• Aucun résultat trouvé

On the recovery of a manifold with boundary in R n

N/A
N/A
Protected

Academic year: 2023

Partager "On the recovery of a manifold with boundary in R n "

Copied!
8
0
0

Texte intégral

(1)

Mathematical Problems in Mechanics/Differential Geometry

On the recovery of a manifold with boundary in R n

Philippe G. Ciarlet

a

, Cristinel Mardare

b

aDepartment of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong bLaboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, 4, place Jussieu, 75005 Paris, France

Received 1 December 2003; accepted 15 December 2003 Presented by Robert Dautray

Abstract

If the Riemann curvature tensor associated with a smooth fieldCof positive-definite symmetric matrices of ordernvanishes in a simply-connected open subset⊂Rn, thenCis the metric tensor field of a manifold isometrically immersed inRn.

In this Note, we first show how, under a mild smoothness assumption on the boundary ofΩ, this classical result can be extended “up to the boundary”. Whenis bounded, we also establish the continuity of the manifold with boundary obtained in this fashion as a function of its metric tensor field, the topologies being those of the Banach spacesC(Ω). To cite this article:

P.G. Ciarlet, C. Mardare, C. R. Acad. Sci. Paris, Ser. I 338 (2004).

2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Résumé

Sur la reconstruction d’une variété à bord dansRn. Si le tenseur de courbure de Riemann associé à un champ régulierC de matrices symétriques définies positives d’ordrens’annule sur un ouvert⊂Rnsimplement connexe, alorsCest le champ de tenseurs métriques d’une variété plongée isométriquement dansRn.

Dans cette Note, on montre d’abord, moyennant une hypothèse peu restrictive sur la régularité de la frontière deΩ, comment ce résultat classique peut être étendu “jusqu’à la frontière”. Lorsqueest borné, on établit aussi la continuité de la variété à bord ainsi obtenue en fonction de son champ de tenseurs métriques, les topologies étant celles des espaces de BanachC(Ω).

Pour citer cet article : P.G. Ciarlet, C. Mardare, C. R. Acad. Sci. Paris, Ser. I 338 (2004).

2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

Version française abrégée

Les notations non définies ici le sont dans la version anglaise.

Soitun ouvert connexe et simplement connexe deRn, soitx0un point de, et soitSn, resp.Sn>, l’ensemble de toutes les matrices symétriques, resp. symétriques définies positives, d’ordren. SoitC=(gij)C2(Ω;Sn>)une métrique riemannienne dont le tenseur de courbure de Riemann associé s’annule dans. Autrement dit,

R·pij k:=jΓikpkΓijp+ΓikΓj pΓijΓkp=0 dansΩ,

E-mail addresses: mapgc@cityu.edu.hk (P.G. Ciarlet), mardare@ann.jussieu.fr (C. Mardare).

1631-073X/$ – see front matter 2004 Académie des sciences. Published by Elsevier SAS. All rights reserved.

doi:10.1016/j.crma.2003.12.018

(2)

Γijk:=1

2gk(∂igj +jgigij) et gk

:=(gij)1.

Alors un théorème classique de géométrie différentielle (rappelé dans le Théorème 2.1) affirme qu’il existe une immersionΘC3(Ω;Rn)et une seule telle que

∇Θ(x)T∇Θ(x)=C(x) pour toutxΩ, Θ(x0)=0 et Θ(x0)=C(x0)1/2.

Notre premier objectif est d’étendre ce résultat « jusqu’à la frontière » de l’ouvertΩ, lorsque celui-ci vérifie ce que nous appelons la « propriété géodésique » (de fait, une hypothèse peu restrictive sur la régularité de la frontière∂Ω de; voir Définition 1.2). Dans ce cas, on montre en effet (Théorème 2.2) que, si les fonctions

αgijC0(Ω), |α|2, admettent des extensions continues sur , les extensions des matrices (gij) restant définies positives sur l’ensemble , alors les champs αΘC0(Ω;Rn), |α|3, admettent eux aussi des extensions continues sur.

