo r ak Ll ,2,3) on the dynamic testing of piles does not clearly describe the instrumentation. experimental procedures. or the mode of excitation of the pile. The object of the test described in this report was to study the response of a sound, cast-in-place concrete pile due to the impact of a small mass (108 Ib s] at the top. This is a preliminary investigation which, it is hoped, may lead to the development of a simple technique for determining the

soundness and quality of a cast-in-place pile by examining the magnitude and the frequency content of the re sponse of the pile to the forced exci-tation. Sonic Testing of cast-in-place piles to detect anomalies has been carried out(4), but the method attempted requires coring and the installation of special equipment in the pile, thus rendering the method expensive. The technique described in this note requires no special installation in the pile. If proven satisfactory it can be used to identify those piles that need to be either discarded or load-tested to ascertain their static load-carrying capacity.

Experimental Procedure

The pile tested was a Franki cased-caisson type. 18 in. in diameter and 30

it

long measured from the top of the bulb. The pile was constructed as follows: a Ii-in. thick steel tube, 20 in. in

diameter. was driven into the soil by a 7000-lb driving hammer falling freely inside the tube onto a concrete plug (approximately 2 ft thick) at the driving end of the tube. Once the desired depth of the pile

had been reached (30 ft plus a few extra inches in this case). the steel tube was lifted these few extra inches and held there while the hammer was dropped onto the plug clearing the driving end of the tube. Dry concrete was then placed in the tube and forced by the hammer to displace the soil and form a 10 -cu-ft bulb at the bottom of the tube. An 18-in. corrugated tube was then lowered down the steel tube and

still more dry concrete was hammered on top of the bulb to form. a plug connecting the corrugated tube to the bulb. Then the steel tube was lifted out of the ground. Finally a reinforcing bar-cage was placed in the corrugated tube which was filled with plastic concrete to form. the pile. The soil profile in the neighbourhood of the pile is given in Fig. 16. The load test for the pile is given in Fig. 15.

(5)

2

-The pile was instrurnented at the top (top station) and 1R in. below the top (lower station)(Fig. 1). At each statio n , tr an s du c o r s

rn e a s u r e d the vibrations at two diametrically opposite spots (sides 1 and 2). The transducers were attached to brass mounting-blocks screwed to the pile. The pile was set into vibration by the impact of a 108-lb mass. Two types of tests were carried out: vertical axial impact and horizontal impact (compare Figs. land 2).

The vertical axial impact was produced by the free fall (15 or 30 in. ) of the l08 lb mas s onto a solid steel cap. The cap was screwed to the top of a 4 - to 2t-in. steel tube reducer which was joined to the top of a Blackpipe, 4-in. d i a by 2t-ft long, bearing axially on the pile (Figs. land 3). This arrangement had to be used due to the reinforcing bars and a central metal tube, used for measuring strain during the load te st, that protruded at the pile top (see Fig. 2). The 108-1b annular -hammer mass could be lifted around a sleeve pipe, 3-in. dia by 4-ft long, by a rope and pulley arrangement attached to a steel-tube tripod (Fig.3). For the horizontal impact, the 108 -lb mas s was allowed to swing through 9 in. and hit the side of the pile at the top (Fig. 2).

Vibration observations were made with a velocity-sensitive,

moving -coil transducer with a natural period of 2. 5 sec. (MB, Type 120). The transducers were connected through appropriate amplifiers to the galvanometers in a multi-channel recording oscillograph that had direct-writing photographic paper. The transducers at the top of the pile were attached to a system of integrators so that the displacement record at these levels could be obtained from the integration of the velocity record. Only one of the integrators performed satisfactorily during testing; consequently, displacements for only one station and for the case of vertical impact is presented here.

Results

Figure 4 shows two sets of vibration records for the case of the vertical axial impact which was applied to the pile top by the 30-in. free fall of the 108-lb mass. Generally the variation in the maximum velocities was not greater than ± 15 per cent of the values given in Table

1.

Examination of Figs.4 and 5, and Table 1, shows that the vibration-velocity levels are not directly proportional to the height of fall of the mass. Doubling the height of fall increased the velocity amplitudes by average factors of

3.3

and

2.

5 at the top and lower stations of observation respectively. The records on the right-hand side of Fig 4 were digitized and their Fourier analysis (5) per-formed, as given in Figs. 7 to

13.

(6)

3

-Examination of Table 1 shows that for observations at the lower station, the frequencies de te rrn in ed from visual examination of the records are practically the same for the two measurements. This was less apparent for vibrations at the top station as the 85-Hz frequency could not easily be determined visually for the case of ls-f't 3-in. drop of the impinging mass. Examination of the integrated velocity records reveals the 85-Hz pulse (73 Hz from Fig 14) for the top station of the pile (see Table 1). The displacement records are simpler to analyze visually than those of the velocities. It might be noted that Dvorak measured displacements only. A few more tests are needed before it can be decided whether monitoring the velocities or displacements would be more advantageous. It may be found that both are needed for the deduction of different and separate information.

Examination of Figs.7 to 13 and Table 2 reveals that the frequencies determined by Fourier analysis of the digitized records do contain, among others, frequencies almost identical to those

developed visually. Strictly speaking, the plotted points in Figs. 7 to 13 should not be connected by straight lines; this has been done, however, for visual clarity. Two separate digitizations were made of the

vibration record for the top level of the pile, side 2, and the values computed were nearly identical for those of the first three frequencies (Figs.8A and 9A and Table 2). Thus the personal errors of digitization do not seem to be critical in determining the first few predominant frequencies in the record.

From examination of Figs. 7A, Band llA, B it can be clearly seen that the frequency content and the phase -angle distribution of the two records are not the same. The first predominant frequency at both levels is between 75 and 80 Hz. It is very hard to determine the predominant frequencies in Fig. llA in the range 230 and 365, because the plot levels out in this region. It is pos sible that the digitization errors do contain frequencie s in this region. The phase-angle distributions, Figs.7B to 13B, have been included to show the complexity of the records, even though they are not used directly in this study. Note the difference in the phase -angle distribution

between sides 1 and 2, and between the top and lower stations of observation. It is very important to standardize the station at which the vibrations are to be monitored. From Table 2 it can be ascertained that the analysis of the mean record of the vibrations on both sides of the pile gives comparatively the closest frequency content for the two stations. The mean vibrations were determined by the computer. In the next test, the mean will also be determined by combining transducer outputs electrically at the site.

(7)

4

-As the purpose of this exploratory experiment 1S to determine

a test method that may be used on site. the prerequisites are simplicity and possibility of quick diagnosis. Thus visual frequency analysis of the vibration records has to be relied upon. At this stage. it appears that the parameter that needs to be measured. in order to eliminate the irregularities in the record that may arise from the possible nonaxial impact of the mass on the pile top. is the average velocity or displace-ment.

It would be ideal if only the vibrations at the top of the pile need be measured, as this would eliminate the need for excavating around the pile. Although it can not be conclusively decided at this stage if measuring vibrations only at the pile top is adequate, it appears from an examination of Table 2 that it may be. (Compare frequencies for the mean records for the two levels with each other and also with the frequency content of the displacement record. )

For friction piles, there is danger that placed concrete will not be continuous near the upper part of the pile. Because a horizontal impact test can detect any such discontinuity easily. it was decided to te st this sound pile in order to gain background information for future studies. It was found that after attenuation of the initial high-frequency transients due to the impact. the pile vibrated at a frequency of 25 Hz (Fig.6 and Table 1).

Theoretical Estimate of Re sonant Frequencie s

It is very difficult to make a theoretical estimate of the frequencies contained in the vibration re sulting from impact of a small mas s on the pile top. Several factor s must be taken into account: the ratio of the impinging mass to the pile mass. soil properties. pile properties and the nature of the blow, i , e •• axial eccentric or transverse. For the axial blow, two types of vibrations are generally detected: those connected with the vibratory movement of the (rigid) pile with the soil (i . e . , a slender rod in elastic or plastic half space) and those due to vibration of the pile itself as a confined body. The frequencie s for the first type of vibration are, of course, associated with the soil properties. and they are likely to be lower than those for the second type; but they are also the harder to estimate. Because the major interest in this study is the detection of pos sible anomalie s in the pile itself. the first type of vibration is of secondary importance; thus theoretical estimates for only the second type will be pre sented.

(8)

5

-These frequencies will certainly depend on the boundary conditions of the pile. For the present case, if the pile is assumed fixed at the bulb, the frequencies can be approximated by the natural frequencies of a longitudinally vibrating free -fixed beam. The circular frequencies in radians per second are given by

nTI

!fi

j---P

where E is Yourigl s Modulus of the concrete pile, p its density, £its

length, g the acceleration of gravity, and n

=

I, 3, 5•••••

When £

=

30 ft , E

=

3 x 106 p s i, P

=

140 pcf , and g

=

32

ftl

s e c ' , the frequencies in (Hz) are 83, 249, 415, ••••• Examination of Table 2 shows that the lowe st frequency measured is between 70 and 80 Hz, and frequencies close to the other calculated ones are also present. As fixity at the bulb can not be absolute, frequencie s reflecting a free -fixed vibrating rod might also be detected. The fundamental frequency for this case is 166 Hz, and an approximation to this also appears among the measured frequencies. For the present tests, the fundamental frequency for a longitudinally vibrating free -fixed rod appears to be adequate for predicting the predominant frequency.

