• Aucun résultat trouvé

Supportive use of platelet-rich plasma and stromal vascular fraction for cell-assisted fat transfer of skin radiation-induced lesions in nude mice

N/A
N/A
Protected

Academic year: 2021

Partager "Supportive use of platelet-rich plasma and stromal vascular fraction for cell-assisted fat transfer of skin radiation-induced lesions in nude mice"

Copied!
13
0
0

Texte intégral

(1)

HAL Id: hal-03155462

https://hal.inrae.fr/hal-03155462

Submitted on 6 May 2021

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives| 4.0

International License

vascular fraction for cell-assisted fat transfer of skin

radiation-induced lesions in nude mice

Baptiste Bertrand, Julia Eraud, Melanie Velier, Cécile Cauvin, Nicolas

Macagno, Mohamed Boucekine, Cecile Philandrianos, Dominique Casanova,

Jeremy Magalon, Florence Sabatier

To cite this version:

Baptiste Bertrand, Julia Eraud, Melanie Velier, Cécile Cauvin, Nicolas Macagno, et al..

Sup-portive use of platelet-rich plasma and stromal vascular fraction for cell-assisted fat transfer

of skin radiation-induced lesions in nude mice.

Burns, Elsevier, 2020, 46 (7), pp.1641-1652.

�10.1016/j.burns.2020.04.020�. �hal-03155462�

(2)

Supportive

use

of

platelet-rich

plasma

and

stromal

vascular

fraction

for

cell-assisted

fat

transfer

of

skin

radiation-induced

lesions

in

nude

mice

Baptiste

Bertrand

a,b,

*

,

Julia

Eraud

a

,

Mélanie

Velier

b,c

,

Cécile

Cauvin

d

,

Nicolas

Macagno

e

,

Mohamed

Boucekine

f

,

Cécile

Philandrianos

a

,

Dominique

Casanova

a

,

Jeremy

Magalon

b,c

,

Florence

Sabatier

b,c

aDepartmentofPlasticSurgery,LaConceptionHospital,AssistancePublique HôpitauxdeMarseille,France bAix-MarseilleUniv,C2VN,INSERM,INRA,France

c

CultureandCellTherapyLaboratory,INSERMCICBT-1409,LaConceptionHospital,AssistancePublique Hôpitaux deMarseille,France

dDepartmentofRadiotherapy,HopitalPrivéClairval,Marseille,France

eDepartmentofPathology,laTimoneHospital,AssistancePublique HôpitauxdeMarseille,France fAix-MarseilleUniv,EA3279 PublicHealth,ChronicDiseasesandQualityofLife ResearchUnit,France

a

b

s

t

r

a

c

t

Background: External radiotherapy has become indispensable in oncological therapies. Unfortunately,radiationisresponsibleforserioussideeffects,suchasradiodermatitis.The skinisweakenedandulcerated.Ourstudyaimedtoevaluatethesubcutaneoustransferof microfat(MF)aloneandtwomixes:MF+Platelet-richplasma(PRP)andMF+stromalvascular fraction(SVF)totreatradiation-inducedskinlesions.

Method:Wedefinedrandomlyfiveexperimentalgroupsofninemice:1healthycontrolgroup and4irradiated(60Grey)andtreatedgroups.Theskinlesionsweretreated3monthsafter irradiationbyMF,MF+PRP(50% 50%),MF+SVF(90% 10%)orRinger-lactatesubcutaneous injections.Woundhealingwasevaluatedat1,2and3monthspost-injectionandhistological woundanalysisat3months,aftereuthanasia.

Results:Alltheirradiatedmicepresentedwithwounds.Aftersham-injection,thewoundarea increasedby91.171.1%versusadecreaseof15.923.1%afterMFalone(NS),27.323.8% afterMF+SVF(NS)and76.47.7%afterMF+PRP(P=0.032).Asignificativereductionofskin thicknessinwoundperipherywasmeasuredforthethreetreatedgroupscomparedto sham-injection(P<0.05)butnotinthehealedwounds(NS).Themostimportantsubcutaneous neo-vesseldensitywasshownafterMF+SVFinjection.

a

r

t

i

c

l

e

i

n

f

o

Articlehistory: Accepted15April2020 Keywords: Radiodermitis Fattransfer Platelet-RichPlasma StromalVascularFraction WoundHealing

Abbreviations:MF,microfat;PRP,plasma-richplatelets;SVF,stromalvascularfraction;NS,notsignificant.

* Correspondingauthorat:DepartmentofPlasticSurgery LaConceptionHospital AssitancePublique-HôpitauxdeMarseille, Aix-MarseilleUniv147,BoulevardBaille,13005Marseille,France.

E-mailaddresses:Baptiste.bertrand@ap-hm.fr,Baptiste.bertrand@gmail.com(B.Bertrand),Julia.eraud@ap-hm.fr(J.Eraud),

Melanie.velier@ap-hm.fr(M.Velier),Cecile.cauvin@yahoo.fr(C.Cauvin),Nicolas.macagno@ap-hm.fr(N.Macagno),

boucekine.m@gmail.com(M.Boucekine),Cecile.philandrianos@ap-hm.fr(C.Philandrianos),Dominique.casanova@ap-hm.fr

(D.Casanova),Jeremy.magalon@ap-hm.fr(J.Magalon),Florence.sabatier@ap-hm.fr(F.Sabatier).

https://doi.org/10.1016/j.burns.2020.04.020

0305-4179/©2020ElsevierLtdandISBI.Allrightsreserved.

Available

online

at

www.sciencedirect.com

ScienceDirect

(3)

Conclusion:TheMF+PRPmixwasthemostefficientproducttoincreasehealing.TheMF+SVF mixshowedthehighestrateofneo-angiogenesisbutwasdisappointingintermsofhealing. Levelofevidence:Notgradable.

©2020ElsevierLtdandISBI.Allrightsreserved.

1.