SoitC2(Ω;Sn>), resp.C3(Ω;Rn), l’ensemble formé des champs de matrices symétriques définies positives, resp.

l’espace des champs de vecteurs, qui, avec toutes leurs dérivées partielles d’ordre2, resp. d’ordre3, admettent des extensions continues àΩ, les extensions des matrices restant définies positives sur . Le Théorème 2.2 établit donc l’existence d’une application

F0:C=(gij)C02;Sn>

ΘC3;Rn ,

C20;Sn>

:=

C=(gij)C2;Sn>

;Rp·ij k=0 dans .

Dans un autre travail (voir [6], et [7] pour les démonstrations détaillées), nous établissons aussi que, moyennant une hypothèse de régularité plus forte sur∂Ω, le résultat de prolongement ci-dessus combiné avec un théorème fondamental de Whitney conduit au résultat suivant de prolongement : Il existe un ouvert connexe deRn contenantet un champCC2(Ω;Sn>)tels que CprolongeCet le tenseur de courbure de Riemann associé àCreste nul surΩ.

Notre second objectif est de montrer que, lorsque l’ouvertΩ est borné et vérifie la propriété géodésique, alors l’applicationF0est localement Lipschitz-continue, les espacesC2(Ω;Sn)etC3(Ω;Rn)étant munis de leurs normes usuelles (Théorème 3.1). On étend ainsi le résultat de continuité « dans le cas d’un ouvert » établi par Ciarlet et Laurent [5] pour les topologies de Fréchet des espacesC2(Ω;Sn)etC3(Ω;Rn).

Le présent travail trouve en partie son origine dans la théorie de l’élasticité non-linéaire tri-dimensionnelle.

Comme l’avait déjà observé Antman [1], une autre approche de cette théorie consiste en effet à considérer le champCde matrices, généralement appelées « tenseurs de Cauchy–Green » dans cette théorie, comme « l’inconnue principale », au lieu du champΘde vecteurs, appelés « déformations » dans cette théorie. Effectivement, la densité d’énergie d’un matériau hyperélastique est une fonction deC(la forme de cette dépendance a d’ailleurs joué un rôle décisif dans les travaux de Ball [2], qui ont complètement renouvelé la théorie de l’elasticité). Cependant, la partie de l’énergie totale qui prend en compte les forces appliquées, de même que les conditions aux limites, restent des fonctions deΘ. D’où le besoin, dans cette approche, d’étudier la dépendance d’un champ de déformations en fonction de son champ de tenseurs de Cauchy–Green, et cela, « jusqu’à la frontière ». Naturellement, la réalisation d’un tel « programme » devra aussi inclure la considération de normes d’espaces de Sobolev, dans l’esprit des travaux de Kohn [12], ou de ceux, plus récents, de Friesecke, James et Müller [9] ou Reshetnyak [13].

Le même genre de questions, cette fois liées à la théorie des coques non linéairement élastiques, et donc relatives à la théorie des surfaces dansR3, sont abordées dans Ciarlet [3] et Ciarlet et Mardare [8].

On trouvera les démonstrations complètes des résultats de cette Note dans [7].

(3)

1. Preliminaries

Complete proofs of Theorems 2.2 and 3.1 are found in [7].

An integern2 is chosen once and for all and Latin indices and exponents vary in the set {1,2, . . . , n}. The summation convention with respect to repeated indices and exponents is used. The notationsMn, Sn, and Sn>, respectively designate the sets of all square matrices, of all symmetric matrices, and of all positive-definite symmetric matrices, of ordern. The spectral norm of a matrixA∈Mnis denoted|A|. In any metric space, the open ball with centerx and radiusδ >0 is denotedB(x;δ).

Let be an open subset ofRn. IfΘC1(Ω;Rn)andx, the notation∇Θ(x)stands for the matrix inMn whosei-th column is the vector∂iΘ(x)∈Rn. We also define the set

C2 ;Sn>

:=

CC2 ;Sn

; C(x)∈Sn>for allx .

Central to this Note is the following notion of spaces of functions, vector fields, or matrix fields, “of classCup to the boundary ofΩ”.

