• Aucun résultat trouvé

Flat 2-Tori in E 3

N/A
N/A
Protected

Academic year: 2022

Partager "Flat 2-Tori in E 3 "

Copied!
95
0
0

Texte intégral

(1)

E3

V.Borrelli

Flat 2-Tori in E 3

(2)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process

C1Fractals Pictures !

The Hevea Project

Francis Lazarus Boris Thibert Saïd Jabrane

Gipsa-Lab, Grenoble LJK, Grenoble ICJ, Lyon

(3)

E3

V.Borrelli

The initial map

(4)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process

C1Fractals Pictures !

Step 1 : decomposition of ∆

(5)

E3 V.Borrelli

Implementing the Convex Integration Process

C1Fractals Pictures !

The choice of the ` j

(6)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process

C1Fractals Pictures !

The choice of the ` j

` 2 (.) = h 1

5 (e 1 + 2e 2 ), .i

E

2

(7)

E3 V.Borrelli

Implementing the Convex Integration Process

C1Fractals Pictures !

The choice of the ` j

(8)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process

C1Fractals Pictures !

Step 2 : Three convex integrations

• From f 0 and by applying three convex integrations along the directions given by ` 1 , ` 2 and ` 2 , we build iteratively three maps (a salvo) :

f 1,1 , f 1,2 , f 1,3

such that

g − f 1,1 h., .i E

q

2 ` 2 23 ` 2 3 + O( N 1

1,1

) g − f 1,2 h., .i E

q

= ρ 3 ` 2 3 + O( N 1

1,1

) + O( N 1

1,2

) g − f 1,3 h., .i E

q

= 0 + O( N 1

1,1

) + O( N 1

1,2

) + O( N 1

1,3

)

• We choose N 1,1 , N 1,2 and N 1,3 such that :

kh., .i

E

2

− f 1,3 h., .i

E

3

k C

0

≤ 1 2 kh., .i

E

2

− f 0 h., .i

E

3

k C

0

.

(9)

E3

V.Borrelli

Torus of revolution

(10)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process

C1Fractals Pictures !

Convex Integration in the First

Direction

(11)

E3

V.Borrelli

Convex Integration in the

Second Direction

(12)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process

C1Fractals Pictures !

Convex Integration in the Third

Direction

(13)

E3 V.Borrelli

Implementing the Convex Integration Process

C1Fractals Pictures !

Three directions

(14)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process

C1Fractals Pictures !

Three directions

The flow in direction 2

(15)

E3 V.Borrelli

Implementing the Convex Integration Process

C1Fractals Pictures !

Three directions

(16)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process

C1Fractals Pictures !

A zoom

The vertical scale is exaggerated for emphasis.

(17)

Flat 2-Tori in E3 V.Borrelli Implementing

Step 3 : Iterating the process

• After the salvo n˚ k, the isometric default is divided by 2 k

kh., .i

E

2

− f k,3 h., .i

E

3

k C

0

≤ 1 2 k kh., .i

E

2

− f 0 h., .i

E

3

k C

0

.

• The limit

f := lim

k−→+∞ f k,3

is a C 1 isometric immersion of the flat torus.

(18)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process

C1Fractals Pictures !

Step 3 : Iterating the process

• We continue the process to create infinite sequence of maps

f 0 , f 1,1 , f 1,2 , f 1,3 , ... f k,1 , f k,2 , f k,3 , ...

• After the salvo n˚ k, the isometric default is divided by 2 k

kh., .i

E

2

− f k,3 h., .i

E

3

k C

0

≤ 1 2 k kh., .i

E

2

− f 0 h., .i

E

3

k C

0

.

• The limit

f := lim

k−→+∞ f k,3

is a C 1 isometric immersion of the flat torus.

(19)

E3 V.Borrelli

Implementing the Convex Integration Process

C1Fractals Pictures !

Step 3 : Iterating the process

• We continue the process to create infinite sequence of maps

f 0 , f 1,1 , f 1,2 , f 1,3 , ... f k,1 , f k,2 , f k,3 , ...

• After the salvo n˚ k, the isometric default is divided by 2 k

kh., .i

E

2

− f k,3 h., .i

E

3

k C

0

≤ 1 2 k kh., .i

E

2

− f 0 h., .i

E

3

k C

0

.

(20)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process

C1Fractals Pictures !

Another CI in the first direction

(21)

E3

V.Borrelli

And so on... up to the Flat Torus

(22)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Nash-Kuiper in a 1D setting !

(23)

E3

V.Borrelli

Nash-Kuiper in a 1D setting !

(24)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Nash-Kuiper in a 1D setting !

