• Aucun résultat trouvé

A soil frost-susceptibility test and a basis for interpreting heaving rates

N/A
N/A
Protected

Academic year: 2021

Partager "A soil frost-susceptibility test and a basis for interpreting heaving rates"

Copied!
9
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site

LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Proceedings, 3rd International Conference on Permafrost, 1, pp. 721-727, 1978

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=5891c865-e4d6-4555-a076-708d2c21fc37

https://publications-cnrc.canada.ca/fra/voir/objet/?id=5891c865-e4d6-4555-a076-708d2c21fc37

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

A soil frost-susceptibility test and a basis for interpreting heaving rates

(2)

td

2 \ 6

National

Research

Conseil national

b

o . Q \ 4

I$

Council Canada

de

recherches Canada

a.

A SOIL FROST-SUSCEPTIBILITY TEST

A N D A BASIS FOR INTERPRETING

HEAVING

RATES

by

E.

p n n e r and

T.

Ueda

Reprinted, with permission, from

Vol. 1, Proceedings 3rd International Conference

on

Permafrost

held in Edmonton, Alberta,

10

13 July

1978

p.

721

-

727

DBR Paper No. 814

Division of Building Research

(3)

A SOIL FROST-SUSCEPTIBILITY TEST AND A BASIS FOR INTERPRETING HEAVING RATES Edward Penner, D i v i s i o n o f B u i l d i n g Research, N a t i o n a l Research Council o f Canada,. Ottawa, O n t a r i o . Takao Ueda, Takenaka Technical Research Laboratory, Tokyo, Japan.

A s o i l f r o s t s u s c e p t i b i l i t y t e s t i s proposed. The method i n v o l v e s t h e u n i d i r e c t i o n a l f r e e z i n g o f a s a t u r a t e d sample by imposing a s t e p f r e e z i n g temperature a t one end o f t h e specimen and, measuring t h e heave r a t e . The two most important c o n d i t i o n s t h a t i n f l u e n c e heave r a t e d u r i n g the t e s t a r e t h e overburden pressure and t h e f r e e z i n g temperature. Results show t h a t t h e heave r a t e can be expressed as an e x p o n e n t i a l f u n c t i o n o f t h e a p p l i e d overburden/freezing temperature r a t i o . The d e s i r a b l e f e a t u r e s o f t h e proposed. f r e e z i n g technique and t h e method o f i n t e r p r e t i n g t h e r e s u l t s a r e o u t 1 ined.

ESSAl DE G ~ L I V I T ~ DtUN SOL, ET BASE D'UNE M ~ T H O D E D 1 INTERPR~TATION DES TAUX DE SOULEVEMENT D I F F ~ R E N T I EL

DO

AU GEL

Edward Penner* and Takao Ueda*"

*

Chef, s e c t i o n de geotechnique, D i v i s i o n des recherches en bstirnent, Conseil n a t i o n a l de recherches du Canada, Ottawa, O n t a r i o , Canada.

**

A s s i s t a n t 3 l a D i v i s i o n des recherches en bztirnent, employe p a r l e l a b o r a t o i r e de recherches techniques de Takenaka, Tokyo, Japon.

Dan$ l e present a r t i . c l e , on d e c r i t un e s s a i de mesure de l a g e l i v i t d d t u n s o l . C e t t e methode, basde s u r l e g e l u n i d i r e c t i o n n e l d ' u n e c h a n t i l l o n s a t u r d , c o n s i s t a B sournettre une e x t r e m i t e de l ' e c h a n t i l l o n 3 d i v e r s e s dtapes de c o n g e l a t i o n , e t 3 mesurer l e t a u x de soulZvement d i f f e r e n t i e l p a r l e g e l . Les deux elements p r i n c i p a u x q u i i n f l u e n t s u r l e t a u x de,soulZvement d i f f e r e n t i e l pendant l t e s s a i s o n t l a p r e s s i o n de.surcharge e t l a temperature de c o n g e l a t i o n . Les r 6 s u l t a t s i n d i q u e n t que l e t a u x de soulZvement peut s t e x p r i m e r p a r une f o n c t i o n e x p o n e n t i e l l e du

q u o t i e n t p r e s s i o n de surcharge appliquee/tempCrature de c o n g e l a t i o n . On d e c r i t aussi l e s avantages de l a technique de c o n g e l a t i o n proposee, e t ceux de l a M t h o d e d ' i n t e r p r e t a t i o n des r e s u l t a t s .