Definition 1.1. Let be an open subset ofRn. For any integer1, we define the space C(Ω) as the space of all functionsfC(Ω)that, together with all their partial derivatives αf, 1|α|, can be extended by continuity to. Analogous definitions hold for the spacesC(Ω;Rn),C(Ω;Mn), and C(Ω;Sn). All the continuous extensions appearing in such spaces will be identified by a bar, as exemplified in the definition of the following set:

C2;Sn>

:=

CC2;Sn

; C(x)∈Sn> for allx .

Let be a connected open subset ofRn. Given two pointsx, yΩ, a path joiningxtoyinΩis any mapping γC1([0,1];Rn)that satisfiesγ(t) for allt∈ [0,1]andγ(0)=x andγ(1)=y. Given a pathγ joiningx toy inΩ, its length is defined byL(γ):=1

0(t)|dt. Let be a connected open subset ofRn. The geodesic distance between two pointsx, yis defined by

d(x, y)=inf

L(γ); γ is a path joiningx toyin .

The results of this Note are established under a specific, but mild, regularity assumption on the boundary of an open subset ofRn, according to the following definition:

Definition 1.2. An open subset ofRn satisfies the geodesic property if it is connected and, given any point x0∂Ω and anyε >0, there existsδ=δ(x0, ε) >0 such that

d(x, y) < ε for allx, yB(x0;δ).

Note that any connected open subset of Rn with a Lipschitz-continuous boundary possesses the geodesic property.

2. Recovery of a manifold with boundary from a prescribed metric tensor field

Let a Riemannian metric(gij)C2(Ω;Sn>)be given over an open subset ofRn. The Christoffel symbols of the second kind associated with this metric are then defined by

Γijk:=1

2gk(∂igj +jgigij), where gk

:=(gij)1, and the mixed components of its Riemann curvature tensor are defined by

R·pij k:=jΓikpkΓijp+ΓikΓj pΓijΓkp.

(4)

If this tensor vanishes in and is simply-connected, a classical result in differential geometry asserts that (gij)is the metric tensor field of a manifoldΘ(Ω)that is isometrically immersed inRn. More precisely, we have (see, e.g., Ciarlet and Larsonneur [4, Theorem 2] for an elementary and self-contained proof):

Theorem 2.1. Let be a connected and simply-connected open subset ofRnand let a pointx0Ωbe given. Let a matrix fieldC=(gij)C2(Ω;Sn>)be given that satisfiesRp·ij k=0 inΩ. Then there exists one, and only one, immersionΘC3(Ω;Rn)that satisfies

∇Θ(x)T∇Θ(x)=C(x) for allxΩ, Θ(x0)=0 and Θ(x0)=C(x0)1/2.

Remark 1. The additional conditions Θ(x0)=0 and ∇Θ(x0) =C(x0)1/2 imply the uniqueness of the immersionΘ, which otherwise would be only determined up to isometries inRn. In fact, any additional conditions of the formΘ(x0)=a0and∇Θ(x0)=F0, wherea0is any vector inRnandF0is any matrix inMnthat satisfies FT0F0=C(x0), likewise imply the uniqueness of the mappingΘ. The particular choiceF0=C(x0)1/2made here insures that the associated mappingC(x0)∈Sn>F0∈Mn is smooth, a property that is used in the proof of Theorem 3.1. Another choice for the matrixF0that fulfills the same criterion is the upper triangular matrix that arises in the Cholesky factorization of the matrixC(x0).

The first objective of this Note is to show in the next theorem how a manifold with boundary, i.e., a subset ofRn of the formΘ(Ω), can be likewise recovered from a metric tensor field that, together with some partial derivatives, can be continuously extended to the closure. In other words, we wish to extend the above existence and uniqueness result “up to the boundary of”.

Theorem 2.2. Let be a simply-connected open subset of Rn that satisfies the geodesic property (see Definition 1.2) and let a pointx0 be given. Let there be given a matrix fieldC=(gij)C2(Ω;Sn>)(in the sense of Definition 1.1) that satisfiesR·pij k=0 inΩ. Then there exists one, and only one, mappingΘC3(Ω;Rn) (again in the sense of Definition 1.1) that satisfies (the notationsΘandCrepresent the continuous extensions of the fieldsΘandC):

∇Θ(x)T∇Θ(x)= C(x) for allxΩ, Θ(x0)=0 and Θ(x0)=C(x0)1/2.