Introduction

Externalradiotherapyhasbecomeindispensableinoncology therapy,conferringmanybenefitstopatients.Unfortunately, radiationisresponsibleforseriousandfrequentsideeffects, suchasradiodermatitis[1].Skindirectlyexposedtoradiation becomes thickened and fibrotic, with diminished micro-vascularisation[2].Afteraninitialphaseofvascular hyper-permeability,microvasculardensitydecreasesduetofibrotic and irregularcapillaries,whichareoften occluded[3]. The epidermisisweakenedandulcerationsappearafewmonths oryearsafterradiation[4].Healingoftheseulcersispoor,and thewoundsbecomechronic.Asurgicalprocedureis frequent-lynecessarytoexcisethedamagedskinandreplaceitwitha flap[5,6].

SincethefattransferprocedurewasdevelopedbySydney Colemanin1995[7],manystudieshaveshownaregenerative, as well as a volumizing, effect of the fat [8]. Injecting autologous fat under irradiated skin resulted in a pro-cicatrizingandantifibroticactioninpreclinical[9]andclinical studies [10,11]. The stromal vascular fraction (SVF) of the adipose tissue is the product remaining after enzymatic digestionofthematureadipocytes.Thiscell-basedproduct seemstobetheprincipalactorintheregenerativeeffects[12

15]ofautologousfatgrafting[16].Platelet-richplasma(PRP), aconcentrateofbloodplatelets,isanattractiveproductto promote healing of chronic wounds [17,18]. PRP delivers various growthfactors thatstimulateneoangiogenesisina paracrinemanner[19].Thesethreeautologousproducts(fat, SVFandPRP)areinteresting,bothseparatelyandtogether,for thetreatmentofskinlesionsinducedbyradiation.Nostudy has compared the action of these different regenerative productsonwoundhealinginthecontextofradiodermatitis. Theobjectiveofourstudywastoevaluateandcomparethe efficacyofmicrofat(MF)alone,PRPmixedwithMF,andSVF mixedwithMFversusacontroltreatmentinamousemodelof radiation-inducedskin-lesions.Apositiveeffectofthesenew cell-based products would demonstrate the potential for clinicalapplicationtotreatorpreventradiation-inducedskin lesions.

2.

Materials

and

methods

2.1. Animals

This experimental study was approved by the National Animal Care and Ethics Committee (#00506.02). Based on previous experimental studiesby ourstem celllaboratory

(4)

andbySultanetal.[9]andFogeronetal.[20]demonstrating thepositiveeffectoffatgraftingonradiationskindamagein murinemodels, we determined that nine mice per group wouldbesufficienttoshowasignificantdifferencebetween the various products evaluated. We couldnot predict the number of deaths a priori because our model is the first murinemodelofskinulcerationafterradiotherapy.Tolimit theeffectofmortalityonthedecreaseinpowerofthetests, wehaveplannednon-parametricteststotakeintoaccount thelackofnormalityofgroupsbyusingallthetestdata.We also included more subjects than previously published studies toprovide enough subjects forcomparison. Thus, forty-fivemaleorfemalenudeNMRI-Foxnu1nu/numice(8 weeks old, 28 g) were purchased from the January Lab (Genest-Saint-Isle,France).Themicewererandomlydivided intotwogroups:ninecontrolmiceand36miceexposedto externalradiotherapy.

2.2. Experimentalgroups

Ninemiceeachwererandomlyassignedtofiveexperimental groups(Fig.1):four treatedgroups(MFalone,MF+SVF,MF +PRPandshaminjectionseeTable1)exposedtoradiationand onehealthycontrolgroup.Themicewerehousedinindividual cagesafterradiotherapy.Treatmentwasdelayedfor3months toreproducethechronicradiodermatitiswoundsandlesions. Aftertreatment, the miceunderwent a3-month follow-up beforeeuthanasia.

2.3. Irradiation

Targetedirradiationofthedorsalcutaneousliningwascarried outsimultaneouslyformiceofthefourtreatedgroups(n=36)

aftergeneralanaesthesiawithanintraperitonealinjectionof ketamine/xylazine (200/10mg/kg). The dorsal skin was re-tractedfromtheunderlyingbonyskeleton,maintainedbytwo separatedsuturesbetweentwo20cm20cmfieldsof plex-iglass.Thetwosutureswerereproduciblyspaced3cmapart, centredonthemidlineofthebackofeachmouse,soastohold thedorsalskinofeachmouse1cmundertheplexiglassfield. Fourblocksof8-cm-thick Cerrobend(CerroMetalProducts, Bellefonte,PA,USA)wereplacedoneachedgeofthePlexiglas abovethemicetoprotectthebodyandspinefromthediffusion oftheradiation.(Fig.2).Theirradiationwasdeliveredatadose of60Gyinonetargetedfractionina20cm20cmirradiation field,attheexactsizeoftheplexiglassplates,usingalinear accelerator Elektasynergy system(ElektaBeam Modulator; ElektaOncologySystems,Crawley,UK)with6MVphotons.The acceleratorarmwassetto180,andthecollimatorwassetto0 witha prescriptionat1.5cmand askinsourcedistanceof 100cm. The flow rate was 400 EU/min. Plexiglass is an homogeneous medium. Thus the irradiation delivered on the irradiation field was identical at all points under the plexiglassplate.

2.4. Celltherapyproducts

Celltherapyproductswereobtainedfromahealthy 35-year-old woman volunteer donorfollowing provision ofwritten informed consent. The lipoaspirate residue and a blood sample were recovered during the aesthetic liposuction procedure.FatandMFwereharvestedfromthelateralflank areas, and peripheral whole blood was taken during the intervention.Thedonorhadnorelevantdiseasesandwasfree ofanydrugsknowntoaffectplateletfunctionfor7daysbefore sampling.Allcelltherapyproductsweremanufacturedina

Table1–Compositionofthevariousproductsevaluatedinthisstudy.