The natural frequencie s of the pile excited by the small horizontal irn pact are very complex, superimposing torsional vibrations of the

pile on those for an elastic body vibrating laterally in an elastic half-space. Theoretical estimates for these frequencies are not given here, except for the fundamental frequency of the torsional vibrations of a free-fixed beam which is estimated at 56 Hz. This latter estimate was made as an attempt to explain the observed predominant 25 Hz (see Table 2 and Fig. 6).

A Note on the Fourier Analysis of Digitized Records

The records were digitized at unequal intervals using an X, Y scanner connected to a card-punching machine. A program was developed (5) which read in these cards, digitized the record at the appropriate intervals and performed the analysis. The Fourier amplitudes and phase angles are evaluated for increments M, where f is the frequency and

t:J.

=

llrecord length (in seconds). In the present study the record length was approximately 0.05 sec, which makes M

=

20 Hz which is a large value. The frequencies of interest in this problem

are 0 to 500 Hz. This analysis was done for approximatelyM = 20 Hz, 10Hz, 5 Hz and 2. 5 Hz. The peaks of the amplitude s pe ct r urn for the

(9)

6

-last two values were found to be practically the same; thus M approxi-mately equal to 5 Hz was adopted. This corresponds to length of record

equal to the original plus 3 times the record length in cards with zeros punched on them at equal intervals.

Recommendations for Future Work

It is hoped that in the near future there will be available for testing two uncased Franki piles, and a similar pile with a built-in defect. The defect will be reduction of the area of the eros s -section by approximately 33 per cent over a length equal to the diameter of the pile, and will be located approximately at the third point measured from the bottom of the pile. It is proposed to study the response of these piles to axial and horizontal impact. Setting the pile into torsional vibrations will also be investigated as a possible method for the identifi-cation of the defective piles. Ultra-sonic testing of the piles will be attempted with the transmitter and receiver of the pulse placed on the top surface of the pile, thus requiring no special installations in the pile itself.

Acknowledgements

The author's thanks are here extended to Mr. Gordon McRostie who suggested this investigation and provided the loading gear for the pile, to Dr. P. W. U. Graefe who provided the program for the Fourier Analysis of the vibration records, and to the Engineering Department of the University of Ottawa who provided the results of the pile load test.

References

1. Dvorak, A. Dynamic Tests of Piles. Proceedings of Conference on Experimental Methods of Investigating Stress and Strain in Structures, Prague 1965.

2. Dvo r

ak,

A. Correlation of Static and Dynamic Pile Tests. Proceedings, Third Asian Conference on Soil Mechanics and Foundation Engineering, Haifa, Israel, 1967.

3. Dvo r ak, A. Dynamic Tests of Piles and the Verification of Results by Static Loading Tests. Aeta Technica Academiae Scientiariurn Hungarice Tomus 64 (1-2), P 97-104. 1969.

(10)

7

-4. Paquet, J. Controle Des Pieux Par Carottage Sorri.qu.e , Annales de Pinstitut technique du batiment et des travaux publics. No. 262, 1486-1501, Oct 1969.

5. Fourier Amplitude and Phase Analysis of Digitized Records. Program by P. W. U. Graefe. Analysis Section, Division of Mechanical Engineering, NRCC, Ottawa.

(11)

TABLE 1

VELOCITY AMPLITUDES AND ESTIMATED FREQUENCIES OF VIBRATIONS DUE TO IMPACT ON THE PILE

HEIGHT OF

TYPE OF FALL OR VERTICAL VELOCITY in./ sec ESTIMATED FREQUENCY Hz

IMPACT SWING

I

Top Station Lowe r Station Top Station Lowe r Station iI

Side 1 Side 2 Side 1 Side 2 Side 1 Side 2 Side 1 Side 2

,

I

Vertical 2 ft 6 in. 4.4 2.83 2.66 I

i

2.36 220':', 85 240, 85 85 230,100

1 ft 3 in. 1.3 0.86 1. 15 0.83 240':' 240 100 240, 100

VELOCITY, TOP LEVEL in./ sec ESTIMATED FREQUENCY (Hz)

Side 1 Side 2 Side 1 Side 2

Horizontal

9

in. Vert. Horizontal Vert. Horizontal Vert. Horizontal Vert. Horizontal

2.43 4.86 2.85 6.2 300 230 152 230

1. 20 2.8+ 25 25

':' P'redorrrin ant Frequency estirn at ed fr orn the integrated velocity record is app r oxirn.ately 85Hz.

(12)

TABLE 2

PREDOMINANT FREQUENCIES FOR RECORDS SHOWN ON FIG 4 DETERMINED BY FOURIER ANAL YSIS

FREQUENC Y (Hz)

SIDE 1 SIDE 2 MEAN

Top Station セZ\XPL 265, 342, 390, 470 81 200 2821D 75 187, 262, 330

-

-76 205 275 3502D

-Lowe r Station セL 230 -> 350 セL 115, 177, 230 -> 340

2.!,

108 170, 230 -> 370 (18 in. below pile

top)

セZアSL 170, 270 From. the integrated record. ID,2D refer to first and second digitization. The underlined frequencie s are the p r e dornin arrt ones.

(13)

Fig 1 - Pile Top With Harnrne r Positioned For Axial Impact

Fig 2 - Pile Top With Ham.mer Positioned For Horizontal hnpact

(14)

Fig 3 - View Of The Loading Rig For Axial hnpact On The Pile Top

(15)

1/10

Sec

Vertical

v

elo c l

ty]

Side 1 Top Station

セ]

6.5 in./sec

Vertical VelocitylSide 1 lower Station

*

4.6in./sec

Vertical v elo c l

ty]

Side 2

Top Station

--

i.:

6.Sin./sec

Vertical Velocityl Side 2 lower Station

(I ntegration oflTop Record)

4.6in./sec

):(

,;.

V er tic aI Dis

P

I ace men tl Sid e 1 Top Stat ion

*

These records have been FOURIER analyzed as given on Figures 7-14

FIGURE

4

TWO SETS OF RECORDS FOR TWO IMPACTS FOR THE PilE RESPONSE

DUE TO CENTRAL VERT!CAl IMPACT IMPARTED TO THE PilE TOP

FROM A 2

1 - 6 11

FREE FAll OF A 108 lBS MASS

(16)

1110

Sec

Velocity ISide 1 Top

Velocity ISide 1 Bottom

Velocity ISide 2 Top

Velocity ISide 2 Bottom

Displacement Side 1 Top

(I ntaqr at

lo

n of Top Record)

4. 6i n./sec

4. 6i

n.

Isec

4.6in./sec

3.3in./sec

ee.

セUQz - !

All Variables are Measured

in the Vertical Direction

FIGURE 5

PILE RESPONSE DUE TO CENTRAL VERTICAL IMPACT

IMPARTED TO THE PILE TOP FROM A 1

1 - 3 "

FREE

(17)

1/10

Sec

Vertical v elo cl

ty] Side 1

Horizontal VelocitY! Side 1

Vertical v eto c lty] Side 2

Horizontal v elo cl

tv

Side 2

..

6.Sin./sec

FIGURE

6

PILE RESPONSE DUE TO IMPACT IMPARTED TO THE TOP SIDE OF THE

PILE DUE TO A 9" FREE HORIZONTAL SWING OF A 108 LBS MASS

(18)

FOURIER AMPLITUDE

FREQUENCY

NUMBER

(N)

FOURIER

AMPLITUDE

(IN./SEC) 0.7583E-Ol 0.763'1F-OI 0.7'062[-01 0.7086E-OI 0.6565£-01 0.5908£-01 0.5086E-Ol 0.4108£-01 0.309-3E-OI 0.2248E-OI 0.1175f-01 O.I123E-OI O.I'154e-01 0.2283E-OI o .255IE-OI 0.2665E-OI 0.21.281'-61 0.250lE-01 O.4138E-Ol 0.5195E-01 oセMウt「UQGMoi 0.6363E-OI O.6899E-OI 0.7319E-OI 0.8335E-07 0.6764E-02 0.9717E-02 0.8094E-02 <r;nn1'02 -0.1566E-01 0.2137E-Ol 0.2428E-01 0.2896E-Ol o , 3'n 7E-01 0.5181F-Ol 0.6318E-Ol O.7273E-Ol 0.8120E-01 O.8HU-Ol 0.8810E-Ol o. B150E-ol 0.69'o'oE-01 0.51106E-01 0.509IE-OI 0.'o921F-01 0.'o803E-01 MBuNMQゥセMッイMMMM o.'oH2E-01 0.4227E-OI 0.'o15IE-01 O.'oO'o'lE-OI 0.3871E-OI HIN^ョdイMBuャセ 0.316'1E-OI 0.2718E-OI 0.2282E-OI o.1876E-OI 0.166'1E-OI o .lq54E--or--0.2510E-OI 0.2902E-Ol 0.2'1'18E-OI O. 302<;EOl -0.32'18E-OI o.3t61E-Ol 0.'o115E-01 n;"nlE-OI 0.'o216E-01 o,'o252E-01 0.4425F-OI 0.2318 -01 0.205'oE-01 oNQVGQPeMMotセM o .1282E-Ol - 0 ;970-71'-02 0.8869E-02 65 66 67 68 69 70 47 48 49 50 51 52 83 .6800E-02 84 0.5513E-02 85 o[セXTャeMPR 86 0.4729E-02 87 - ----0.-.656E-02--88 0.4048E-02 .965lE-02 78 0.1059E-Ol MQYMセM -MMセMMMッNtiPTeZGセoi 80 0.1080E-OI MャャtセM --- --0. 984ge":-02 82 0.8389E-02 53 5'0 55 56 57 58

C>

6059 61 62 63 6'0 II <..ro ow ... I T 1 I-I 1 I r--1 y--I I r I 1 I I - 1 I I I - - - - r - - - - i : : - - - ---MセM 8'1 O. 69'0 - 2 '10 0.1046E-02 'II o.lhot-or 92 0.3185E-02 93 0.4056E-Or--- 0.4056E-Or--- i 0.4056E-Or--- 0.4056E-Or--- " l . . 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- 0.4056E-Or--- ; } 0.4056E-Or--- 0.4056E-Or---

g:

;;m:g§

96 0.622IE-02 '17 0.6751(":02 '18 0.6668E-02 '1'1 0.b27IlE":O.f 100 0.6336E-02

e-... Z I ...