Sketch of proof. (i) Given any mappingΘC3(Ω;Rn)that satisfies∇Θ(x)T∇Θ(x)=C(x)for allx(such mappings exist by Theorem 2.1), let

F(x):=∇Θ(x)∈Mn and Γi(x):=

Γijk(x)

∈Mn for allxΩ,

withkas the row index andj as the column index. Then the matrix fieldsFC2(Ω;Mn)andΓiC1(Ω;Mn) defined in this fashion satisfy

iF(x)=F(x)Γi(x) for allxΩ.

It is first established that the assumption(gij)C2(Ω;Sn>)implies that the matrix fieldsΓi belong to the space C1(Ω;Mn)and that, given any compact subsetKofRn, then supxK|F(x)|<∞.

Fix a pointx0∂Ωand letK0=B(x0;1). Then the above properties together imply that c0:=

sup

xK0

F(x) sup

xK0

i

Γi(x)21/2

<+∞.

(5)

Let ε >0 be given. Because satisfies the geodesic property, there exists δ(ε)∈ ]0,12] such that, given any two pointsx, yB(x0;δ(ε))Ω, there exists a pathγ =i)joiningx toy in whose length satisfies L(γ)ε/max{c0,2}.

SinceiF(x)=F(x)Γi(x)for allx, the matrix fieldY:=FγC1([0,1];Mn)associated with any such pathγ satisfiesY(t)=γi(t)Y(t)Γi(γ(t))for all 0t1. Expressing thatY(1)=Y(0)+1

0 Y(t)dtyields, for any two pointsx, yB(x0;δ(ε)),

F(y)F(x)=Y(1)Y(0) sup

0t1

F

γ(t) 1

0

γi(t)Γi

γ(t)dt

sup

xK0

F(x) sup

xK0

i

Γi(x)21/2

L(γ)ε.

This inequality then implies that the fieldFC2(Ω;Mn)can be extended to a field that is continuous onΩ. Since iF =F Γi in andΓiC1(Ω;Mn), each field∂iFC1(Ω;Mn)can be extended to a field that is continuous on; hence FC1(Ω;Mn). Differentiating the relations iF =F Γi in further shows that FC2(Ω;Mn).

Givenx0∂Ω, we proceed again as above, the numberδ(ε)∈ ]0,12] being now chosen in such a way that L(γ)ε/max{c1,2}, wherec1:=1n(supxK

0|F(x)|)1<∞.

For eachx, letgi(x)denote thei-th column vector of the matrixF(x). The relations∂iΘ(x)=gi(x)for allx then imply that the vector fieldy:=ΘγC1([0,1];Rn)associated with each such pathγ joiningx toy in satisfiesy(t)=γi(t)gi(γ(t))for all 0t1, so that, for any two pointsx, yB(x0;δ(ε))Ω,

Θ(y)Θ(x)=y(1)y(0) 1

0

γi(t)gi

γ(t)dt

L(γ) sup

xK0

i

gi(x)21/2

n L(γ) sup

xK0

F(x)ε.

This inequality thus shows that the field ΘC3(Ω;Rn) can be extended to a field that is continuous on Ω. Differentiating the relations iΘ =gi in and noting that giC2(Ω;Rn), we finally conclude that ΘC3(Ω;Rn). The uniqueness ofΘis then easily established. ✷

We also establish elsewhere (see [6], and [7] for complete proofs) that, under a stronger regularity assumption on

∂Ω, the above extension result combined with a fundamental theorem of Whitney leads to the following extension result: There exist a connected open subsetofRn containingand a fieldCC2(Ω;Sn>)such thatC is an extension ofCand the Riemann curvature tensor associated withCstill vanishes in.

3. Continuity of a manifold with boundary as a function of its metric tensor

Let be a simply-connected open subset ofRnthat satisfies the geodesic property. Define the set C20;Sn>

:=

C=(gij)C2;Sn>

; R·pij k=0 in ,

and let again a pointx0Ωbe chosen once and for all. Then by Theorem 2.2, there exists a well-defined mapping F0:C02;Sn>

C3;Rn

(6)

that associates with any matrix field CC02(Ω;Sn>) the unique mapping ΘC3(Ω;Rn) that satisfies

∇Θ(x)T∇Θ(x)= C(x)for allx,Θ(x0)=0, and∇Θ(x0)=C(x0)1/2.