PRP SVF Microfat Ringer-lactate Shaminjection (n=9mice) 1cm3 MF(n= 9mice) 1cm3 MF PRP(n=9 mice) 0.5 cm3 0.5 cm3 MF SVF(n= 9 mice) 0.1 cm3 0.9 cm3 Characteristics andComposition

Injectedcells/mouse Viableinjectedcells/mouse CanulaSt’RIM canula14Gauges Purification Cen-trifugation 1200g 3min Platelets(106) 36295.6% Viability 80%

RedBloodCells (106) 15 3.9% Leukocytes Including Macrophages/Monocytes Lymphocytes Neutrophils 46910(17.6%) 7488(2.8%) 33388(12.5%) 6034(2.3%) Leukocytes(106) 1.8 0.5% Endothelial ProgenitorCells 106 731(40.2%) Increasefactorin platelets 2.26 Pericytes 48411(18.2%) Increasefactorin leukocytes 0.5 StromalCells 63948(24.0%)

TheEnglishinthisdocumenthasbeencheckedbyatleasttwoprofessionaleditors,bothnativespeakersofEnglish.Foracertificate,pleasesee:

(5)

ClassAmicrobiologicalsafetyfacilitylocatedintheculture and cell therapy laboratory of our university hospital and injectedonthesameday,within3hofharvest.

2.5. Microfat

TheMF(36cm3)wasaspiratedwitha14Gcannulafromthe

st’RIMprocedurepack (Thiebaud Biomedical Devices, Mar-gencel, France) forMF transfer. TheMF was purified after centrifugation (1200g for 3min) with a microcentrifuge (Medilite;ThermoScientific,Waltham,MA,USA)toeliminate oilyandbloodyresidue.

2.6. Stromalvascularfraction

Fat(184cm3)wasaspiratedwitha12G,12-holeharvesting

cannula (Khouri Harvester, Koume, Plantation, FL, USA) mountedona10cm3syringe.SVFwaspurifiedbyenzymatic

digestionofmatureadipocytesduring45minat37 usinga manualmethodandcollagenaseattheconcentrationof0.25U/ mL (NB5, Heideberg,Germany). Total viable nucleated cell recovery and cell viability were determined using the Nucleocounter NC100 instrument (ChemoMetec,Denmark). CellularcomponentswithinisolatedSVFwereidentifiedbya flowcytometryanalysis(BeckmanNaviosinstrument)usinga panelofcellsurfacemakersinagreementwithInternational FederationforAdiposeTherapeuticsandScience(IFATS)and theInternationalSocietyforCellularTherapy(ISCT) recom-mendations[21].

2.7. Platelet-richplasma

PRP was produced according toa previously described cell therapymethodology [22,23]. Briefly,18cm3ofwhole blood

was collected from the same healthy donor with 4cm3

adenosine citrate dextrose-acid solution (ACD-A, Ref. Fig.2–Experimentalirradiationprotocol.Thedorsalskinwasretractedfromtheunderlyingbonyskeleton,maintainedbytwo separatedsuturesbetweentwofieldsofPlexiglass.Thetwosutureswerereproduciblyspaced3cmapart(A),centredonthe midlineofthebackofeachmouse,soastoholdthedorsalskinofeachmouse1cmundertheplexiglassfield(B).Fourblocksof 8-cm-thickCerrobend(CerroMetalProducts,Bellefonte,PA,USA)wereplacedoneachedgeofthePlexiglasabovethemiceto protectthebodyandspinefromtheradiation.Theirradiationwasdeliveredatadoseof60Gyinonetargetedfractiononthe PlexiglasfieldbyalinearacceleratorElektasynergysystem(ElektaBeamModulator;ElektaOncologySystems,Crawley,UK) with6MVphotons.

(6)

BDB8651;Fenwal Inc.,Portland,OR,USA)tomakea22cm3

solution.Anothertube,coatedwiththeEDTAanticoagulant, was used to determine the number and concentration of platelets with an automatic cell counter (ADVIA1 2120; SiemensDiagnosticSolutions,Malvern,PA,USA).Theblood wascentrifugedat130gfor15minandthenagainat250g for15minintwo11cm3conicaltubes (NUNC1,Ref. 56423; ThermoScientific) using a microcentrifuge (Medilite1, Ref. 448; Thermo Scientific). The supernatant or platelet-poor plasma(PPP)wasremovedbygentleaspiration(approximately 1cm3/tube).ThePRPpelletswereresuspendedintheresidual

PPPandpooled.Atthefinalmeasurement,weobtainedatotal of5.6cm3 concentrated PRP. A 250

m

lsample was used to determinethe finalPRPformulationwithanautomaticcell counter(ADVIA12120;SiemensDiagnosticSolutions, Erlan-gen,Germany).

2.8. Mixtures

MF,PRPandSVFwerepreparedinacelltherapylaboratory (Table1).Allproductswerepackagedundersterileconditions in1cm3syringesforreinjectionintothemice.Ringer'slactate

wasusedasthemediumtoresuspendtheSVF.TheMF+SVF mixwasinourinitialhypothesisthemostefficientproduct evaluated. Thus, Ringer-Lactate, as a medium for SVF resuspension, was chosen as the placebo for the sham-injectiongroup.

2.9. Injections

Aftermixing whennecessary, the injectionprocedurewas performedblindlyundergeneralanaesthesiabyinhalationof halogenated gas (sevoflurane; Baxter France, Maurepas, France). Two diametrically opposed 18 G punctures were made5mm fromeachwound tointroducethe 21 Gblunt cannula for reinjection into the st’RIM pack (Thiebaud Biomedical Devices). A 1cm3 syringe of MF, MF+PRP, MF

+SVForRinger'slactatewasinjectedusingtheconventional Coleman's procedure. The product was evenly distributed underthewoundineachmouse.