-::s

I

N セ

o

"'TI "'TI

0

(;) C ::::0 C ::::0 m m ::::0

»

'"

z

»

»

r--<

Vl Vl ...

»

"

r-セ C 0 m

-

"'TI

0

::::0

<

m ::::0 セ

n

»

r-<

m

r-0

n

-<

Vl 0 m

(19)

PHASE ANGLE

FREQUENCY

NUMBER (N)

PHASE

ANGLE

(RADIANS)

0.9920HOO 0.1103E+Ol 0.1l2H+OI 0.1149E+Ol 0.1226£+01 0.1307E+Ol - o;nliT<+llT--0.1423E+Ol o .1495F+OI 0.1588E+Ol 0.1696£+01 0.1809£+01 O.190W+1l1 0.1959£+01 0.1961E+OI 0.1874£+01 0.1618£+01 0.1358E+OI 0.0 -0.10nE+Ol -0.1022 E+OO -0.6202E+00 -0.1118f+Ol MセQRtrエKoi -0.1104F+Ol -0.1006£+01 -0.10HE+Ol -0.9910£+00 -0.8140£+00 MMセャGKュャMM -0.3"21£+00 -0.9339£-01 0.182IE+00 0."797E+00 0.7671E+00 36 37 38 39 40 41 O.1332F+Ot 0.1"39E+OI O.I-S391'+1l1 0.1551£+01 O.IHI>HOI 0.1609E+OI + 43 0.1867E+Ol 4 4 0 ; 1 9 5 9 £ + 0 1 45 0.2013E+OI 46 0;2055£+01 41 0.2106E+OI 4 0.23 8£+01 85 0.3098£+01 86 --;"O.2401e-.0l 87 -0.1679£+01 88 -0.1043£+01---89 -0.5328£+00 18 -0.3202£+00 79 -0.5691E-Ol - 8 0 - - o . Z 8 1 n - + O O 81 0.6845£+00 lIY ---0-:1149E+Ol---83 0.1690£+01 o w 1 2 3 4 5 6-1 8 9 10 11 MMMMセMMt[{ 13 II, 15 16 11 18 19 20 21 22 23 -- ----7l.--25 26 21 28 29 -30--31 32 33 34 35

4.

o.2119E+ol "9 0.2286£+01 50 0;H31HOr 51 0.2604E+OI 5;[ - 0 • Tr9'll'+llT MMMMMMMMMMMMtZセイMM MァZセァュZァセ 55 -0.2815£+01 56 GMuM[セKot 57 -0.2358E+Ol 58 -O;<!128l'Hl1 59 -0.1898E+OI 60 -0.1689£+01 61 -0.1547£+01 f'... 62 -O.1538t+Or-L;' 63 -0.1696£+01 ... 64 -0.1904£+01 iiサセM

:tセセュZァセ

11l 67 -0.1193£+01 68 -0.1588£+01 69 -0.1373E+Ol 70 -0.If6U.OI 71 -0.9407£+00 セ -0.1068t+00 73 -0.4834E+00 74--- ::0.33591'+00---75 -0.3528E+00 - - 76-- --"0.4715F+OO 77 -0.4792E+00 1 I 1 I I 1 -r 1 1 1 1 1 T-1 I 1 1 1 "'TI ;;0 m

c

C m Z ()

-<

II 1 I 1 I KMセMMMMMMB

....

---rr---,n:-n-rr..m;--I T - I T I ..-..

Z

I ...

I

N

-9 + 91 -0.1672£+01 92 MVセ{BGUQᆪKoiM 93 -0.1156E+Ol 94 -0.9355£+00 95 -0.7485£+00 セ -0.5028E+OO 91 -0.2072£+00 98 0.6549£-01 99 0.2401£+00 100 0.3111f+00 I I I I MMMMMMNエMMMMMLMMMセMセMMセMMMMMMMMMM I I I I I 1

c^セ

... 1 I ::J T---I 1 I I I 1 I 1 1 I MMMMMMGイMMMMMMMKMMMMセ 1 I I -1 I "'TI "'TI

0

Q

c

;;0

c

;;0 m m ;;0

»

"

o:;l

z

»

r--<

Vl Vl

"

I

»

Vl m

»

z

Q r-m "'TI

0

;;0

<

m ;;0 - I ()

»

r-<

m

r-0

() - l

-<

Vl 0 m ...

- I

0

"-

"

Vl f\I - I

»

r-, - I

0

Z

(20)

FOURIER AMPLITUDE

FREQUENCY

NUMBER (N)

FOURIER

AMPLITUDE

(IN

'/SEC)

65 O.6ltiYE-02 bb 0.6421E-02 61 MPMNMVUQQSfセoャ 68 0.65I1E-02 69 BuNVtゥzア」セoBャ 10 0.6662E-02 11 0.691' E-02 12 0.6983E-02 13 -0;6638E-02 14 0.6011E-02 1"5 0.5212E-02 16 0.4263E-02 II O.350tE-02 18 O. 3556E- 02 "1"9 -0". 3975""E-0"2 80 0."I23E-02 81 O.WLPBPャeセPR 82 0.3892E-02 83 o.3824E 02 84 0.3692E-02 85 MッセSVBQYe[BoBャ 86 0."0"3E-02 81 11."627<-02 88 0.5114E-02 89 O.568IE-02 90 0.623IE-02 91 0.6681E-02 92 0.6834E-02 93 0.66"53E-1l2 94 0.6310E-02 95 o.60Jt3E-02 96 0.5985E-02 91 0.6016r-"02 98 O. 6 lit I E-O 2 99 0.00"51.£';;02 100 0.5815E-02 35 o.46(QE-OI 3b 0.5524E-01 31 -o;lil1l9E'-lH 38 0.625IE-OI 39 P[セYVQe[Boi 40 0.53blE-01 ---- - - --.;r ---- MMMMMMMオ[W[ャッセQャtMMMMM 42 0.39b8E-01 43 0.37,13E-OI 44 0.30nE-01 45 --O;Z-ilTbE-"OI

--...

MMMMMMMMMMMMMMMMMMMMMMMMセM ァZュ[セ]ァセ 48 0.2935E-01 49 O. '3T28E-Ol

[>

50 0.4b35E-01 51 -1l-;"53'l3E-01 52 0.5851E-01 II --.,,---- 0.5963E 01 54 0.5b9bE-01 111 --55 0"; 50119£'-01 5b 0.4233E-OI セ 51 - (T;n14E-Ol 58 0.2311E-01 59 0.1645E-Ol 60 0.1158E-01 61 0;9155E'-02 «z 0.8314E-02 63 0.1890E-02 b4 0.1119E-02 \ -I 0.14"1-00 1 PNャセ「Sエセui ) 0.1810E-Ol 4 oNャ「YRfセPQ --, QyNzf[セᆪセPQ b 0.394bE-01 1 O.4122E-01 8 0.5144E-01 9 O.558IE-01

---

MMMゥセMMMMセZMュセエァサMMM 12 O.IOOIE+OO 13 0.119IE+OO 14 0.134IE+00 15 0.1433E+00 Ib 0.1445E+00 - - - _ " - - - T IT' ---""""IJ.TTIllT.-o-cr--18 0.1211E+00 19 0.1017E+00 20 0.80blE-01 ZI O.6Z09E-OI 22 0.4819E-OI MMNMMMMMMMMMMNNセMMMMMMMMMMMMMMMMMMMMM⦅⦅⦅⦅ョ⦅MMM O. 3942E-Ol 24 0.3319E-01 25 O.Z805E-01 20 0.20IbE-01 21 a.I038E-01 28 0.1114E-02 29 O.SOOZE-02 30 0.13IbE-01 31 0;T646E-Ol 32 0.20HE-01 33 1l;"Zl>"81E"-O I H 0.3bOH-01 I I I --

----.----I I I I I "'TI co }> Q

c

:::tJ m :::tJ Vl -I "'TI "'TI

o

C :::tJ

om

:::tJ Q}> - I Z Vl}> } > '

-1-<

Vl

0

Vl Z -. }> セ -0 "'TI

:::tJ m -I

0

C Cm 0 Z m () M M M M M M セ ...

_---<

I

0

II .1I "'TI - . r Z I

<

I

.

-I m I :::tJ 1 -I I

[>

I NNNMセ ()

...