If in addition the set is bounded, the spacesC2(Ω;Sn)andC3(Ω;Rn)become Banach spaces and thus the setC02(Ω;Sn>)becomes a metric space when it is equipped with the induced topology. So natural question arises: Is the mappingF0continuous when the setC20(Ω;Sn>)and the spaceC3(Ω;Rn)are equipped with these topologies?

The second objective of this Note is to provide the following affirmative answer to this question.

Theorem 3.1. LetΩbe a simply-connected and bounded open subset ofRnthat satisfies the geodesic property, let the spacesC(Ω;Mn)andC(Ω;Rn), 1, be equipped with their usual norms, defined by

F,= sup

x

|α|

αF(x) for allFC;Mn ,

Θ,= sup

x

|α|

αΘ(x) for allΘC;Rn ,

and let the setC02(Ω;Sn>)be equipped with the metric induced by the norm·2,. Then the mapping F0:C02

;Sn>

C3;Rn

is continuous. It is even locally Lipschitz-continuous over the setC20(Ω;Sn>), in the sense that, given any matrix fieldCC02(Ω;Sn>), there exist constantsc(C) >0 andδ(C) >0 such that

ΘΘ

3,cCCC2,

for allC,CC02

;Sn>

BC;δC ,

whereΘ:= F0(C),Θ:= F0(C), andB(C;δ(C))denotes the open ball of centerCand radiusδ(C)in the space C2(Ω;Sn).

Sketch of proof. (i) Preliminaries. The imageΘ= F0(C)C3(Ω;Rn)of an arbitrary element C=(gij)C20(Ω;Sn>)is constructed in the following manner: First, the matrix fieldsΓi=ijk)C1(Ω;Mn)are defined in by letting

Γijk=1

2gk(∂igj +jgigij), where gk

=(gij)1,

and the matrixC(x0)1/2∈Sn>is defined as the unique square root of the matrixC(x0).

Second, the matrix fieldFC2(Ω;Mn)is defined as the unique one that satisfies

iF(x)=F(x)Γi(x), xΩ, and F(x0)=C(x0)1/2.

Third, the vector fieldΘC3(Ω;Rn)is defined as the unique one that satisfies

∇Θ(x)=F(x), xΩ, and Θ(x0)=0.

Accordingly, the strategy consists in establishing the local Lipschitz-continuity of each one of the above factor mapping separately, according to the following steps (the proofs of which are too technical to be sketched here):

(ii) Given any matrix fieldCC02(Ω;Sn>), there exist constantsc1(C) >0 andδ(C) >0 such that C(x0)1/2C(x0)1/2+max

i

ΓiΓi1,

c1CCC

2,

(7)

for all matrix fieldsC,CC20(Ω;Sn>)B(C;δ(C)), where the matrix fieldsΓi=ijk)C1(Ω;Mn)are defined in by

Γijk:=1

2gk(∂igj +jgigij), where(gij):=Cand gk

:=(gij)1.

(iii) The matrix fieldsΓi,ΓiC1(Ω;Mn)being defined in terms of the matrix fieldsC,CC02(Ω;Sn>)as in (i) and (ii), let the matrix fieldsF,FC2(Ω;Mn)satisfy

iF(x)=F(x)Γi(x) for allx and F(x0)=C(x0)1/2,

iF(x)=F(x)Γi(x) for allx and F(x0)=C(x 0)1/2.

Then, given any matrix fieldCC20(Ω;Sn>), there exists a constantc2(C) >0 such that FF

2,c2CC(x0)1/2C(x0)1/2+max

i

ΓiΓi

1,

for all matrix fieldsC,CC02(Ω;Sn>)B(C;δ(C)), whereδ(C) >0 is the constant found in (ii).

(iv) Let there be given matrix fieldsF,FC2(Ω;Mn)and vector fieldsΘ,ΘC3(Ω;Rn)that satisfy

∇Θ(x)=F(x) for allx and Θ(x0)=0,

Θ(x) =F(x) for allx and Θ(x 0)=0.