2.10. Animalexamination

Theweightofeachmouseandthesizeofthewoundswere measuredonthedaytheproductswereinjected,andevery monththereafterduringthe3-monthpost-treatmentperiod under general halogenated gas anaesthesia (sevoflurane; Baxter).Healingwasevaluatedbymeasuringstandarddigital photographs of the wounds using ImageJ 1.45s freeware (National Institutes of Health, Bethesda, MD, USA; http:// imagej.net/ImageJ); afixed landmark(millimetreruler)was includedineachphotograph[24].Thepercentageofhealing wascalculatedbyrelatingthemeasuredwoundareatothe area ofthe initialwound(100 ((wound area/initial wound area)100)).

2.11. Histologicalexamination

Blinded histological analyses were performed by a skin pathologist.Afterthemicewereeuthanised,theirskinwas

fixed in 10% formalin solution and embedded in paraffin. Then,5-

m

m-thicksectionswerestainedwithhaematoxylin and eosin, Masson's trichrome and orcein to evaluate the histopathological changes and detect collagen fibres. The sectionswereexaminedunderalightmicroscope(Axiophot; Zeiss,Oberkochen,Germany)andphotographedwithadigital camera. A semi-quantitative evaluation was performed to assesstheskinfatgrafts(0,notraceoffat;+,traceoffat;++,fat stillpresent)[22].Epidermal,dermalandtotalskinthicknesses weremeasuredquantitativelyintheskinexposedtoradiation onthewoundperipheryandinthehealedwoundarea.Skin thicknesseswerecalculatedusingGraphPadsoftware (Graph-PadInc.,LaJolla,CA,USA).Sixmeasurementsweremadeper mouse,andthemeanswerecomparedforeachexperimental condition.Asemi-quantitativeevaluationwasperformedto evaluate subcutaneous vascularisation using the following scale:0,capillariespresentinnormalnumbersandshowing normal morphology; +, increased number of congested capillaries;++,numerouscongestedcapillaries.

2.12. Statisticalanalyses

Allstatisticaldataareexpressedasmeansstandarderrorof themeans(SEM).Differencebetweengroupswereassessedby Kruskal WallisandMann WhitneyUtestsorNonparametric analysisoflongitudinaldata.AprobabilityvaluesofP<0.05 were considered significant. Bonferroni corrections were madeformultipletesting.DatawereanalysedusingnparLD packageofRsoftware(http://www.R-project.org/)andSPSS20 (IBM Corp.Released2011.IBMSPSSStatisticsforWindows, Version20.0.Armonk,NY:IBMCorp).

3.

Results

3.1. Clinicalmanifestationsoftheradiation

Irradiationinducedskinsclerosisandchronicwoundsinthe exposed dorsal skin. The irradiated dorsal skin appeared thickerandinduratedtothetouch.Alltreatmentgroupmice presented with wounds (wound area was 14415mm2 on

average, no statistical difference between the 4 groups (P=0.563))at3monthsafterirradiationandshowedalossof bodyweightcomparedtohealthymice(irradiatedmicebody weight=29.650.41g; healthy mice body weight=31.37 0.31g,P=0.041).

3.2. Characterisationandinjectionofthedifferentcell therapyproducts

3.2.1. Stromalvascularfraction

We obtained 10.3cm3 of SVF from 184cm3 harvested fat,

correspondingto27.4millionofviablenucleatedcellsleading to274000viablenucleatedcellsinjected/mouse.Thecellular compositionoftheSVFisdetailedinTable1.

3.2.2. Platelet-richplasma

Weobtained5.6cm3PRPwithaplateletconcentrationof724G/

l, correspondingto362millionofplatelets injected/mouse. The cellcomposition ofthe PRP isshown in Table1. This

(7)

formulation was similar to that previously reported for purifiedPRP[23,25].

3.3. Animalevaluation

Wenotedtwodeathsintheplacebogroup(at1and2months post-treatment),twodeathsintheMF+SVFgroup(at2and3 monthspost-treatment)onedeathintheMF+PRPgroup(at2 monthspost-treatment)andonedeathintheMFalonegroup (at 1 month post-treatment) during the 3 month post-treatment period. Body weight in the placebo group was 30.390.55g vs. 32.110.76g in the MF+SVF group, 31.76 0.75gintheMF+PRPgroupand31.890.53gintheMFgroup (NS,P=0.231)at3monthspost-treatment.

3.4. Woundhealingevaluation

Thewoundareainthesham-injectiongroupincreasedby91.1 71.1%onaverage( 11.029.5mm2

ofwoundareahealedon average, initial wound area: 129.227.2mm2) at 3 months

post-treatment.Incontrast,thewoundsinalltreatedgroups hadpartiallyhealedat3monthsaftertreatment.Wereport that15.923.1%onaverageofthewoundareahealedintheMF group(NS)(61.042.7mm2ofwoundareahealedonaverage,

initialwoundarea:147.633.0mm2onaverage),27.323.8%

onaverageofthewoundareahealedintheMF+SVFgroup(NS) (39.524.2mm2 of wound area healed on average, initial woundarea: 176.527.2mm2

on average)and76.47.7%on average of the wound area healed in the MF+PRP group (P=0.032)(99.319.3mm2ofwoundareahealedonaverage,

initialwoundarea:121.321.5mm2)(Fig.3).

3.5. Histopathologicalchangesaftertreatment

Threemonthsfollowingtreatment,theregenerative epider-misofthetreatedmicewasthicker.Inparticular,thehealing marginsdisplayedmorehyperplasiacomparedtotheskinof the micethat had received sham injection. In the dermal granulationtissue,inwhichsmallclustersofadipocyteswere statedinthemicetreatedbyMF+PRP,highercellularitywas

Fig.3–Comparisonofwoundhealingfromirradiation-inducedskinulcersaftertreatmentwithasham-injection(Ringer's lactate),microfat(MF),MF+platelet-richplasma(PRP)andMF+thestromalvascularfraction(SVF)duringthe3monthfollow-up.