1 I }> I

::J T -. I

<

::r:

I N 1 m 1

I

0

1I () I t. -I I

-<

t I Vl I t--0 I m r I

'"

-I 1

0

-_orI セ -0 I Vl -- --

t-""

-I I セ

,--<, }> I

'"

-I I I - I

0

I セ I Z I I t I - T-I

(21)

PHASE ANGLE

FREQUENCY

NUMBER (N)

PHASE

ANGLE

(RADIANS)

0.1469E+Ol O.T9Z'1HOl 0.2327£'01 u;-n5lJF+0l -O.2340E+Ol 0.2356E+OI ---0.1511nOI 0.2745E+OI 0.3021£+01 -0.2964E+OI O.2212E+OI -0.2109E+OI MPセRotThot -0.193lE+Ol MセッMNMャGャQWᆪKPQ -0.2067E+Ol -O.Z656E+Ol -0.2349E+OI -o;ZO6U£+0 I -0.18IH+OI -0.1632£+01 -0.1557E+OI -0.162lE+OI -0.1796E+OI -0.1947E'01 -0.2008E+OI -0.2lJ55E+OI -0.2159E'01 -O.1118E+Ol -0.1412E+Ol '-0 ;TOI7HlfI -0.5627£+00 -セHjNoャjョfGuャ --0.""'85E+00 -0.22 t5E+OI -0.2320E+OI - --セo .7ZT>80uT --0.2232£+01 -- セMM。NRRSPeNoャ -0.2222E+Ol -0.222'E.OI -0.2283£+01 -lJ.nzn-.OT ----0.2265E+Ol -セオ[Mョ :J5F"UI--0.196lE+Ol 0.2632E'01 0; 2l>40£+01 0.2632E.OI 0.2586£+01 0.2463E+OI O.l268E'VI -0.2304E+OI セPNコョohuQ -0.2341E+Ol --MMセ セャj[RSGUイイNャji -0.2308E+Ol 91 sz 93 '14 95 43 44 45 46 47 8 .. 85 86 87 88 89 66 67 68 69 -7U 71 4B 49 so 51 52 53 72 n 74 75 -76-77 -7S-7Q 80 81 n 83 30 O.5936E+OO 31 0.6792E'00 32 0-;6lo57.HOO 33 0.6768E.00 34 -P[WXセヲKQQP --35 0.9839E.00 36 u.[240E+OI 37 0.1526E'01 38 0.1813E.01 39 0.208IE+Ol 40 0.1308£+01 41 0.2479E'01 54 55 56 57 58 59 60 61 62 63 64 65 97 'llJ -99 100

r-MMMMセ

1 1 1

,---I 1 I 1 I 1 1

-.---I 1 I 1 I I I I I I I I 1 I - 1 I -r---I 1 I 1 1 I 0.0 I 2 0.2290£'01 I 3 0.2883E+OI I 4 -0.2870£tOI I セ -0.2314£'01 - 1 6 -Mセャイ .T970ftlll--I 7 -0.1535E'01 I 8 -0.1255f+01 I 9 -0.1093£'01 1 10 -0.976H'00 I II -0.805MtOO MMMMMNMMMMMセMMMMMMMMMMM - - - . Z - - ---MMZZ[Qy[セztヲKQャQャ I 13 -0. 2690E+00 14 0.5472£-01 15 0.3988E'00 16 0.7544£'00 17 0.1110£+01 --18 ---lJ.T't1i'l r+llr 19 0.1755£tOI 20 0.2007£+01 21 0.2188F'01 22 0.2293£.01 23 0.2351£+01 24 n,17i5liFOI 25 0.2643£+01 26 0.2919£+01 27 -0.2992E'01 28 -0.1440£+01 29 0.3297£'00 . " ;:0 m

o

C m Z () -< II I 1 I T I I I 1 I ---T 1

----

Z I

I>

I

N I r -I -"1 1 I -1 1 -- --r ----I I 1 I MMMMMMMMMMMセMMMMM - - -

--.-I 1 I 1 MMMMMMセセMM ---}-I 1 I 1

o

c

;:0 m . " . " ;:0

0

Vl C -i ;:0 0 m ;:0 O}> -i Z Vl}> } > ' - i - < Vl

0

Vl Z -0 I }> Vl m }> Z

0

m

0

. "

<

m ;:0 -i () }>

<

m

0

() -i -< Vl 0 m I'V -i

0

-0

""

Vl

-i }> l\l -i I

C.

0

Z

(22)

FOURIER AMPLITUDE

FREQUENCY

NUMBER (N)

FOURIER

AMPLITUDE

(I

N +/SEC)

O.6140E-02 0.7716E-02 0.7980EC:oz-0.1473E-02 MMHGェセVSUUeMPR 0.4916E-02 0.2565E-02 セMMM lr;-2-45"3"FOZ----0.3123E-02 セMMMイイNMTイtXᆪGMMッt --0.5260E-02 84 QQUセM 86 87 88 96 YWセ 98 99-100 89 90 -'n-92 '11-94 , . -1 0.9723E-06 2 0.9744E-02 3 0.1993E-Ol 4 0.2982E-OI , セセ -Mu[StbUfセPQ 6 0.4281E-OI 7 0.4525E-Ol A 0.4833 E-Ol 9 0.5660r-01 10 0.7193E-OI セMイャ U.9187<-1)1--12 0.1122E+00 13 0.1287E+00 14 0.1386E+00 15 0.1406E+00 16 0.1352E+00 MセMMBMMMMMMMMセTeKoo 18 0.1105E+00 19 0.9547E-Ol 20 0.8087E-Ol 21 0.6791E-01 22 0.5737E-Ol MMMMMMᄋMMMMMᄋMMMMMLLNNNNNM」MMMMMMMMMMMMMMMᄋMᄋᄋMMᄋMMMMセMM⦅⦅⦅⦅⦅⦅ョ⦅⦅MMM⦅u⦅ ...9 2 6 E- UI 24 0.4274E-Ol 25 0.3654E-Ol 26 0.2959E-Ol 27 0.2129E-Ol 28 0.1189E-Ol - - - - . - - . " " - - - -MMMセMMMM⦅⦅⦅⦅⦅⦅⦅⦅⦅オ⦅NTPアReMPR 30 0.9237E-02 31 0.1640E-Ol 32 0.2203E-Ol 33 0.2714E-Ol 34 0.3310E-Ol セ M L L M M ᄋ M M M セ M ッ イ セ -36 0.4719E-Ol 37 0.5285E-Ol 38 0.5606E-Ol 39 0.5638E-Ol 40 0.5405E-OI - - - 7 1 " - - - ..--- セMMMMM O.4982E-Ol 42 0.4444E-Ol 43 0.3831E-Ol 44 0.3158E-Ol 45 0.2554E-Ol

i^セMMMMM

セZセセセセセセ

-M 48 0.3912E-Ol II セセ

g:

セセセェセ]ァセ 01 '1 lJ.6078FUI 52 0.6242E-Ol セ - - - , , - - - O.bI50E-Ol セ 54 0.5862E-Ol 55 oセセUャゥRLfセPQ 56 0.4853E-Ol 57 0.4143E-Ol 58 0.3317E-Ol 59 0.2445E-Ol 60 0.1655E-Ol 61 - 0-.113,10"01 62 0.1035E-Ol 63 O. n83E-01 64 0.1324E-Ol 65 oNQSセMMM 66 0.1311E-Ol 67 0.117"10-01 68 0.9890E-02 69 PNWYQYeMセR 70 0.6419E-02 11 ッNVPOUeセ 72 0.6640E-02 73 0.7057E-02 74 0.6708E-02 75 0.5748E-02 76 0.4978E-02 77 -MM\イNUtャャャャ\セャャBRMセM 78 0.5650E-02 79 U.5763E-0·2 80 0.5040E-02 81- O.3,10f'-02 82 0.1483E-02 セ 0.2297E-02 0.32741:-'02 0.3726E-02 Hj[T\XtfGZ[セ 0.5403E-02 Q

c

;;:0 m VI -n

セo

oセ

Zm

0;;:0

(23)

PHASE ANGLE

FREQUENCY

NUMBER (N)

PHASE

ANGLE

(RADIANS)

II tJ1 1 I I I

---.--I 1 1 1 1 r I 1 1 1

---,---1 1 1 1 1 - -r 1 1 1

MMMMセM

セゥMセ

D:

CI ml zセ ( ) 'I

-<1

II : ..-....1

.!...:

_ 1 1 1 T

-[>:

... 1 1 :J 1 1

I I

N 1 _ 1 1 1 イMセMMM 1 1 1 1 I I 0.0 ? Q.210Zt+Ol 3 oNRYセPセKPQ 4 -0.2706F+OI S -0.21981+01 6 - MMセャjᄋN 17'13£+01 7 -0.1509F+Ol 8 -0.13S1E+Ol 9 MPNQRUSセKPQ 10 -0.1104E+Ol 11 -0.8680E+00 12 -MセッN 5666F+OO I I -0.2292[+00 14 0.1214E+00 IS 0.4684F+00 16 0.7992F+00 17 0.110S(+01 1M -U-;TJ1Hn01 19 0.1624E+Ol 20 0.1831E+01 21 0.2000F+Ol 22 0.2136r+01 2\ 0.2259F+Ol 24 O.2393F+01 2; 0.2561E+Ol 26 0.2717[+01 21 0.3057E+Ol 28 -0.2820E+Ol 29 -0.IS77F+OI 30 U.li2lJOE- 0 I 31 0.4823F+00 32 0.7090F+00 33 0.8517E+00 34 0.9737F+00 V; 0.1125E+Ol 36 . -Mセ U-;nl'ITHJl 37 0.1544F+Ol 38 0.1781E+OI 39 0.2016E+Ol 40 0.2234F+Ol 41 0.2425f+Ol 42 0.75ll6[<'UT 43 0.2710E+OI 44 0.2772E+Ol 4S 0.2697F+OI 46 0.2445F+Ol 41 0.2255E+OI 48 0 ;£7111rrtn 49 0.2440f+Ol 50 0.2658f+Ol 51 0.2900f+Ol 52 -0.3135f+Ol 53 -0.2890E+Ol 54 MMMGMセKオイM S5 -O.24llE+Ol 56 -0.2174F+Ol 57 -0.1936F+Ol 58 -0.1713F+Ol 59 -0.1538F+Ol

l>

60 -0.1481E+Ol 61 -0.1659E+Ol 62 -0.1991F+01 63 -0.2135E+Ol 64 -0.2095f+01 65 -0.1976E+Ol 66 MMセ]ョエKQャイ 61 -0.1698E+Ol 68 -0.1597E+Ol 69 -0.1570E+Ol 70 -0.1672E+Ol 71 -0.1857E+Ol - ---セMMMMM 72 MMMセMNZdNャYRMYMe\ゥItセ 13 -0.1854E+Ol 74 -0.1727E+OI 7S -0.1658E+Ol 1 76 -0.1730F+Ol MMMセZMMセ MセMMMMMMセセセセZァスM 1 79 -0.1549E+Ol

