• Aucun résultat trouvé

Castells E, Mulder PPJ, Pérez-Trujillo M (2014) Diversity of pyrrolizidine alkaloids in native and invasive

N/A
N/A
Protected

Academic year: 2022

Partager "Castells E, Mulder PPJ, Pérez-Trujillo M (2014) Diversity of pyrrolizidine alkaloids in native and invasive"

Copied!
10
0
0

Texte intégral

(1)

Castells E, Mulder PPJ, Pérez-Trujillo M (2014) Diversity of pyrrolizidine alkaloids in native and invasive Senecio pterophorus (Asteraceae): implications for toxicity. Phytochemistry 108: 137-146 DOI 10.1016/j.phytochem.2014.06.006

Supplementary information Table S1

1 H (600 MHz) and 13 C NMR (150 MHz) data (δ in ppm, J in Hz) of rosmarinine in CDCl 3

Id

1

H

13

C

δ

H

multiplicity

1

δ

C

1 2.59 m, br 48.60

2 4.29 dd, J

2,1

= 8.21, J

2,3b

= 8.20 68.93

3a 3.26 m, br 60.36

3b 3.01 dd, J

3b,3a

= 11.24, J

3b,2

= 8,21 60.36

4 - -

5a 2.69 m, br 53.28

5b 3.49 m, br 53.28

6a 2.16 m, br 34.12

6b 2.32 dd, J

6b,6a

=13.68, J

6b,x

= 5.80 34.12

7 5.10 br 74.73

8 3.81 m, br 69.39

9a 4.92 dd, J

9a,9b

= 12.67, J

9a,1

= 5.00 61.40

9b 4.13 dbr, J

9b,9a

= 12.67 61.40

10 - 11 -

179.96 12 -

76.86

13 1.79 m 37.72

14a 2.26 dbr, J

14a,14b

= 13. 94 39.27 14b 1.95 dd, J

14b,14a

= 13.94, J

14b,13

= 9.62 39.27 15 -

131.27

16 - 166.33

17 -

18 1.34 d, J

18,13

= 6.5 25.69

19 0.97 d, J

19,13

= 6.78 11.43

20 5.81 q, J

20,21

= 7.04 134.84

21 1.85 d, J

21,20

= 7.04 14.81

1

Multiplicity

3/4

J

H,H

: s (singlet), d (doublet), dd (double doublet), q (quartet), m (multiplet), br (broad signal)

(2)

2 Castells E, Mulder PPJ, Pérez-Trujillo M (2014) Phytochemistry 108: 137-146

DOI 10.1016/j.phytochem.2014.06.006

Fig. S1 Rosmarinine chemical structure and stereochemistry determined by NMR spectroscopy: A)

1 H NMR spectrum with the assignment of signals corresponding to rosmarinine, B) 1D selective 1 H

NOE spectrum when proton 7 signal is saturated, and C) 1D selective 1 H NOE spectrum when proton

1 signal is saturated. Spectra acquired at 298.0 K and at a magnetic field of 600 MHz.

(3)

O

N H + H

O CH3

O H CH3

O O C

H3

Senecionine

M+H

+

O

N+ H

O CH3

O H CH3

O O C

H3

OH Senecionine N-oxide

M+H

+

O

N H + H O

CH3 O H CH3

O O C

H3

Platyphylline

M+H

+

O

N+ H

O CH3

O H CH3

O O C

H3

OH Platyphylline N-oxide

M+H

+

Fig. S2 Typical mass fragmentation of A) senecionine and B) senecionine N-oxide as representatives of retronecine PAs; C) platyphilline and D) platyphilline N-oxide as representatives of platynecine PAs; E) rosmarinine and F) rosmarinine N-oxide as representatives of rosmarinecine PAs; G) senkirkine as representative of otonecine PAs; H) 1,2-dihydrosenkirkine as representative of

dihydrootonecine PAs; I) 2-hydroxy-1,2-senkirkine and J) 1,2-dihydro senkirkine, 2-C 5 H 7 O-ester as representatives of hydroxydihydrootonecine PAs.