MCllblTAHME I'PYHTOB HA MOP030YCTOnYMBOCTb M P A C Y E T CKOPOCTM IlYqEHMR

~ p € ? ~ n a I ' a e ~ ~ R M e T O A H C n b l T a H H R T P Y H T O B H a M O P O ~ O Y C T O R V W B O C T ~ ~ COCTORUlHft B C T y n e H v a T O M H a n p a B J l e H H O M 3 a M O p a X H B a H H H . O A H O r O K O H I J a H a C b l - U e H H O r O o6pasqa H M 3 M e p e H H H C K O P O C T H n y s e H H R . n B Y M H ~ a ~ 6 o n e e B a X H W H Y C n O B H R M H , o n p e n e n R m u u M t i C K O ~ O C T ~ n y s e e s R B npoqecce H c n u T a H H R , R B n R - IOTCR B H e U I H e e A a B n e H M e M T e M n e p a T y p a n p O M e p 3 a H H ~ . P e 3 y n b T a T b l H C ~ X J T ~ H H R n O K a 3 b l B a I 0 T P Y T O C K O p O C T b I l y s e H H R M O X e T 6 b I T b B H p a X e H a K a K 3 K C n O H e H U U - a n b H a R Q Y H K U H R O T H o w e H m B H e w H e r o x a B n e H H f f K T e M n e p a T y p e ~ P O M ~ P ~ ~ H H R . O n i i c a ~ b l n p e H M y u e c T s a n p e w a r a e M o r o M e T o x a s a M o p a X a s a H u R 0 6 p a 3 ~ 0 ~ H 0 6 p a 6 0 T K H p e 3 y n b T a T O B M C n b l T a H k I R .

(4)

A SOIL FROST-SUSCEPTIBILITY TEST AND A BASIS FOR INTERPRETING HEAVING RATES

Edward Penner and Takao Ueda

Division of Building Research, National Research Council of Canada, Ottawa, Ontario;

Guest worker with DBR from Takenaka Technical Research Laboratory, Tokyo

Frost action is a prime consideration in the

design of stable foundations for cold regions. It

is well known that the major destructive factors

caused by frost action are the heaving forces

developed and the associated volume increase of the

soil due to the water/ice phase change. Frost

heaving is particularly serious when the uplift is

uneven as this induces racking and distortion in

the structure usually not allowed for in the design.

In roads, streets and airport runways thaw soften-

ing follows heaving. This can be equally serious

i

as such thoroughfares deteriorate rapidly and may

become completely impassable unless load and travel

restrictions are imposed.

The frost action problem in engineering is

usually dealt with at the design stage. Removal

of or avoiding the use of frost-susceptible soils

that will undergo freezing while the structure is

in service is usually recommended unless water can

be effectively excluded. If high costs rule out

either of these recommendations or if neither is

possible, soil freezing is sometimes prevented by

installing insulation or by supplying heat.

The key to the frost action problem in

engineering is to be able to establish the frost

susceptibility of soils or prefera6ly the degree of

frost susceptibility. This is often done from the

grain-size distribution of the soil (Beskow 1935,

Casagrande 1938, Riis 1948, U.S. Corps of Engineers

1953). The frost susceptibility of the soil is

then predicted on the basis of "frost action

criteria" of which there are many available. These

criteria are used to compare the soils under consi-

deration with soils with similar grain-size curves

and whose heaving performance is known. Difficul-

ties are encountered with this approach however,

because grain size, as a criterion of frost action,

is not completely reliable although it is one of

the best methods available at present.