(8)

statedcomparedtoshaminjectedmice(Fig.4).Asignificant reduction in dermal thickness and epidermal thickness secondarytoskinsclerosisinducedbyradiationwasobserved intheperipheryofthewoundaftertreatmentwithMF,MF

+PRP, and MF+SVF compared to the placebo (P<0.05).No significantdifferencewasdetectedamongthethreegroups treated with cell-based therapyproducts. Data for dermal, epidermalandtotalskinthicknessesaftertreatmentwiththe Fig.4–Histologicalfindingsofthewounds,3monthsaftertreatmentbyMF+PRP(A)orsham-injection(Ringer'slactate)(B):the regenerativeepidermaltonguesarethicker,withmorehyperplasia,andthedermisdisplaysahighercellularityinthetreated group(A)comparedtosham-injection(B).Smallclustersofadipocytesareintegratedwithinthegranulationtissueofthewound treatedbyMF+PRP(yellowarrows).

(9)

MF+PRP,MF+SVF,MFandplacebo areshown inFig.5. No differences in scar thickness were observed between the differenttreatmentsandthesham-injection.Theappearance ofbloodvesselsandthedensityinareastreatedwithMF,MF +PRP and MF+SVF denoted an increase in vessel density, particularly in the MF+SVF group showing the greatest increaseindensityanddiameterofvessels(Fig.6).

3.6. Fatgraftviability

TheMFinjectedinthesubcutaneousplanewasstillpresentat 3monthspost-treatmentinallthreegroups.TheMFformed homogeneous, adherent and well-vascularised fat nodules underthepanniculuscarnosus(Fig.7).

4.

Discussion

Radiodermatitisischaracterisedbyfibrotictransformationof thesubcutaneoussoft-tissuesassociatedwithadecreasein cutaneousvascularisation[26,27].Immediatelyafter irradia-tion,acuteradiodermatitisisassociatedwithdermal inflam-mationandepidermalinvolvement.Thechronicityofdermal

inflammation is responsible for the fibrotic changes and epidermalthickening,whichleadtoepidermal hypovascular-isation,skinulcerationsandnecrosis[28].Medicalor acciden-tal exposure ofalarge area aswellas elevated“hotspot” radiationexposureoftheskinleadtosevereskindamages named“cutaneousradiationsyndrome”(Hopwell).Irradiation severlyimpairswoundhealing,dependingonthe radiation dose,depthofpenetrationandquality.Ourmodelisrelevant to the human accident situation of large area irradiation exposure. In this situation,the skinulceration observedis irremediablyextensive[29]asinourmurinesham-injected group.Treatmentoftheseradiation-inducedwoundspresents a challenge for clinicians.Actually, autologousfat grafting seemstobethemoreefficientproceduretoattenuatethese lesions[10,11,30]inalternativetoradicalskinexcisionanduse ofacover flap.However,furtherexperimentaland clinical studieshaveshowninterestingeffectsofusingPRPandSVFto treatthesecutaneousradiationlesions.

Ourradiation-inducedskinlesionmodelusedwasadapted frompreviousexperimentalstudies.Thaniketal.andSultan et al. described a murine model of dorsal radiodermatitis carriedoutafteraone-timedoseof50Greysand45Greysof radiationtherapyrespectivelyviaalinearaccelerator[2,9].In Fig.5–Comparisonofepidermal,dermalandtotalskinthicknessesat3monthsaftertreatmentbysham-injection(Ringer's lactate),MF,MF+PRPandMF+theSVFversusthehealthycontrolgroup.

(10)

ourstudy,aone-timedoseof60Greyswasdeliveredbylinear acceleratortoobtainalatedorsalskinnecrosis,ulcerations andwounds12weeksafterradiationwithareducedmortality. However,alimitofthisimpairedwoundhealingmodelisthe contractionofthemurinepanniculuscarnosusleadingtothe woundcontraction,absentinphysiologichumanhealing.In fact,inconventionalmurinemodelsofwoundhealing,a full-thicknesswoundisperformedwithpunchbiopsyandwound contractionisprevented withdonut-shaped silicone splint fixedaroundthewounds[30].Inourmurinewoundmodel,the irregular and unpredictable shape of the radiodermititis woundsdidnotallowtheuseofthosesplints.

Sultanetal.evaluatedpreviouslytheeffectoffatgrafting onradiationskindamagesinasimilarmurinemodel.Four weeksafterirradiation,theauthors reportedoverabundant collagen deposits resulting in dermal thickening and a decreaseinskinmicrovascularity.Fourweeksaftertreatment by fat grafting or by sham injection, they reported an

epidermalthicknessesof36.306.1

m

minthesham-grafted group versus 8.270.64

m

m in the fat-grafted group [9]. Comparatively,Thaniketal.evaluatedanovelmousemodel of cutaneous injury and reported 6 weeks after 45-Grey irradiationanincreaseofdermalthicknessandskinfibrosis

[2]. In our study, we reported 6 months after a 60-Grey irradiationthus3monthsaftertreatment,athickeningofthe epidermis(epidermalthickness=7027

m

m)andthedermis (380121

m

m) in the sham-grafted group compared to the healthycontrolgroup(epidermisthickness:221

m

m;dermis thickness: 1736

m

m) and the treated groups (epidermis thickness: 20 to 242

m

m; dermis thickness: 163 to 191 21

m

m), revealing a decrease of skin fibrosis in the 3 irradiatedandtreatedgroups.

Asubcutaneousinjectionoffatisasimpleandvalidated treatmentforirradiation-inducedcutaneouslesions.Mojallal etal.showedanincreaseinextracellularmatrix,collagenfibre and neovascularisation around the transplanted fat [31]. Fig.6–Skinvascularisationaftertreatmentbysham-injection(Ringer'slactate),MF,MF+PRPandMF+theSVF.Thenumberand diameterofdermalcapillariesincreasedaftertreatmentwithMF+SVF(left)incomparisontotheshaminjection(right).