A) B)

C) D)

(4)

4 Castells E, Mulder PPJ, Pérez-Trujillo M (2014) Phytochemistry 108: 137-146

DOI 10.1016/j.phytochem.2014.06.006

O

N H + H

O CH3

O H CH3

O O C

H3

OH

Rosmarinine

M+H

+

OH O

N+ H

O CH3

O H CH3

O O C

H3

OH

Rosmarinine N-oxide

M+H

+

O

NH+ O O

CH3 O H CH3

O O C

H3

CH3 Senkirkine

M+H

+

O

NH+ O

O CH3

O H CH3

O O C

H3

CH3 Dihydrosenkirkine

M+H

+

M+H

+

O

NH+ O

O CH3

O H CH3

O O C

H3

CH3 OH

2-Hydroxy-1,2-dihydrosenkirkine

M+H

+

O

NH+ O

O CH3

O H CH3

O O C

H3

CH3 O

O CH3

CH3

1,2-Dihydrosenkirkine, 2-C5H7O-ester

F) E)

G) H)

I) J)

(5)

5 Castells E, Mulder PPJ, Pérez-Trujillo M (2014) Phytochemistry 108: 137-146

DOI 10.1016/j.phytochem.2014.06.006

Fig. S3 Putative fragmentation pathways for A) senecionine and B) senecionine N-oxide as

representatives of retronecine PAs; C) platyphilline and D) platyphilline N-oxide as representatives of platynecine PAs; E) rosmarinine and F) rosmarinine N-oxide as representatives of rosmarinecine PAs;

G) senkirkine as representative of otonecine PAs; H) 1,2-dihydrosenkirkine as representative of dihydrootonecine PAs; I) 2-hydroxy-1,2-senkirkine and J) 1,2-dihydro senkirkine, 2-C 5 H 7 O-ester as representatives of hydroxydihydrootonecine PAs.

O

N H + H O

CH3 O H CH3

O O C

H3

O H CH2

N+ N

H +

OH H

C8H12NO m/z: 138.091 Da

CH2

N+ C8H10N m/z: 120.081 Da Senecionine

C18H26NO5 M+H+: 336.181 Da

CH2

N+ C H2 C6H8N m/z: 94.065 Da

+

- H

2

O - HCCH

A)

O

N+ H O

CH3 O H CH3

O O C

H3

OH Senecionine N-oxide

C18H26NO6 M+H+: 352.175 Da

N+ O OH

H CH2

N+

C8H10NO m/z: 136.076 Da

CH2

N+ C8H8N m/z: 118.066 Da

C8H9N m/z: 119.073 Da

+

CH2

N+ OH H

C8H10NO m/z: 136.076 Da

- . OH

CH2

N+ H

O H CH2

N+ N

H + H

OH

C8H12NO m/z: 138.091 Da

CH2

N+

C8H10N m/z: 120.081 Da

CH2

N+ C H2

C6H8N m/z: 94.065 Da

+

- H

2

O - HCCH

- H

2

O

B)

O

N H + H O

CH3 O H CH3

O O C

H3

O H CH2

N H + H

N H + H

OH

CH2

N H + H

C H NO

C H N

CH2

N H +

C H N

+ - C

3

H

4

- H

2

O

C)

(6)

6 Castells E, Mulder PPJ, Pérez-Trujillo M (2014) Phytochemistry 108: 137-146

DOI 10.1016/j.phytochem.2014.06.006

(7)

O

N+ H O

CH3 O H CH3

O O C

H3

OH Platyphylline N-oxide

C18H28NO6 M+H+: 354.191 Da

O H CH2

N+ N+

OH

C8H12NO m/z: 138.091 Da

CH2

N+ C8H10N m/z: 120.081 Da

+

- H

2

O

O

H CH2

N H + H

N H + H

OH

CH2

N H + H

C8H14NO m/z: 140.107 Da

C8H12N m/z: 122.096 Da

+ - H

2

O

CH2

N+ H

OH

+

D)

E)

O

N H + H O

CH3 O H CH3

O O C

H3

OH

Rosmarinine C18H28NO6 M+H+: 354.191 Da

N H + H

OH

OH

C8H14NO2 m/z: 156.102 Da

CH2

N H + H

OH O

H

+

O H CH2

N H + H

N H + H

OH

C8H12NO m/z: 138.091 Da

+

CH2

N H + H

+

OH

CH2

N+ C8H10N m/z: 120.081 Da CH2

N+ C H2

- HCCH

C6H8N m/z: 94.065 Da N

H + O H

H OH

+

- H

2

O

- H

2

O

F)

OH O

N+ H O CH3

O H CH3

O O C

H3

OH

Rosmarinine N-oxide C18H28NO7 M+H+: 370.186 Da

N+ H

OH

OH

CH2

N+ H

OH OH

N H + H

OH

OH

C8H14NO2 m/z: 156.102 Da

CH2

N H + H

OH O

H

+

O H CH2

N H + H

N H + H

OH

C8H12NO m/z: 138.091 Da

+

- H

2

O

CH2

N H + H

+

OH

- H

2

O

CH2

N+ C8H10N m/z: 120.081 Da CH2

N+ C H2

- HCCH

C6H8N m/z: 94.065 Da N

H + O H

H OH

+

OH O H CH2

N+ H

+ + +

- H

2

O

CH2

N+ H

OH

O H CH2

N+

+ +

- H

2

O

CH2

(8)