1 80 -0.1248E+Ol 1 81 -0.8914E+00 MMセャセ⦅⦅⦅⦅⦅⦅⦅ 82 -0.4453E+00 サMMMセMセMMMセセMMMN ァZュセセスMM 1 85 -0.2885E+Ol 1- 86 -0.2743E+Ol 1 87 -0.2714E+Ol 1 88 セoNRVSUeKoi 1 89 -0.2421E+Ol 1 - - - -MMMMMMセ -0.2110H01 1 91 -0.1747E+Ol 1 92 -0.1354E+Ol 1 93 -0.9373E+00

⦅セ

__ .

セセ、⦅⦅⦅

il--

tュセエセMM

1 --.. 9A 0.2194E+Ol 1 MMセ 99 0.2698E+Ol 1 100 -0.314IE+Ol MMMMMMMMMMG^NLLMセセセ Vl . " . " m o G) ()C O:::tl C

Z

m :::tlm

0

:::tl

"0

-z

CJ:l G)> - l

r--<

Vl Vl

»

- l Vl

0-;;

Z:c

»

Vl m

»

z

G) r-rn

0

. "

<

m :::tl - l ()

»

r-<

m

r-0

() - l

-<

Vl

0

m N - l

0

"

Vl - l <,

»

l\l - l I <,

0

l,) Z

(24)

FOURIER AMPLITUDE

FREQUENCY

NUMBER

(1\1)

FOURIER

AMPLITUDE

(IN ./SEC)

0.4914E-OZ --o'.7t518E'-02 -, 0.38b2E-02 O.:JOOTt'-UZ 0.2349E-OZ O.2fiZie 02 0.3084E-OZ O.3B'iZl'-02 0.4382E-02 0.4443E-OZ 0.3952E-02 O.3315E-02 0.3380E-02 O.418ZE-02 0.4905E-OZ 0.'5I34E'-OZ 0.4963E-02 O.4104E-02 O.45ZbE-OZ - -ll.7tZ"l"JE'-\lZ'--0.38Z5E-02 GoセGSQ OiiF-\lZ-0.2414E-02 II O.1216E-OI 72 O.IIObE-OI n 0.890bE-OZ 74 0.b790E-02 75 0.5505E-02 7b 0.5IbbE-OZ 95 96 "JT-98 99' 100 1 0.1229E-06 2 0.2162E-02 3 0.2135E-02 4 0.6706E-02 " 0 .16l1i1'-'1l'--6 0.2b42E-01 7 0.H62E-OI 8 0.3760E-01 9 0.4237E-OI 10 0.5237E-OI Ll " MMャヲセVA^WTfQャイM , 12 0.819bE-01 13 0.9587E-OI 14 0.1074E+00 15 0.1147E+00 Ib 0.1153E+00 MセLMMMMM -o.Hr78E+OO' 18 0.9329E-OI 19 0.7573E-OI 20 0.5978E-01 21 oNTXTQeセPQ 22 0.4142E-01 11 ' --n.J687r-"01 24 0.3316E-01 25 0.2910F-OI 2b 0.2431E-01 27 0.2023F-01 28 00l850E-01 -, -7lT' MMMMMョセtャャャゥQャエMGQャQG 30 0.18b5E-01 31 0.1779E-OI 32 0.1722E-01 33 0.18<191'-01 34 0.244IE-01 35 O.3Z39E-OI 3b 0.4014E-OI 37 0.4502E-Ol 38 0.458bE-01 39 0'-43561''-01 40 0.404IE-OI

[>

セMMMMMMMセ]セセセ]セZ 43 0.3558F-OI 44 0.3440E-01 II 4 , 0 .H73E-0 1 01 Mセ ァZセュセZZァZ a 48 0.4053E-OI 01 Zセ ァZZセセZセ]ァセ 51 O.blJIE-OI 52 O. b54BE-01 - - - - " ' 5...3 セセMッNVVアTeMoャ 54 0.b544E-01 55 U.611Zl'-0I' 56 0.S478E-OI 57 0.47581'-01 58 0.4037E-OI 59 O. 3HOE-OI eo 0.2b32E-01 bl 0.1993E-OI b2 O.1518E-01 63 O.lZb9E-Ol b4 0.1215E-OI - - - 6 " ' 5 . , - - O.ll98E-Ol bb 0.1450E-01 67 0.157IE-OI b8 0.159IE-01 b9 O.15Z0E-Ol 70 O.1407E-01 I I I I I " - -

,---'

MLセMLMMLM I 1 I I I , , ' -I I I 1 I

---.-"-

_., , -I I I I

" +-

:::0 1 m l

01

C I m I

zT

() セ M\セ II I ' 1 -.--... I Z I I I 1 I r MMMMMMMMセMMMMMMGMMNMNLMMMMLMMMMMMMMMMML 'I

i^セ

1 I r , -::J I iセN T -I I I 1 I I I ---y--- - - -I 1 I 1 I - l

" "

I

0

o

m C - l :::0 C

0

m :::0m

"

:::0

VI»

a

- l Z

セᄏ

»

r-0-<

ZVl

VI VI

"

»

:::0 セ

VI

"

- l r-o - t - C (;)0 _ m t

-VI"

»0

-t :::0

0

- l Z Im

»

<

m :::0

»

o

m

<

m :::0 -t ()

»

r-<

m r-(lIl

0

セ ()

"

l.'I -t -,

-<

セ I

0

II-. r-;

"

(25)

0.5121E+00 0.9420HO-0 0.1252E+Ol 0.1391>[+01

PHASE

ANGLE

(RADIANS)

-0.4024E+00 - -0; ZQ77E--Cn 0.5356E+00 -セイイセVQZNュ O.2211E+Ol 12 -O.IOlIE+OI 13 -0. 8646E+00 74 -0.7965E+00 15 -0.8521E+00 76- -0.lI'l'lr9HUO 11 -0.8291E+00 19 110 81 82---83 91 98 99 100 ...

..

FREQUENCY

NUMBER (N)

84 0.2912E+01 85 -0.2800E+Ol 1r6 -0.2365E+Ol 81 -0.1911E+Ol 88 - - --0.1(,63£+01 89 -0.1541E+Ol MMMMMMセYセPG MセQUXYeKoャ 91 -0.1465E+Ol qz -0.1156[+01 -93 -0.1854E+00 94 -0. 4294HOO 95 -0.1015E+00 I 1 1 1 I -r---I 1 I -1 I 1 0.0 7 -0.1242,+01 セ -0.1616[+01 4 -0.71Alf+01 セ -0.212If+01 6 0.1741E.1H -1 -0.1402E+01 8 -0.1116E+OI 9 -0.1071E.OI 10 -0.9817E.00 II -0.8088E'00 - T< -GZGセU「アVヲNoo 11 -0.2961E.00 14 -0.1106E-02 iセ 0.1168E.00 16 0.6506E.00 11 0.9822E.00 111"- ----rJ.T2l!7,H 0r -19 0.1523E'01 20 0.161IE.OI 21 0.IH5HOI 22 0.1160E.OI 73 0.1789f'01 24 0.1816['01 Wセ 0.1892E+OI 26 0.1917f+01 21 0.1845E+OI 2A 0.1696E+01 29 0.1594E'01 - j l f - - --'i.T5--.;rr,--oI-31 0.1500E+OI 12 0.1351E'01 H 0.1l55E'01 14 0.104IE.Ol 35 0.1094E+01 "36 - -MMuセャWiゥGャfuQ 37 0.1498E'01 18 0.1725E'01 39 0.1906E'01 40 0.2022E.01 41 0.2093E'01 ---r---\,---,.;r---- O. 2I"53l'T01"-43 0.2208E'01 44 0.2244E+Ol 45 0.2251E'01 46 0.2250[+01 47 0.2210E'01 MMMMMMMMセMMMMMッ[RRSQeKo{ 49 0.2314E+Ol 50 0.2464E+Ol 51 0.2666E.Ol 52 0.2898[+01 53 -0.3136E+Ol ...".---tJ.2880E+01 55 -0.2621HOI 56 -0.2391E+Ol 51 -0.2178[+01 58 -0.1988E.Ol 59 -0.1815E+Ol 60 -0.1614E+OI 'I'-... 61 -O.l604E'01 セ 62 -0.1648E'01 63 -0.1791E+OI 64 -0.1948E'01 II 65 -0.2039E+OI セ oNRPQセオイMM <..n 67 -0.1896E+Ol 68 -0. 1724E+Ol セ 69 -0.1548E+Ol .." 10 -0.1383E+Ol 11 -0.1212E+Ol I 1 I -1---I 1 1 I I 1 I I I I I -

----.---1 1 1 1 1 1 1 1 1 - - - r 1

I>

"

;;:0

m

o

C m Z ()

-<

II :::l

I

N

---

:::l I ...