(25)

E3

V.Borrelli

Nash-Kuiper in a 1D setting !

(26)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Spectrum of the Gauss map

(27)

E3

V.Borrelli

Moscow University

(28)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Riesz Products

Frigyes Riesz

• These spectra arise from the study of Riesz products :

u 7−→

Y

j=0

(1 + α j cos(2πb j u)).

In that product, b ≥ 3 is an integer and (α j ) j∈ N is a sequence of real numbers such that, for every j ∈ N ,

j | ≤ 1.

• Here, products of corrugation matrices take the place of

Riesz products.

(29)

E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Riesz Products

Frigyes Riesz

• These spectra arise from the study of Riesz products :

u 7−→

Y

j=0

(1 + α j cos(2πb j u)).

In that product, b ≥ 3 is an integer and (α j ) j∈ N is a

sequence of real numbers such that, for every j ∈ N ,

(30)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Corrugation matrices

• Let C k : S 1 −→ O(2) be the matrix valued map such that

∀u ∈ S 1 ,

t k (u) n k (u)

= C k (u) ·

t k −1 (u) n k−1 (u)

We call C k a corrugation matrix.

(31)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Structure of the Gauss Map

• Corrugation matrices encode the data of the successive convex integrations :

cos θ (u) sin θ (u)

• The Gauss map n ∞ of the limit embedding is given by a Riesz-like product :

t n ∞

=

Y

k =1

C k

!

· t 0

n 0

(32)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Structure of the Gauss Map

• Corrugation matrices encode the data of the successive convex integrations :

C k (u) :=

cos θ k (u) sin θ k (u)

− sin θ k (u) cos θ k (u)

with

θ k (u) = arg h u ({N k u}) = α k cos(2πN k u).

• The Gauss map n ∞ of the limit embedding is given by a Riesz-like product :

t n ∞

=

Y

k=1

C k

!

· t 0

n 0

(33)

E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

From the circle to the torus

We denote by C k,j the SO(3) matrix such that :

(34)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

From the circle to the torus

Let f ∞ : T 2 −→ E 3 be the limit of the maps : f 0 , f 1,1 , f 1,2 , f 1,3 , f 2,1 , f 2,2 , f 2,3 , ...

We have

 v v ∞

n ∞

 =

Y

k=1

3

Y

j=1

C k,j

 ·

 v 0

v 0 n 0

Beware ! – Unlike the 1-dimensional case, the analytic

expressions of the C k,j ’s are simply ugly... but fortunately,

their asymptotic expressions are nice.

(35)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

From the circle to the torus

Let f ∞ : T 2 −→ E 3 be the limit of the maps : f 0 , f 1,1 , f 1,2 , f 1,3 , f 2,1 , f 2,2 , f 2,3 , ...

We have

 v v

=

Y

 3

Y C

·

 v 0 v

but fortunately,

their asymptotic expressions are nice.

(36)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

From the circle to the torus

Let f ∞ : T 2 −→ E 3 be the limit of the maps : f 0 , f 1,1 , f 1,2 , f 1,3 , f 2,1 , f 2,2 , f 2,3 , ...

We have

 v v ∞

n ∞

 =

Y

k=1

3

Y

j=1

C k,j

 ·

 v 0

v 0 n 0

Beware ! – Unlike the 1-dimensional case, the analytic

expressions of the C k,j ’s are simply ugly... but fortunately,

their asymptotic expressions are nice.

(37)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals

Loss of derivatives

• In the one dimensional setting we have :

t

• In particular

∂f

∂t (t) = r (t)e iα(t) cos 2πNt ,

therefore, if f 0 is C k then f is C k also.

(38)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Loss of derivatives

• In the one dimensional setting we have :

f (t) := f 0 (0) + Z t

0

r (u)e iα(u) cos 2πNu du.

where e := cos θ t + sin θ n and t := f

0 0

kf

00

k .

• In particular

∂f

∂t (t) = r (t)e iα(t) cos 2πNt ,

therefore, if f 0 is C k then f is C k also.

(39)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Loss of derivatives

• In the two dimensional setting we have :

f (t, s) := f 0 (0, s) + Z t

0

r (u, s)e iα(u,s) cos 2πNu du + gluing term

• The integral over the variable t can not recover the loss of

derivative due to the presence of the partial derivative ∂ s f in

the definition of n. Therefore if f 0 is C k then, generically, f is

C k −1 only.