Then there exists a constantc3>0 independent of these fields such that ΘΘ

3,c3FF2,

.

The local Lipschitz-continuity of the mappingF0established in Theorem 3.1 is to be compared with the earlier estimates of John [10,11] and Kohn [12] and the recent “theorem on geometric rigidity” of Friesecke, James and Müller [9]. Such estimates are more powerful than those found here, in the sense that they are established for Sobolev norms. However, they only imply continuity at rigid body deformations, i.e., corresponding toC=I, whereas our estimates hold “at any Cauchy–Green tensorC”. Particularly relevant here is also the continuity result for “quasi-isometric mappings” recently established by Reshetnyak [13].

Acknowledgement

The work described in this Note was supported by a grant from the Research Grants Council of the Hong Kong Special Admimistrative Region, China [Project No. 9040869, CityU 100803].

References

[1] S.S. Antman, Ordinary differential equations of nonlinear elasticity I: Foundations of the theories of non-linearly elastic rods and shells, Arch. Rational Mech. Anal. 61 (1976) 307–351.

[2] J.M. Ball, Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63 (1977) 337–403.

[3] P.G. Ciarlet, Continuity of a surface as a function of its two fundamental forms, J. Math. Pures Appl. 82 (2002) 253–274.

[4] P.G. Ciarlet, F. Larsonneur, On the recovery of a surface with prescribed first and second fundamental forms, J. Math. Pures Appl. 81 (2002) 167–185.

[5] P.G. Ciarlet, F. Laurent, Continuity of a deformation as a function of its Cauchy–Green tensor, Arch. Rational Mech. Anal. 167 (2003) 255–269.

[6] P.G. Ciarlet, C. Mardare, Extension of a Riemannian metric with vanishing curvature, C. R. Acad. Sci. Paris, Ser. I, in press.

[7] P.G. Ciarlet, C. Mardare, Recovery of a manifold with boundary and its continuity as a function of its metric tensor, in press.

(8)

[8] P.G. Ciarlet, C. Mardare, Recovery of a surface with boundary and its continuity as a function of its two fundamental forms, in press.

[9] G. Friesecke, R.D. James, S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three dimensional elasticity, Comm. Pure Appl. Math. 55 (2002) 1461–1506.

[10] F. John, Rotation and strain, Comm. Pure Appl. Math. 14 (1961) 391–413.

[11] F. John, Bounds for deformations in terms of average strains, in: O. Shisha (Ed.), Inequalities, III, Academic Press, New York, 1972, pp. 129–144.

[12] R.V. Kohn, New integral estimates for deformations in terms of their nonlinear strains, Arch. Rational Mech. Anal. 78 (1982) 131–172.

[13] Y.G. Reshetnyak, Mappings of domains inRnand their metric tensors, Siberian Math. J. 44 (2003) 332–345.

Références

Documents relatifs

Le théorème de Gauss est valable ; en particulier, le champ de gravitation d’un astre à symétrie sphérique est identique à celui d’une masse

Parleying with certain people). Tel est l’effroi qui s’empare de l’homme à découvrir la figure de son pouvoir qu’il s’en détourne dans l’action même qui est la sienne

La valeur est constante le long de la plaque de cuivre quelquesoit le point de mesure.. C) Le champ est perpendiculaire aux armatures du condensateur, orienté du pôle + vers le pôle

marge brute – remise – prix d’achat net – prix de vente hors taxe – coût d’achat prix de vente toute taxe comprise – prix d’achat net – frais d’achat – prix

Mise en valeur du travail de création : Ronsard au gré des poèmes associe le mythe de Méduse à un autre mythe, complète et dépasse le mythe en attribuant à

* Détermination de la graduation 100 : on plonge le réservoir du thermomètre dans de l’eau en ébullition sous la pression atmosphérique normale.. Le liquide dans le capillaire

We associate with the reduced Einstein equations the linear system obtained by replacing in all terms except the second derivatives, g by a given tensor. field

L’accès aux archives de la revue « Annali della Scuola Normale Superiore di Pisa, Classe di Scienze » ( http://www.sns.it/it/edizioni/riviste/annaliscienze/ ) implique l’accord