-セ 1 I 1 I 1 1 1 1 I ---r--I

PHASE ANGLE

- - - -

...

- i

" "

I

0

m C

G>

- i

;;:0

C

0

m

;;:0

m -0

;;:0

Vl»

0 - i

Z

»»

0;:1 - i

r-0-<

ZVl

Vl Vl

"

I-0

;;:0

»

Vl

VI - i m 0

»

G>Z

- i

G>

r-Vl

m

»-- i "

- 0

0;;:0

Z

- i I m

»

<

m

;;:0

»

G>

m

<

m

;;:0

- i ()

»

r-<

m

r-0

"

() セ N - i I

-<

<,

0

N

"

(26)

FOURIER AMPLITUDE FREQUENCYNUMBER (N) FOURIER AMPLITUDE (IN ./SEC) 89 0.1514E-02 セo 0.9271E-03 91 ---o-.si,-iie':'O-j--92 0.9329£-03 93 MMMP[MUセGMQMゥ・GZGPSM 94 0.2998E-03 95 0.7532E-Ol 96 0.1101E-03 91 0;616"£':'-Oj 98 0.1393E-02 99 0:2263£':'02 100 0.2568E-02 11 0.4639E-02 12 0.3808E-02 -73 0;1596E-02 14 0.1218£-02 15 0;310l,E-02 16 0.l436E-02 17 0.2293E-02 18 0.6443E-03 -19 --If.1383E':'02 80 0.1812E-02 8 1 o . i T 3 2 f 0 2 -82 0.4329E-03 53 0.9864E-02 54 0.1055E-Ol 55 0.9163E-02 56 0.6351E-02 51 0.5435E-02 58 0.1168E-02 59 0.1832E-02 60 0.6401E-02 61 0:-'308e':'02--62 PNTSWAeセPセ 63 0.5808E-02 64 0.6808E-02 65 0.7504E-02 66 0.1920E-02 67 0.7395E-02 68 0.5681E-02 69 O. 3932E-02 10 0.4051E-02 I 0.2235E-Ol 2 0.4649E-02 3 0.5548E-02 4 0.4338E-02 5 0.1222E 01 6 0.2223E-01 1 0.2822E-Ol 8 0.2806E-01 9 0.2122E-Ol 10 0.3897E-01 il0:6347EOl -12 0.9273E-01 13 0.1204E+00 14 0.1404E+00 15 0.1468E+00 16 0.1356E+00 ----n---- ッM[MヲゥヲャヲeMGセ 18 0.6692E-01 19 6.2119E-Ol 20 0.2725E-01 21 0.4912E-Ol 22 0.5933E-01 23 0.5851E-Ol 24 0.5230E-01 25 0.4558E-Ol 26 0.3966E-01 21 0.3391E-Ol 28 0.2848E-Ol - --29-- - 0.23't6E-01 lO 0.1168E-Ol 31 0.1014E-01 32 0.1135E-02 33 0.5292E-02 34 0.8935E-02 35 0.8107E-02 36 0.5900E-02 31 0.2917E-02 38 0.1157E-02 39 0.9583E-03 40 0.9165E-03 41 0.2319E-02 42 0.3092 E-02 43 0;4661E-02 44 0.1529E-02 45 0:9807E-02 46 0.9952E-02 41 0.8010E 02 48 0.6251E-02 49 0.7099E-02

t>

52

セセ

ァZセュ]ァセ

0.8613E-02 83 0.1440E-02 84 0.1896E-02 -- ---85-- - ---o.1581E.:.-02--___________Xセ⦅ PNQRXV⦅セ⦅qi⦅ __ 81 0.1111E-02 88 O. 953E-02 1 I

:

-1 1 I I 1 1 1 L 1 1 1 1 1 1 I 1 + t -1 I 1 = -"T1 :-0 m

e

C m Z ()

-<

II 1 1 ---I 1 1 1 I I

:--"'-=---I I

MiMMMMMMMMMMMMMM]]MMMMMMセセMMMMM

.--... Z I --'

--

1 I 1 1

{^

- ; 1 ' - - - E - - - -

1

I iセN ; 1 ' i -1 I 1 1 .. 1. 1 I i 1 1 I G) C :-0 m

»

<

m :-0 - i

»

セ . " r-()

»

r-- i C o m

o

"T1 - i

-<

»

z

»

r--<

l / ) l / ) m :-0 o m

<

m

r-o

() "T1

o

C :-0

r-o

セ m :-0 セ l / ) " - i

セ セ

10

Z l / )

(27)

PHASE ANGLE

FREQUENCY

NUMBER (N)

PHASE

ANGLE

(RADIANS)

1 0.0 2 -0.1910E+00 3 PNQRYセeKPP 4 0.2020f+Ol S MPNRQRセeKoャ 6 MPNセゥセReKoi 1 -0.1403E+Ol 8 -0.1056E+OI 9 -0.1066E+OI 10 -0.1118E+OI II -0.9823E+00 - - 1 2 - - - - --0.-60-54E+OO 13 -0.1481E+00 14 0.3525E+00 15 0.8820E+00 16 0.1425E+OI 11 0.1960E+OI 18 セVセセ 24 30-E+of-19 0.2516E+OI 20 0.1489E+OI 21 0.1633E+Ol 22 0.2024f+01 23 0.2404£+01 24 0.2118E+OI 25 0.2914E+01 26 -0.30b9E+01 21 -0.2829E+01 28 -0.2581E+OI 29 -0.2312E+OI 30 MPNセQYUhKoi 31 MPNQセYXeKoi 32 -0.9419E+00 13 0.2121£+01 34 -0.2910E+OI 35 -0.2397E+OI 36- -0.1911E+OI 31 -0.1132E+OI 38 -0.1990E+OI 39 -0.199bE+OI 40 0.2123E+Ol 41 -0.3034E+OI 42 -0.1911E+Ol--43 -0.5b94E+00 44 0.4115E+00 45 0.1216E+OI 46 0.1910E+OI 41 0.2324E+OI TXMセMMMMM PNRSTQeKセoi 49 0.2212E+Ol 50 0.2450£+01 51 0.2643E+01 52 0.2121E+OI 53 0.2811E+Ol MMMMUセセ セセPNSPYUeKoi 55 -0.2149E+Ol 56 -0.2b02f+Ol 51 -0.2885E+Ol 58 -0.2886E+Ol 59 -0.2515E+OI

l>

6061 -0.2212E+Ol-0.2290E+OI 62 -0.2646E+OI ... 103 -0.2640E+OI II Zセ⦅⦅⦅⦅ ]ァZセ[ZセセZァセ <..n lob 0.1959E+Ol 61 -0.1604E+Ol N 68 -0.1291E+Ol 109 -0.1266E+Ol 10 -0.1391E+OI 11 -0.1083E+OI

-• 84 -0.4382E+00 85 0.6809E+00 86 0.2318E+OI 81 -0.2424E+Ol 88 -0.1268E+Ol セセ -0. 1542E+00 90 PNQRQUeKセッゥMM 91 0.3130E+OI 92 -0.1904E+Ol 93 -0.1101E+OI 94 -0.1949E+Ol 95 -0.164IE+OI - - - 96 MMMMMMMセM]oZMVPVYeKooM 91 0.1338E+Ol 98 0.3050E+Ol 99 -0.2160E+OI 100 -0.1189E+OI I

--=---

_

I 1 I 1 I I I I I I I セM i I I I I I I I

----

Z I

セM

I I セセ ---1----I I I I I I -...-.. I

---===-=----L

1 1 1 1 ; ; ; Q l m セQMMMMMセMMMM dセ C 1 m l

セ セセMMMM

-M\セ II I 1 1 1 1 I 1 1

t>i

r 1 :l I 1

Ii--.

Mセ]MMセ

セ セMMM

- - - -. .

セN

11 11

0

Q

c

;;;Q

c

;;;Q m m ;;;Q :t> Z tIC :t>

r--<

Vl Vl ""'C I :t> Vl m :t> Z Q r-m

0

11

<

m ;;;Q - i

n

:t>

r-<

m

r-0

n

- i

-<

Vl 0 m

r-0

:f

m ;;;Q セ Vl セ - i

"'

:t> セ - i <, l\l

0

I <, Z -fl,.