(11)

Phulpinetal.showedimprovedskinqualityafter subcutane-ously injecting autologous fat in 11 patients with chronic radiodermatitisoftheheadandneck[11].Theyobservedan improved vascularnetworkinthetreatedskinassociated witha decreaseintheirradiatedmorphologicalpatternsandnoskin ulcerations.Inasimilarstudy,Rigottietal.showedimproved healingin10of11patientswiththoraciccutaneousulcerations secondarytoirradiationafterasubcutaneousautologousfat transfer [10]. The histological analysis showed improved neovessel formation and dermal hydration. The authors concludedthattheadipose-derivedstemcells(ASCs)contained in theSVF of the fat weretheprincipalskin-regenerating agents. TheactionofASCsinthetreatmentofradiodermatitislesions hasbeenstudiedpreviouslyinpigs[20,32].Inthesestudies, injecting autologous ASCs locally into the skin lesions de-creased the subcutaneous defects and muscle fibrosis in comparisontothecontrols.Theauthorsreportedadecrease in disorganised myofibres,associated with a decrease in the size ofthe fibroticand necroticareas,after ASCs wereinjected comparedtothecontrol.Iddinsatal.usedtheSVFfromfat,a concentrateofgrowthfactorsandnon-expandedASCs,ina clinical case report. TheSVF was used in association with 0.2cm3ofMFafter allreferencetreatmentsfailedtotreata chronic ulceration of the thumb secondary to accidental irradiation[33].Themixturewasinjectedinthesubcutaneous planeofthepulp.Thewoundhealedcompletelywithin290 days,withaprominentdecreaseinfingerparaesthesiaduetoa decreaseinsubcutaneousfibrosis.Inourexperimentalstudy, theSVFdidnotshowsuperiorefficacytotheotherproducts withrespecttoulcerhealing.However,theskintreatedwithMF +SVFshowedagreaterincreaseinvasculardensitythanthat treatedwiththeothermixtures(Fig.7).

PRPseemstobeeffectiveforhealingchronicwounds.Once activated,thePRPsecretesmorethan30pro-healinggrowth factors [34]. Fujita et al. demonstrated the efficacy of PRP injections intoskin lesionsinamurine modelofimpaired woundhealingafterirradiation[35].Theyshowedasignificant decrease in the ulcer at 15 days after the PRP injection associated with a significant increase in the number of neovesselsandcollagenformationcomparedtothecontrol. Inourstudy,injectingtheMF+PRPmixturewasmoreefficient forincreasingwoundhealingcomparedtoMFaloneorMF +SVF(Fig.4).At3monthsaftertheinjection,thehealingwas significantly better inthe MF+PRPgroup compared to the sham-injected group (P<0.001). However, we observed an importantvariationofthewoundsizeinthesham-injection group.Therandomisationofthemicedistributionensuresno selectionbias.AsreportedbyAgayetal.inaMinipigmodelof cutaneousradiationsyndrome,theskinulcerationappeared variableandextensive,principallyinthecontrolgroup[29]. Thus,microfattreatmentseemstodecreasethepost irradia-tionulcersizevariability,promotingwoundhealinginthe3 treatedgroups.

Theeffectivenessoffat,PRPandSVFhasbeenshownin severalanimalmodels,andafewclinicalcasestudies,asa treatmentforskinlesionsinducedbyradiation.Inourstudy, weassessedMFaloneandMFinassociationwithPRPorSVF. PRPandSVFarefluidproductsthatdiffuserapidly.Aprevious studybyourlaboratorydemonstratedthesuperiorityofthese productswhenusedinassociationwithMF[36].PRPandSVF seemtostayinthesubcutaneousplaneforalongerperiod, which couldexplaintheincreasedeffectiveness.Ourstudy suggeststhatMF+PRPisthemostefficientproductforwound healing,withawoundhealingrateof81%comparedto16% and21%forMFandMF+SVF,respectively.However,theinitial wound area inthe MF+PRP group (121.321.5mm2) had a tendencytobeinferiortotheMF+SVFgroup(176.527.2mm2)

withoutsignificantdifference(P=0.434,Kruskal WallisTest), despite the initial randomisation. This tendancy could be pejorativefortheSVFeffectcomparedtothePRPeffect.This possiblebiascouldbeavoidedinafutureexperimentalstudy withadifferentdesignusingeachmouseasitsowncontrol. All threeproductsdecreasedskinsclerosissimilarly.MF wasstillpresentat3monthsafterinjectioninthethreetreated groups. The clinicalresults obtainedwithSVF were disap-pointing and were not significantly superior to MF alone. However,asuperiorrateofneoangiogenesiswasreportedin thegrouptreatedwithSVF.ThelowclinicalimpactofSVFon woundhealingcouldbeexplainedbythenon-optimalmixture of 10% SVF and 90% MF. A future study with a 50%/50% proportionofMFandSVFshouldbeperformedusingthesame radiation-inducedskin-lesionmodel.

5.

Conclusion

Inthisstudy,amixtureofMFandPRPprovedmostefficientto increasehealinginachronicimpairedwoundhealingmodel after skin radiation. MF alone and MF+SVF resulted in increasedhealingrates comparedwiththesham-injection, but not significantly. An increase in neoangiogenesis and decreaseinsubcutaneoussclerosisseemedtobetheprincipal Fig.7–Subcutaneousfatviabilityat3monthsaftertreatment

(12)

mechanism of action of these new combined cell-based therapies.

Financial

disclosure

Theauthorsreportednoconflictsofinterest.Allaspectsofthis studywerefundedbytheFondationdel’Avenir(RMA 2015-004).

Reviewers’

names

-DrBarbaraHERSANT,PlasticSurgeon,Paris,AP-HP,Hôpital deCréteil,FRANCE

- DrNathalieKERFANT,PlasticSurgeon,CHUdeBrest, FRANCE

- DrBenoitCHAPUT,PlasticSurgeon,CHUdeToulouse, FRANCE

- PrAliMOJALLAL,PlasticSurgeon,CHUdeLyon,France

Declarations

Ethicsapprovalandconsenttoparticipate.