For structures where frost action is likely to

be an extremely critical factor in stability, the

approach has been to saturate samples of the soils

involved and subject them to freezing tests,

usually to determine heave rates although heaving

pressures are sometimes more relevant. The problem

is to establish a laboratory test procedure,

including sample preparation, moisture control,

load application, freezing technique and test dura-

tion, and from it determine the behavior of the

soil during freezing that can be expected for a

@

particular field condition. Laboratories that

have a large demand for frost-susceptibility tests

often develop their own methods but these usually

have as their basis the technique described by

Line11 and Kaplar (1959) which was developed by

ACFEL (the predecessor to CRREL)

,

U.S. Army Corps

of Engineers. Designers are frequently dissatis-

fied with the results obtained, however, and the

search continues for more meaningful and less time

consuming freezing tests.

A frost-susceptibility test method is proposed

in this paper using a frost cell developed by

Northern Engineering Services Company Limited,

Calgary, Alberta. to which the authors have made

minor modifications (Penner and Ueda 1977).

The

method stems from the work of Northern Engineering

Services in connection with the geotechnical

research carried out with respect to the design of

a proposed Mackenzie Valley gas pipeline. Equally

important is the proposed method of interpreting

the heave results. Both the test technique and

the interpretation circumvent difficulties

encountered previously. The two most important

test conditions that have a strong influence on the

results are the thermal conditions and applied

loads and these have been given special considera-

tion. The understanding of these conditions forms

the basis of the evaluation and interpretation of

the results obtained.

METHODS AND MATERIALS

The experimental method has been described in

detail (Penner and Ueda 1977) and is only reviewed

briefly in this paper. The test cell was designed

to hold a sample

4

in. long and 4 in. in diameter

(10.2 cm).

The thermocouples and about 12 in.

(0.3 m) of the thermocouple lead were placed in

shallow grooves around the inside wall of the cell

in contact with the outside of the sample in an

isothermal plane.

,

These measurements were used to

monitor temperatures, determine thermal gradients

and locate the O"C isotherm in the sample. Loading

of the sample for the consolidation phase and con-

finement of the sample during freezing was done by

pressurizing a loading chamber mounted above the

freezing cell. Water movement in and out of the

sample in response to freezing and the amount of

heave were recorded continuously on a Hewlett-

Packard 2010H data acquisition system.

(5)

l i m i t s f o r t h e s o i l s t e s t e d a r e g i v e n i n Table I . Sample p r e p a r a t i o n was t o p l a c e s o i l s , which had been p r e v i o u s l y s a t u r a t e d t o n e a r t h e l i q u i d l i m i t , i n t h e t e s t c e l l f o r c o n s o l i d a t i o n . A f t e r c o n s o l i - d a t i o n was complete, t h e p r e s s u r e was reduced t o a value s e l e c t e d f o r t h e run and t h e c e l l was condi- t i o n e d thermall'y i n s i d e a Tenney c o n s t a n t tempera- t u r e chamber a t some p r e s e l e c t e d temperature c l o s e t o O°C. One end o f t h e sample had f r e e a c c e s s t o b u b b l e - f r e e w a t e r w i t h t h e water t a b l e h e l d a t t h e b a s e o f t h e specimen. Heaving was i n t h e open system mode throughout t h e t e s t . To s t a r t a run, a s t e p f r e e z i n g temperature was imposed a t t h e end o p p o s i t e t h e w a t e r s u p p l y . Freezing took p l a c e u n i d i r e c t i o n a l l y a s t h e c e l l w a l l s were h e a v i l y i n s u l a t e d .