(28)

FOURIER AMPLITUDE FREQUENCY NUMBER (N) FOURIER AMPLITUDE (I N '/SEC) 1 oNセセVVQMPV 2 PNQセYQQMPz 3 PNセQVセヲMoャ セ O.JI91E-02 5 oNQQSセiMoi 6 PNQセRPQMPQ 1 0.1643f-0\ 8 0.\9\11-01 9 0.21111-01 10 0.38661-01 29 0.1162E-Ol _30 _O.. llZ}E-OI 31 0.10361-01 _ 32 0.94111-02 33 0:-8541."1':02 34 0.1118E-02 11 0 .1409E-0 1 12 0.1311E-01 13 -e>:T210e':(i"1-74 0.1I39E-Ol -75---Ci-:lIl22e:.:Ol--16 0.92211-02 95 0.2110E-02 96 0.21821-02 --91"---- 0.1465E-02 98 0.14901-02 99 0.22591-02 100 0.3041E-02 11 0.8338E-02 18 0.15191-02 -79 MMMMMMMMoセVWUW・]PR -80 0.6115E-02 MMXcMMMッセUy」ゥWeG[MHIR -82 0.5871E-02 Sセ 0.55021-02 36 0.4368E-02 n O . 4 2 2 9 E ' : 0 2 38 __Q..⦅セセjMァセ 39 0.5083E-02 40 0.6211E-02 Mセ 0.1609E 02 42 0.86941-02 43 O;9665E-02 4" qセNャャヲNMAQェ セセ 0.114IE-Ol ⦅セ⦅⦅⦅ 0.11501-0\ "1 0.1119E-Ol "8 __.o.lI25E-01

[>

セセ セZャ⦅セセセセ]セZ 5\ 0.1384E-Ol 52 0.1"191-01 II 53 0.1"12E-01 01 セ[

g:

ァセZセ]ァサ 56 0.1255E-01 ... 51 0.1200E-01 58 0.1133E-Ol 59 0.1096E-01 60 .J1.1I50E:-J!.l 6\ 0.1266E-Ol 62 0.13"3E-01 6 3 - - O.1328E,:oi---6" 0.1265E-0\ 65 0.1228E-0\--66 0.1229E-01 67 --0.1221E-Ol 68 _ 0.1225E-Ol 69 -0-:12

iie-o

i 10 0.1356E-01 89 0.46711-02 90 0.4383E-02 -- ---'---.--'---- -- ·-'fi-- O.3954E-02 92 0.3470E-02 93 0.31431-02 94 0.3010E-02 83 0.6028E-02 84 0.5936E-02 ---- - - 8 " 5 - --- 0.5592E-02 86 0.52261-02 -MMMMMMMMMMMMMMNセMMMMM -.--. -'81--- O.4996E-02 88 0.4850E-02 .L-JF-- ---I 1 I I 1 -1 "T1 ;;Q m

o

Cm Z ()

-<

II I I _----1.._ I I I I I I I I 1 -L I 1 ___...l.- _ I L I MMセMMMMMMMMMMLM]MLBBBLLBMMMMMMMMMMMMMMMMMMMMMMM MMセMMMMGャGMMMMMMMMMMMMMMMMMMMMMMMM 1 1 T--MMセ」MMLセMMMMMMMMMᆳ 1 I I - - - - I 1 セMMMMゥMMセセᄋ -,"---'._-I I 1

--r--I

---c-

---1 ---.. Z I I ... _1. - I I 1

[>1.

... 1 _1 _ :::l I 1

s:

KQMMMMャMMMMMMMMMMMMMMMMMMMMMMMMセGMMMMMMWGMJセセ N 1 - I L I I 1 I ---1 - 1 1 1 "T1 "T1

0

G)

c

;;Q

c

;;Q m m ;;Q

»

'"

z »

»

I

-<

Vl Vl ---..

»

"

I - I C 0 m

0

"T1

<

m ;;Q - I ()

»

I

<

m I

0

() - I

-<

Vl 0 m

'"

I

0

セ m ;;Q Vl

- I

»

セ - I セ

0

'"

I

Z

-, \It

(29)

0.0 0.2121E+OI 0.Z694E+OI MoNセPRReKoャ _-Q.12.-','Uf 2L.-_ -0.2061E+OI -0.1816E+OI -0.1769E+OI -0.1680E+OI -0.1422E+OI MPNQPXセeKoi -0.7342E+00 -0.4061E+00 -0.9514E-OI PNRRセoeKPP 0.5591E+00 0.9053E+00 0.1239E+OI PNQUセYeKoi 0.180IE+OI O.ZOHE+Ol 0.2248E+Ol o 433E+0

PHASE

ANGLE

(RADIANS)

84 -0.1051E+Ol 85 -0. 1624E+00 S6 - ---;;0;<'''071'+00 81 -0.5640E-Ol 88 --0-;-42321'+0-0 89 0.9812E+00 96 MPNRXセTeKoャ 91 -0.2915E+Ol 9 S · 0 ; Z S 7 l . E + O C -99 0.2156E+Ol -TOo O;Z89-"E+Ol 90 0.1551E+OI 91 0.2015E+Ol 92 - 0 .2-,,7"0 E+01 Yセ PNRQセXeKoャ - - 9 4 - - -o;·29foE+OI -95 MPNセPUQeKoャ 18 -0.1184E+Ol 79 -0. 1696E+OI 80 -0.16321'+01 81 -0.1587E+Ol 82 -0.1491E+Ol Xセ MPNQセQTeKoャ セ 54 0.2111E+Ol 55 0.2221E+OI 56 PNRセPUeKoャ 57 PNRセXPeKoi 58 0.2429E+OI 59 0.2425E+Ol 60 0.2412E+Ol 61 0.2477E+OI 62 0.2615E+Ol Vセ NッN⦅セQVReKoi 64 0.2865E+OI 65 0.2926E+Ol 66 PNRYYセeKoi 67 0.3014E+Ol 68 (r;Iii,!E+oI 69 -0.セPQUeKoャ 70 MMoセRYUWeKoi 71 -0.2715E+Ol 72 -0.2561E+OI Qセ MPNRセWUeKoi 7 4 - - · - '=-0;22211'+01 15 -0.2098E+Ol 16 -0.1988E+Ol 17 MPNQXXセeKoi

FREQUENCY

NUMBER (N)

--z

1 2 セ 4 .. ..__ 2._ 6 7 8 9 10 __________. ll.. 12 1) 1"0 15 16 MMMMMMMMMMhMMMMMMMMGllZQセセBMBMGGMMᆳ 19 20 21 22

セMMMMセMMMMMMMNセ

I I 1 1 I I I : ' ' r -1 I 1 I I ""T1 ;;0 m

o

C m Z () セ II I I I I I ____L _ I I 1 .1 1 I I I I I 1 I I I 1 T 1 --- i-I 1 1 -( 1 I I - I

_L

+----

_ ... 1 I 1 1

I

T-N

+__

I 1

t>

t---... I -I I 1

----

--r---

:---1

MセMセMMMMMMM

-_.-....⦅M⦅N⦅MセMMMMMMMM 1

PHASE ANGLE

- - - --M⦅N⦅MMMMMMMセMM

r-o

セ Vl ""T1 ""T1 ---lO

o

»C

---l;;o

C

0

m ;;0m Z ;;0

»

tv Z CO

»

r-セ Vl Vl

-

""'C I

»

Vl m

»

z

o

r-m

0

""T1

<

m ;;0 ---l ()

»

r-<

m

r-0

() ---l セ Vl 0 m 1 m ' - ; ; 0 セ

(30)

FOURIER AMPLITUDE FREQUENCYNUMBER (N) FOURIER AMPLITUDE (IN '/SEC) 95 0.1492E-02 96 __セYPXWe⦅MPS _ 97 0.6569E-03 98 0.1436E-02 99 - PNQWUSeセPR 100 0.1289E-02 89 0.2761E-02 ____'l2.. 0.2640E-02 91 0.2216E-02 'R... ⦅MMMMMNoNNNNャNVBQセ 93 0.1367E-02 94 0.1543E-02 II 01 _ . _ --n ;;:0 m

o

C m Z ()

-<

II 1 1 1 -__....L 1 1 0.8685E-07 2 D.1559E-02 3 0.1526E-02 4 D.5218E-02 - 5-- O.MQRゥotセH^ャ 6 0.1869£-01 1 0.2189E-OI 8 0.2219E-Ol 9 0.2593E-Ol 10 0.3853E-Ol 1 1 0.5657EOf-12 0.7548£-01 13 PNYQYWeセPQ 14 0.1030E>00 15 0.1054E>00 - - - " " = - - = - - - -MMセセ

g:

セセセセセZセセ 18 0.5608E-Ol 19 0.3924E-Ol 20 0.3861E-Ol 21 0.4496E-Ol 22 0.4679E-Ol MセM⦅ ..⦅MセM MセMMMM ゥSMセMMMMMセXVeMoャM 24 0.3624E-OI 25 0.2989E-Ol 26 0.2463E-Ol 27 O. 2007E- 01 28 0.1626E-Ol 29 PNQRYXeセセ 30 0.9192E-02 31 0.4846E-02 32 0.4023E-02 33 0.6885E-02 34 0.8017E-02 35 0.6797E-02 36 0.4490E-02 37 0.3129E-02 38 0.3100E-02 39 0.2970E-02 40 0.2107E-02 - - - MMセM O.2112E-02 42 0.3749E-02 43 0.6268E-02 44 0.9018E-02 45 0.1050E-Ol 46 0.1003E-Ol 47 0.8435E-02 48 0.7825E-02 49 0.8799E-02

I>

50 0.9684E-02 51 0.9967E-02 52 0.1031E-Ol -5-3---- 0.1086E-Ol 54 0.1045E-Ol 55 PNXXYVeセPR 56 0.7559E-02 57 0.71761:-02 58 0.8245E-02 59 0.7583E-02 60 0.6498E-02 61 -0.-6799F02 62 0.8074E-02 63 0.8780E-02 ---;.:4=-5- - - セZ ZセセZZZセセ 66 0.8062E-02 67 0.7050E-02 68 0.5995E-02 6 9 - - 0 :/;189i':6T MMMMMWセWセセMM セZ[セZセセMセセ 12 0.6206E-02 13 0.5634E-02 14 0.6225E-02 15 0.6634E-02 MMMMMセセセセセ セZセZセセセMァセ 18 0.3816E-02 19 0.4059E-02 80 0.3822E-02 81 0.3148E-02 MMセヲMMMMMMMMMMMMMMMMMMMMMMMMM MMMMMXセXセ[MMMMMM セZセセ[[セZセセ 84 0.3181E-02 85-- 0.300Ie=-62 86 0.2031E-02 i17- 6:1979E':02 -88 0.2503E-02