Thisexperimental study was approved by the National AnimalCareandEthicsCommittee(#00506.02).

Consent

for

publication

Notapplicable.

Availability

of

data

and

material

Thedatasetsusedand/oranalysedduringthecurrentstudy areavailablefromthe correspondingauthoronreasonable request.

Competing

interests

Theauthorsdeclarethattheyhavenocompetinginterests.

Authors’

contributions

BB: conception, drafting, final approval, agreement to be accountableforallaspectsofthework.

JE:conception, drafting, finalapproval,agreement tobe accountableforallaspectsofthework.

MV:conception,revision,finalapproval,agreementtobe accountableforallaspectsofthework.

CC: design, revision, final approval, agreement to be accountableforallaspectsofthework.

NM:conception,revision,finalapproval,agreementtobe accountableforallaspectsofthework.

MB:conception,revision,finalapproval,agreementtobe accountableforallaspectsofthework.

MAL: drafting, revision, finalapproval, agreement tobe accountableforallaspectsofthework.

DC:conception,revision,finalapproval,agreementtobe accountableforallaspectsofthework.

JM: drafting, revision, final approval, agreement to be accountableforallaspectsofthework.

FS:conception, revision,finalapproval,agreementtobe accountableforallaspectsofthework.

Acknowledgements

WewouldliketothankDoctorLucileAndracforperforming theinitialhistologicalanalysis.Wewouldalsoliketothank ProfessorGuyMagalonandProfessorDidierCowenfortheir helpincarryingoutthisstudy.

REFERENCES

[1]HubenakJR,ZhangQ,BranchCD,KronowitzSJ.Mechanismsof injurytonormaltissueafterradiotherapy:areview.Plast ReconstrSurg2014;133:49 56.

[2]ThanikVD,ChangCC,ZoumalanRA,LermanOZ,AllenRJ, NguyenPD,etal.Anovelmousemodelofcutaneousradiation injury.PlastReconstrSurg2011;127:560 8.

[3]O'SullivanB,LevinW.Lateradiation-relatedfibrosis: pathogenesis,manifestations,andcurrentmanagement. SeminRadiatOncol2003;13:274 89.

[4]ArchambeauJO,PeznerR,WassermanT.Pathophysiologyof irradiatedskinandbreast.IntJRadiatOncolBiolPhys 1995;31:1171 85.

[5]HymesSR,StromEA,FifeC.Radiationdermatitis:clinical presentation,pathophysiology,andtreatment2006.JAm AcadDermatol2006;54:28 46.

[6]HardingKG,MorrisHL,PatelGK.Science,medicineandthe future:healingchronicwounds.BMJ2002;324:160 3.

[7]ColemanSR.Long-termsurvivaloffattransplants:controlled demonstrations.AestheticPlastSurg1995;19:421 5.

[8]ColemanSR.Structuralfatgrafting:morethanapermanent filler.PlastReconstrSurg2006;118:108 20.

[9]SultanSM,SternCS,AllenRJ,ThanikVD,ChangCC,Nguyen PD,etal.Humanfatgraftingalleviatesradiationskindamage inamurinemodel.PlastReconstrSurg2011;128:363 72.

[10]RigottiG,MarchiA,GalièM,BaroniG,BenatiD,KramperaM, etal.Clinicaltreatmentofradiotherapytissuedamageby lipoaspiratetransplant:ahealingprocessmediatedby adipose-derivedadultstemcells.PlastReconstrSurg 2007;119:1409 22[discussion1423 1424].

[11]PhulpinB,GangloffP,TranN,BravettiP,MerlinJ-L,DolivetG. Rehabilitationofirradiatedheadandnecktissuesby autologousfattransplantation.PlastReconstrSurg 2009;123:1187 97.

[12]FraserJK,SchreiberRE,ZukPA,HedrickMH.Adultstemcell therapyfortheheart.IntJBiochemCellBiol2004;36:658 66.

[13]FraserJK,SchreiberR,StremB,ZhuM,AlfonsoZ,WulurI,etal. Plasticityofhumanadiposestemcellstowardendothelial cellsandcardiomyocytes.NatClinPractCardiovascMed 2006;3:33 7.

[14]Schenke-LaylandK,StremBM,JordanMC,DeemedioMT, HedrickMH,RoosKP,etal.Adiposetissue-derivedcells improvecardiacfunctionfollowingmyocardialinfarction.J SurgRes2009;153:217 23.

(13)

[15]StremBM,ZhuM,AlfonsoZ,DanielsEJ,SchreiberR,BeyguiR, etal.Expressionofcardiomyocyticmarkersonadipose tissue-derivedcellsinamurinemodelofacutemyocardialinjury. Cytotherapy2005;7:282 91.

[16]VermetteM,TrottierV,MénardV,Saint-PierreL,RoyA, FradetteJ.Productionofanewtissue-engineeredadipose substitutefromhumanadipose-derivedstromalcells. Biomaterials2007;28:2850 60.

[17]CervelliV,GentileP,DeAngelisB,CalabreseC,DiStefaniA, ScioliMG,etal.Applicationofenhancedstromalvascular fractionandfatgraftingmixedwithPRPinpost-traumatic lowerextremityulcers.StemCellRes2011;6:103 11.

[18]MazzuccoL,MediciD,SerraM,PanizzaR,RivaraG,OrecchiaS, etal.Theuseofautologousplateletgeltotreatdifficult-to-heal wounds:apilotstudy.Transfusion(Paris)2004;44:1013 8.

[19]PalluaN,WolterT,MarkowiczM.Platelet-richplasmain burns.BurnsJIntSocBurnInj2010;36:4 8.

[20]ForcheronF,AgayD,ScherthanH,RiccobonoD,HerodinF, MeinekeV,etal.Autologousadipocytederivedstemcells favourhealinginaminipigmodelofcutaneousradiation syndrome.PLoSONE2012;7:31694.