(40)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Loss of derivatives

• In the two dimensional setting we have :

f (t, s) := f 0 (0, s) + Z t

0

r (u, s)e iα(u,s) cos 2πNu du + gluing term

where e := cos θ t + sin θ n with

t := ∂ t f 0

k∂ t f 0 k and n := ∂ t f 0 ∧ ∂ s f 0 k∂ t f 0 ∧ ∂ s f 0 k

• The integral over the variable t can not recover the loss of

derivative due to the presence of the partial derivative ∂ s f in

the definition of n. Therefore if f 0 is C k then, generically, f is

C k−1 only.

(41)

E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Corrugation Theorem

Corrugation Theorem (∼, Jabrane, Lazarus, Thibert).–

For every p ∈ T 2 , we have

C k,j+1 (p) = L k,j+1 (p) · R k,j (p) where

L k,j+1 :=

cos θ k,j+1 0 sin θ k,j+1

0 1 0

− sin θ k,j+1 0 cos θ k,j+1

+ O 1

N k,j+1

with θ k,j+1 (p) := α k (p) cos(2πN k X j+1 ) and

 − sin β j − cos β j 0 

(42)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

It is time for pictures !

The new CSCS (Swiss National Supercomputing Centre) building

in Lugano-Cornaredo.

(43)

E3

V.Borrelli

A wide-angle view

(44)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

As an arch

(45)

E3

V.Borrelli

Tangential view

(46)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

The bobsleigh track

(47)

E3

V.Borrelli

The tokamak

(48)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

"Cinq colonnes à la une"

(49)

E3

V.Borrelli

Guts and tripe

(50)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

In the belly of the beast

(51)

E3

V.Borrelli

The eye

(52)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Flexible electrical conduits

(53)

E3

V.Borrelli

The truck suspension

(54)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Velodrome

(55)

E3

V.Borrelli

The tire

(56)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

The landing

(57)

E3

V.Borrelli

The rope

(58)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

UFO

YouTube : Flat Torus

(59)

E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

(60)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

First integration : 8 oscillations

(61)

E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

(62)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

Zoom in on the second integration

(63)

E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

(64)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

Third integration : 4096 oscillations

(65)

E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

(66)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

Zoom in on the third integration

(67)

E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

(68)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

The fourth integration : 524 288 oscillations

(69)

E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

(70)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

The fourth integration : 524 288 oscillations

(71)

E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

(72)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

The fifth integration : 2 097 152 oscillations

(73)

E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

(74)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

The sixth integration : 16 777 216 oscillations

(75)

E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

(76)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

Zoom in on the sixth integration

(77)

E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Zoom !

(78)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

"Dites 33 !"

(79)

E3

V.Borrelli

"Dites 33 !"

(80)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

"Dites 33 !"

(81)

E3

V.Borrelli

"Dites 33 !"

(82)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

"Dites 33 !"

(83)

E3

V.Borrelli

"Dites 33 !"

(84)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

"Dites 33 !"

(85)

E3

V.Borrelli

"Dites 33 !"

(86)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

"Dites 33 !"

(87)

E3

V.Borrelli

"Dites 33 !"

(88)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Artefacts

(89)

E3

V.Borrelli

Artefacts

(90)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Artefacts

(91)

E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Corrugations in real life ?

(92)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Corrugations in real life ?

A whelk

(93)

E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Corrugations in real life ?

(94)

Flat 2-Tori in E3 V.Borrelli

Implementing the Convex Integration Process C1Fractals Pictures !

Corrugations in real life ?

(95)

E3

V.Borrelli

The Hevea Team

Références

Documents relatifs

section 5, we show in Theorem 2.5 that there is a subset of F^(M) containing flats with an additional structure of singular subspaces.. Thus c^_^ is a singular hyperplane in a and

Pudl´ ak [8], every distributive join-semilattice is the direct union of all its finite distributive subsemi- lattices; therefore, it suffices to prove that every finite

À partir des exemples de Lyon et Grenoble, il s’agit de comprendre comment l’élevage peut être considéré comme un médium renouvelé des relations entre

[r]

Dans sa thèse, il suggère une méthode pour approximer sa surface avec des polynômes mais la tâche va s’avérer très ardue et ce n’est que bien plus tard, en 1978, que Bernard

In that section we study the geometry of the image of limit map image in a one-dimensional setting. Precisely, we apply the convex integration process to a short curve of E 2 and we

Such domains can be extended by periodicity to nontrivial and noncompact domains in Euclidean spaces whose first eigenfunction of the Laplacian with 0 Dirichlet boundary condition

— Faire apparaˆıtre les d´ es´ equilibres, les dynamiques qui aboutissent ` a des sc´ enarios dans lesquels certaines valeurs ne peuvent plus ˆ etre soutenues, ou les “coˆ