-

Z I

[>1

1 ... T" 1 セ i -I

I

セQMMMャMMMMMMMMMMMMMMMMMMM N { 1 ' r 1 1 1 1 _1 1 1 -n G) C ;;:0 m w

»

- I -n

:c

0

m C iセ

0

m セ ;;:0 m }> ;;:0

z

Vl »

- I ,

»-<

- I

Vl

oセ

Z_

Vl»

"

I - I C 0 m

---n

0

;;:0 -I

:c

m

»

<

m ;;:0

»

G) m

<

m ;;:0 - I ()

»

I

<

m I セ

0

'"

() セN -I

-<

I

"-0

セ -n

(31)

PHASE

ANGLE

(RADIANS)

(

FREQUENCY

NUMBER (N)

I (l.n I (1.

tt'

'41-uo セ ャャセセ|Lャエ^GhKPP 4 0.}tir,rtt01 セ -d.l610f+Ol b -O.2005l+01 1 -0.1554E+OI 8 -0.1342E+01 9 -0.1373EoOI 10 -0.1300EoOI II -0.1026EoOI 12 -0NVセセReッッッ 13 -0.2389EoOO 14 0.2044E+00 15 0.6635EoOO 16 0.1120EOOI 11 0.1536EoOI 18 セM O.-1826E<01 19 0.1831EoOI 20 0.1692E+01 21 0.1819EoOI 22 0.2101E+01 23 0.2413E+OI 24セ MセMMMMッNMゥVQReKPH 25 0.2874E+01 26 0.3047EoOI 27 -0.3079E+01 28 -0.2937E+01 29 -0.2776EoOI ---30---0.2585E-+01 31 -0.2596E+01 32 0.2866E+01 33 0.2841EoOI 34 -0.3058E+01 35 -0.2630EoOI 36 セPNRSTPeッoMQMセ 37 -0.2348EoOI 38 -0.2173E+01 39 -0.1569EoOI 40 -0.8085E+00 41 -0.3010EoOO

[>

-:r

MMM]MヲセセZイセZセァMM ... 44 0.6406E+00 iiZセ セZ セァセセZァZ 01 ⦅Zセ セZ ァセセセZセセ 49 0.1741EoOI 50 0.1892E+01 51 0.2041EoOI 52 0.21b8EoOI 53 0.2347E+01 MMUMTMMMMセ 0.2575E<01 55 0.2743E+01 56 0.2730E+01 57 0.2b82E+01 58 0.2795E+01 59 0.2943E+01 60 0.2927E+01 61 0.2799E+01 b2 0.2848E+01 b3 0.3020E+01 64 -0.3094E+01 セMMMMセMMMMMMッMZセ ]セZセセセセセZァセ 61 -0.2658E+01 68 -0.2670E+01 b9 -0.2L62E+0 I 70 -0.26b7E+01 71 -0.2447E+01 12 -0.ZZ94E+01 73 -0.2317E+01 74 -0.228IE+01 75 -0.2049E+01 76 -:"0-. i768E+0! MMMMMMMMMMM[セ[M[セ[MM ZセZ セセ セセ セZセ

t

79 -0.1664EoOI 80 -0.1475E+01 81 -0.1400eoOI 82 --セPMNMQTゥQe\PQ 83 -0.1305E+01 I I I I I I I 1 1 1 1 1 I I I I T I 1 I I 1 I I I I 1 1 -I 1 I I I I 1 I 1 I I -1---I I I I I I I I I I

+---I 1 I I I

[>

. " ;;:0 m

o

C m

Z

()

-<

II

-

Z I

---

:J: N

--... ...-::::::-- -1._ I I I I I I I I I 1 ... 84 -0.9106E+00 85 -0.4981EoOO 86 -0.322IE+00 87 -0.3634EOOO 88 - --0.2550i:"-OT---MMMMMMMZ[MMMMMGM]セBBGZZZ[ZMMMMMMMMMMMMMM[ZZZ[[セZMMM

g:

Z[セZセZァセ 91 0.224J_E+01 92 0.2742E+01 93 0.2874E+01 94 0.3066Eo01 MMMMMMMMMセZセセセ ZァZセZセセセZセZ 97 0.2934EoOI 98 0.2957E+01 99 -0.2843Eo01 100 MMPセRTUTeNPQ

PHASE ANGLE

セM

-. " C>

c

;;:0 m -I . " :J:

0

m C ;;:0

,-0

m セ ;;:0 m

>

;;:0 Z

til>

-1,->-<

-I

til

oセ Z_

til .."

:J:

>

til

m

>

Z C> ,-m . "

0

;;:0 -I :J: m

>

<

m ;;:0

>

C> rn

<

m ;;:0 -I ()

>

,-<

rn

,-

0

"

\II ()

....

'"

-I I

-<

-, QI

0

. "

(32)

FOURIER AMPLITUDE

FREQUENCY

NUMBER (I'J)

1 MMセ 3 セ 23 ⦅NャNセ __ 25 26 --21 28 89 90 91 NMNGiNセ 93 Yセ 83 84 85 86 81 88 29 セ 31 .H.-33 34 35 36 n 38 39 セo

ヲ^ZセMM

セS セセ II セU <..n Zセ セX tV セY

'.9__

51 セ 53 54 55 56 51 58 59 60 - 61-MMセ 63 64 65 66 67---.68 69 10 11 72 73 74 ·75 76 77 78 79 80 81 82 5 6 1 8 9 . . --l.lL.-11 12 13 Qセ 15 ._---".--MMMMN⦅セ 11 18 19 .1.lL_ 21 22 95 96 97 98 99 MMMMMMMMMセ MMセセ⦅N⦅MMMMセM]BBMMMMM 1 1 1 L 1 1 L 1 1 i L _ 1 1 1 1 1 1 1 L _ 1 1--__ 1

t---t---L_ 1 L 1 1 1 1 1 1 I 1 1 1 1 L 1

}---:t--- .---.

1 1 I 1 エMMMMセMMMMMZャLMMMM - - - ---1 1 1 1 1 1 1 r 1 1 1 1 1 1 1 1 .L. セ⦅N Z I ""T1 Al m

D

C m Z ()

,

II :::l

I

N

--...

""T1 ""T1

0

G) C Al C Al m m Al

»

z

»

r-,

VI VI

»

セ "U r---i C 0 m

0

""T1 --i I m

<

m Al --i ()

»

r-0 VI "U

r-»

() m セ m Z --i VI 0 m --i \l;)

0

セ "U

"'-

VI セ --i

'"

I

»

--i "-"Q

0

Z

(33)

600

550

500

450

---

----

---LOAD ON- PILE CAP, KIPS

200

250

300

350

400

150

---100

50

---o

o ,

cc:::::: i i i I I 1

O. 1

Vl ... :r: u z

-O. 2

- 0-<C U L.LJ

::: 0.3

0-w... 0 t -z

0.4

... :E ... U <C ...J 0-

0.5

Vl -Cl Cl a::: <C

0.6

セ z セ 0 Cl

O. 7

O. 8 I i I ! I I I ! I l'

(34)

ltcRDSTlE SHU GENEST

'1&QCI.4. TES LTD. &...t.55OCltSl TEE. CONSULTING ENGINEERS -INCENIEuMSCOHSffLS

OTT AWA CANADA

sou,PJtO,lll , fUTSU. . . . .IU

'IOfll SOUTUII"IN ITIIlIhUMfDU U"'IS

OTT ....\tJ .... UW,,,£RS\Ty Et4GlN.£.E.R\N.Cio BU1L.O\Hc. t --- ... - j. -

1--FIGURE

16

. . . _... 4-1I, ••ft.; (".セ ZZLLセBセ[ZBセセ[L

..

ヲMWMMMMMMMNBNNセ '....0· I .. 0

j

: ,....

o Pl· . . • o 2 e:.

so

I L

30FT

PROFILE

FROM PILE

Figure

Fig 2 - Pile Top With Ham.mer Positioned For Horizontal hnpact
Fig 3 - View Of The Loading Rig For Axial hnpact On The Pile Top

Références

Documents relatifs

Enfin, sur la problématique de la médiation des productions intellectuelles écrites et de l’interrogation des passés contestés (histoires contestées, patrimoine

If the current ice pile t satisfies t = a(t) we move at column Rmost(t) in t and, by Lemma 2.3, we update the set of moves in constant time; if t is a leave, in order to continue

• The intended outcome of this scheme is a constantly shifting sound-world, with a self-organising structure that moves between order and chaos. • At step 3 balance in the

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

Verifiability is often split in different sub-properties according to the auditors that perform the checks: individual verifiability (each voter can check that her ballot was

OR INSTITUTIONALIZING THE TRANSFORMATION?: ANTI-RACISM AND EQUITY IN EDUCATION IN TORONTO Paul

-opening places up and moving PB dev’t beyond a reaction to conventional forms of dev’t and mgmt. Counting fish, Salmon Brook Falls