[21]BourinP,BunnellBA,CasteillaL,DominiciM,KatzAJ,March KL,etal.Stromalcellsfromtheadiposetissue-derivedstromal vascularfractionandcultureexpandedadipose tissue-derivedstromal/stemcells:ajointstatementofthe InternationalFederationforAdiposeTherapeuticsand Science(IFATS)andtheInternationalSocietyforCellular Therapy(ISCT).Cytotherapy2013;15:641 8.

[22]SerratriceN,BruzzeseL,MagalonJ,VéranJ,GiraudoL, AboudouH,etal.Newfat-derivedproductsfortreating skin-inducedlesionsofsclerodermainnudemice.StemCellRes Ther2014;5:138.

[23]BaussetO,GiraudoL,VeranJ,MagalonJ,CoudreuseJ-M, MagalonG,etal.Formulationandstorageofplatelet-rich plasmahomemadeproduct.BioResearchOpenAccess 2012;1:115 23.

[24]Aragón-SánchezJ,Quintana-MarreroY,Aragón-HernándezC, Hernández-HereroMJ.ImageJ:afree,easy,andreliable methodtomeasurelegulcersusingdigitalpictures.IntJLow ExtremWounds2017;16:269 73.

[25]MagalonJ,BaussetO,SerratriceN,GiraudoL,AboudouH, VéranJ,etal.Characterizationandcomparisonof5

platelet-richplasmapreparationsinasingle-donormodel. Arthroscopy2014;30:629 38.

[26]ChinMS,FreniereBB,BonneyCF,LancerottoL,SaleebyJH,Lo Y-C,etal.Skinperfusionandoxygenationchangesin radiationfibrosis.PlastReconstrSurg2013;131:707 16.

[27]MalkinsonFD,KeaneJT.Radiobiologyoftheskin:reviewof someeffectsonepidermisandhair.JInvestDermatol 1981;77:133 8.

[28]RodemannHP,BambergM.Cellularbasisofradiation-induced fibrosis.RadiotherOncolJEurSocTherRadiolOncol1995;35:83

90.

[29]AgayD,ScherthanH,ForcheronF,GrenierN,HérodinF, MeinekeV,etal.Multipotentmesenchymalstemcellgrafting totreatcutaneousradiationsyndrome:developmentofanew minipigmodel.ExpHematol2010;38:945 56.

[30]GalianoRD,MichaelsJ,DobryanskyM,LevineJP,GurtnerGC. Quantitativeandreproduciblemurinemodelofexcisional woundhealing.WoundRepairRegenOffPublWoundHealSoc EurTissueRepairSoc2004;12:485 92.

[31]MojallalA,LequeuxC,ShipkovC,BretonP,FoyatierJ-L,Braye F,etal.Improvementofskinqualityafterfatgrafting:clinical observationandananimalstudy.PlastReconstrSurg 2009;124:765 74.

[32]RiccobonoD,AgayD,FrançoisS,ScherthanH,DrouetM, ForcheronF.Contributionofintramuscularautologous adiposetissue-derivedstemcellinjectionstotreatcutaneous radiationsyndrome:preliminaryresults.HealthPhys 2016;111:117 26.

[33]IddinsCJ,CohenSR,GoansRE,WanatR,JenkinsM, ChristensenDM,etal.Casereport:industrialx-rayinjury treatedwithnon-culturedautologousadipose-derived StromalVascularFraction(SVF).HealthPhys2016;111:112 6.

[34]EppleyBL,PietrzakWS,BlantonM.Platelet-richplasma:a reviewofbiologyandapplicationsinplasticsurgery.Plast ReconstrSurg2006;118:147 59.

[35]FujitaK,NishimotoS,FujiwaraT,SotsukaY,TonookaM, KawaiK,etal.Anewrabbitmodelofimpairedwoundhealing inanX-ray-irradiatedfield.PLOSONE2017;12:0184534.

[36]GhazouaneR,BertrandB,PhilandrianosC,VeranJ,AbellanM, FrancoisP,etal.WhatabouttherheologicalpropertiesofPRP/ microfatmixturesinfatgraftingprocedure?AestheticPlast Surg2017;41:1217 21.

Figure

Fig. 1 – Design of the experimental study.
Table 1 – Composition of the various products evaluated in this study.
Fig. 2 – Experimental irradiation protocol. The dorsal skin was retracted from the underlying bony skeleton, maintained by two separated sutures between two fields of Plexiglass
Fig. 3 – Comparison of wound healing from irradiation-induced skin ulcers after treatment with a sham-injection (Ringer's lactate), microfat (MF), MF+platelet-rich plasma (PRP) and MF+the stromal vascular fraction (SVF) during the 3 month follow-up.
+2

Références

Documents relatifs

The magnetic local time distribution of the MF waves observed by DEMETER shows peak occurrence rate near 18 MLT, somewhat earlier than the equivalent peak in the occurrence rate

=&gt; Un traitement approprié précoce (diagnostic rapide et traitement empirique adéquat) offre la plus grande chance de diminuer les coûts.. « The

Abstract In this paper, we focus on extending the subspace identification to the class of linear periodically time-varying (LPTV) systems.. The Lyapunov-Floquet transformation is

First results on the city planning of Cyrrhus (Syria) Jeanine Abdul Massih, Christophe Benech, Mathilde Gelin.. To cite

* Dans le cadre d'un enseignement de Mathématiques, même si l'on croit pouvoir se passer d'une référence au réel (autre que le réel construit par la théorie), se posent

The Nelder and Mead's simplex method of system optimization, hereafter referred to as Nelder-Mead, is robust as it can be used when little is known about

It is the purpose of this paper to describe the major factors that can affect the stability of bench marks placed in permafrost and to review the types that

Figure 17 Maywa Denki sketches, source: Maywa Denki official site http://www.maywadenki.com It is clear from these sketches that the starting points of Maywa Denki's designs