8 Castells E, Mulder PPJ, Pérez-Trujillo M (2014) Phytochemistry 108: 137-146

DOI 10.1016/j.phytochem.2014.06.006

(9)

9 Castells E, Mulder PPJ, Pérez-Trujillo M (2014) Phytochemistry 108: 137-146

O

NH+ O O CH3

O H CH3

O O C

H3

CH3 Senkirkine C19H28NO6 M+H+: 366.191 Da

NH+ O

OH

CH3

O H CH2

NH+ O

CH3 C9H14NO2 m/z: 168.102 Da

C8H12N m/z: 122.096 Da CH2

NH+ O

CH3 C9H12NO m/z: 150.091 Da

C7H9N m/z: 107.073 Da

+

- CO

CH2

N H +

CH3

CH2

N H +

- .

CH

3

- H

2

O

O

NH+ O O CH3

O H CH3

O O C

H3

CH3 OH

2-hydroxy-1,2-dihydrosenkirkine C19H30NO7 M+H+: 384.202 Da

NH+ O

OH

CH3 O

H CH2

NH+ O

CH3 NH+

O OH

CH3 OH

O H CH2

NH+ O

CH3 OH

C9H16NO3 m/z: 186.112 Da

O H

NH+ O

OH

CH3

+ +

C9H14NO2

m/z: 168.102 Da CH2

NH+ O

CH3

OH

+ +

- H

2

O

CH2

NH+ O

CH3 C9H12NO m/z: 150.091 Da C8H12N

m/z: 122.096 Da CH2

N H +

CH3

- CO - H

2

O

G)

H)

I)

O

NH+ O O CH3

O H CH3

O O C

H3

CH3 Dihydrosenkirkine

C19H30NO6 M+H+: 368.207 Da

O

NH+ O CH3

O O

C H3

CH3

NH+ O

O

CH3

C14H22NO4 m/z: 268.154 Da

N+ OH

C7H11NO m/z: 125.084 Da C9H12NO

m/z: 150.091 Da

C8H12N m/z: 122.096 Da

- CO C9H14NO2 m/z: 168.102 Da

C8H14NO m/z: 140.107 Da N+

OH O

CH3

N+ O

CH3

N+ CH3 - CO

+

- H2O

-

.

CH3 N+

OH

CH3

(10)

10 Castells E, Mulder PPJ, Pérez-Trujillo M (2014) Phytochemistry 108: 137-146

DOI 10.1016/j.phytochem.2014.06.006

O

NH+ O O CH3

O H CH3

O O C

H3

CH3 O

O CH3 CH3

1,2-dihydrosenkirkine, 2-C5H7O ester C24H36NO8 m/z: 466.244 Da

O

NH+ O O CH3

O H CH3

O O C

H3

CH3 C19H28NO6 m/z: 366.191 Da

O+ CH3 CH3

C5H7O m/z: 83.049 Da

CH2

NH+ O

CH3 O

O CH3 CH3

C14H20NO3 m/z: 250.144 Da

C8H12N m/z: 122.096 Da

- CO

CH2

N H +

CH3

- C

5

H

8

O

2

NH+ O

OH

CH3

O H CH2

NH+ O

CH3 C9H14NO2 m/z: 168.102 Da

+

CH2

NH+ O

CH3 C9H12NO m/z: 150.091 Da

- H

2

O

J)

Références

Documents relatifs

In Chile, these snails are represented by two native genera: Heleobia Stimpson, 1865 (Cochliopidae), with about 30 species, and Potamolithus Pilsbry, 1896 (Tateidae species),

Hartmann T, Witte L, Ehmke A, Theuring C, Rowell-Rahier M, Pasteels JM (1997) Selective sequestration and metabolism of plant derived pyrrolizidine alkaloids by chrysomelid

591 cases; 228 deaths; clinical study of 32 cases (9 biopsies) Grains, millet and teff (local gluten-free variety of millet) Ageratum conyzoidesAcetyl-lycopsamine, lycopsamine,

Consumption of contaminated grain or the use of PA-containing plants as herbal medicines, beverages, or food by man, or grazing on contaminated pastures by animals, may cause acute

Le beau côté de ce vidéo, c’est qu’il y avait vraiment de la compassion, car tous ses amis se sont couchés par terre avec elle et se sont mis à se tordre comme elle,

Figure 2: Results from experimental plots showing relationship between aboveground biomass (filled circle and solid line) and number of surviving plants (open circle and dashed line)

The following abbreviations are used: JER-Jersey, GNS: Guernsey, LMS: Limousin, NOR: Normande, KC: Kerry cattle, RAN: Red Angus, GA: Galloway, HL: Scot- tish Highland cattle,

Unless there is a concerted effort to provide training and employment in the appropriate skill areas, the information of the conservation status of Australian native bees will not