• Aucun résultat trouvé

Z.~xE(n) = 2-~ x~+o(x ~) Z.~x ~o (n) = 3 x~ + E(x) A note on Euler's e-function

N/A
N/A
Protected

Academic year: 2022

Partager "Z.~xE(n) = 2-~ x~+o(x ~) Z.~x ~o (n) = 3 x~ + E(x) A note on Euler's e-function"

Copied!
3
0
0

Texte intégral

(1)

A note on Euler's e-function

Paolo Codec~

Let ~o (n) denote the Euler ~o-function; we define the error term E(x) by the relation

Z . ~ x ~o (n) = 3 x~ + E(x)

By a simple elementary argument (cf. [2] p. 268) it may be shown that E(x)<<x lg x, while A. Walfisz (cf. [6] p. 114) used Vinogradov's method to show that

E(x) << x(lg x)2/3(lg lg x) 4/3

In the opposite direction, S. S. Pillai and S. D. Chowla (cf. [3]) proved that E(x) = ~ ( x l g l g l g x )

and P. Erd6s and H. N. Shapiro (cf. [1]) proved that E(x) = f2 +_ (x lg lg lg lg x).

Concerning the average of E(n), Pillai and Chowla showed that

(1) Z . ~ x E ( n ) = 2-~ x~+o(x ~)

and conjectured that (1) may be "as deep as the prime number theorem" (cf. [3]

p. 95). In this Arkiv, D. Suryanarayana and S. Sitaramachandra Rao (cf. [4]) showed that this latter error term can be replaced by

(2) O (x 2 exp ( - c (lg x) 3/5 (lg lg x ) - 1/5))

and that, if the Riemann hypothesis is assumed, then it may be replaced by

(3) O(x9/5+9

(2)

262 Paolo Codec'a

The object of this note is to give a proof of (1) without using the fact that {(1

+it)r

and to show by standard techniques of analytic number theory that, if

E~(x)

denotes the error term in (1), then the infimum of those e's for which

E~(x)<<x

T M is equal to the supremum of the real parts of the zeros of ~(s). Thus the Riemann hypothesis is equivalent to

El(X)<<x 3/2+~.

Moreover, it is shown that estimates of type (2) can easily be obtained by classical methods.

Let

El(x)

denote the error term in (t). It is easily seen that

(4)

El(x) = l___2_jc+,~

( ( s - l )

x~+~ ds+O(xlgx)

2zci c - ~ ((s) s ( s + l )

for 1 < c < 2 . Now the functional equation for ((s) relates ( ( s - l ) to ( ( 2 - s ) ; whence we deduce that

((s-1)/((s)

is regular in the half-plane R e s ~ l . The contour integral above can therefore be moved onto the line Re s = 1. (The integrals over the horizontal sides of the rectangle

c+__iT, l:kiT

tend to zero for T-*oo, cf. [5], p. 185.) The resulting integral is absolutely convergent (cf. [5], p. 81) and thus by the Riemann--Lebesgue lemma we obtain

E~(x)=o(x2).

This gives a proof of (1) without using the fact that ((1

+it)CO,

i.e. without using the prime number theorem.

I f we use the classical zero-free region for ((s) and move the contour further to the left in the usual way, we find that

(5) El(x)

<< x ~ exp ( - c(lg x) 1/2)

(Similarly, using the best known result on the zero-free region for ((s), cf. [6], p. 226, one can establish (2).)

To sharpen (3), we note that if 0 denotes the supremum of the real parts of the zeros of~(s), then we can take the contour to be the line Re

s=O+~

and deduce that

El(x)<<x ~+~

On the other hand it is easy to see that

(6) ~(s) s ( s + l ) z~ 2 (s -- 2) (s + l) "

In view of the relation

El(X)=f~E(u)du+O(xlgx)

the estimate

El(x)<<x 1+~

then implies that ( ( s ) r for Re s > ~ . This establishes the desired equivalence.

It should also be noted that (6) implies the estimate

El(x)=f2+(x 8/2)

also by standard means.

The author wishes to thank the referee for his valuable suggestions which made it possible to shorten considerably this note.

(3)

A note on Euler's (0-function 263

References

i. ERD•S, P. and SHAPIRO, H. N., On the changes of sign of a certain error function, Canad. Jo Math., 3 (1951), 375--385.

2. HARDY, G. H. and WRIGHT, E. i . , An introduction to the theory o f numbers, Third Edition, Clarendon Press, 1954.

3. PILLAI, S. S. and CHOWLA, S. D., On the error terms in some asymptotic formulae in the theory of numbers, J. London Math. Soc., 5 (1930), 95--101.

4. SITARAMACHANDRA RAO, S. and SURYANARAYANA, n . , On the average order of the func- t i o n E ( x ) = Z n < x ( a ( n ) - ~ x ~, Arkivf6r Matematik, 10 (1972), 99--106.

5. TITCHMARSH, E. C., The theory o f the Riemann zeta function, Clarendon Press, Oxford, 1951.

6. WALrISZ, A., Weylsche Exponentialsummen in der neueren Zahlentheorie, Math. Forschungsber.

15, V. E. B. Deutscher Verlag der Wiss., Berlin, 1963.

Received December 12, 1980 I S T I T U T O M A T E M A T I C O D E L L ' U N I V E R S I T A Via Machiavelli, 35

44100 Ferrara, Italy

Références

Documents relatifs

[r]

[r]

Nun kSnnen gerade solche Spezialf~lle einen Weg zur Darstellung yon y zeigen: Da fiir inhomogene Differentialgleichungen mit ra~ionalen Koeffizienten die

La fonction f est d´ efinie et d´ erivable

Par imparité, elle est dérivable strictement croissante dans R avec les limites −∞ et +∞.. C'est donc

La multiplication par un polynôme xé est linéaire, la dérivation est linéaire, l'application f est donc aussi linéaire.. On suppose maintenant que B est un polynôme propre dont

[r]

•  Varient parfois de manière simple/lisse ⇒ peuvent être modélisés par des polynômes – rarement le cas en réalité.. •  Estimation à chaque époque