I

RESULTS AND DISCUSSION

F i g u r e 1 shows t y p i c a l heaving curves f o r t h e s o i l s s t u d i e d and responses t o two d i f f e r e n t over- burden p r e s s u r e s , 1 . 0 and 4 . 0 kg/cm2. The r a t e o f heave was e s s e n t i a l l y c o n s t a n t i n b o t h experiments and t h e d i r e c t i o n o f water movement r e v e r s e d from e x p u l s i o n t o i n t a k e a t t h e h i g h e r p r e s s u r e . I n f l u e n c e of Load A p p l i c a t i o n , P

S i n c e t h e sharp r e d u c t i o n i n t h e heave r a t e r e s u l t i n g from s u r c h a r g i n g was r e p o r t e d by Beskow

I has been s t r e s s e d by many r e s e a r c h workers. (1935), t h e s i g n i f i c a n c e o f t h e overburden p r e s s u r e

One school o f thought i s t h a t a t a p a r t i c u l a r s t r e s s l e v e l , which can b e found e x p e r i m e n t a l l y , t h e f r e e z i n g o f i n s i t u w a t e r and i t s a t t e n d a n t expan- s i o n w i l l proceed while t h e heaving a t t r i b u t e d t o t h e f r e e z i n g o f migratory w a t e r from o u t s i d e s o u r c e s , e . g . , t h e w a t e r t a b l e o r unfrozen s o i l ,

w i l l b e s t o p p e d . From t h i s concept t h e term "Shut-

o f f " p r e s s u r e was i n t r o d u c e d i n t o t h e s o i l mechanics 1 i t e r a t u r e by Arvidson and Morgens t e r n

(1974) and d e f i n e d by McRoberts and Nixon (1975) a s

t h e " e f f e c t i v e s t r e s s a t t h e f r o s t l i n e which w i l l

cause n e i t h e r flow o f w a t e r i n t o o r away from t h e f r e e z i n g f r o n t

."

An opposing view t o which t h e '

a u t h o r s a s c r i b e i s t h a t i t i s n o t p o s s i b l e t o c o n t r o l independently t h e two s o u r c e s o f heave by l o a d i n g t h e s o i l . This has been shown e x p e r i - mentally by Penner and Ueda (1977). The r a t i o o f i n s i t u t o migratory w a t e r which i s f r o z e n changes

c o n t i n u o u s l y d u r i n g t h e t e s t and h a s no i n f l u e n c e I

on t h e heave r a t e .

The i n f l u e n c e o f overburden on t o t a l heave r a t e f o r t h e s o i l s s t u d i e d i s summarized i n F i g . 2. The l i n e a r r e l a t i o n between t h e l o g a r i t h m of t h e r a t e o f heave and a p p l i e d p r e s s u r e a g r e e s with e a r l i e r r e s u l t s o f Line11 and Kaplar (1959).

Influence o f Cold-side S t e p Temperature, T The f r e e z i n g temperature imposed a t t h e c o l d end o f t h e sample ranged from - 0 . 3 t o -3.9S°C. Figure 3 shows t h e d r a s t i c changes i n t h e tempera- t u r e g r a d i e n t i n t h e f r o z e n p o r t i o n d u r i n g t y p i c a l t e s t runs. I t i s emphasized t h a t , d e s p i t e t h e l a r g e g r a d i e n t changes i n t h e f r o z e n l a y e r and t h e a t t e n d a n t d e c r e a s e s i n t h e f r o s t p e n e t r a t i o n r a t e a s t h e experiment progressed, t h e t o t a l heave r a t e remained e s s e n t i a l l y c o n s t a n t ( F i g . 1 )

.

These r e s u l t s s u g g e s t t h a t t h e r a t e o f f r o s t p e n e t r a t i o n does n o t i n f l u e n c e t h e heave r a t e u s i n g t h i s f r e e z i n g technique. I t would seem t h a t t h e s i g n i - f i c a n t f a c t o r i n determining t h e heaving r a t e i s t h e value o f t h e c o l d - s i d e t e m p e r a t u r e . This temperature i s thought t o determine t h e s u c t i o n p o t e n t i a l a t t h e growing i c e l e n s . I t s e f f e c t can b e s e e n i n t h e r e s u l t s from experiments given i n Fig. 4 , where t h e s t e p temperature was lowered i n s t a g e s during one t e s t . A f t e r each lowering o f t h e temperature o f t h e c o l d s i d e both t h e t o t a l heave r a t e and t h e s e g r e g a t i o n a l heave r a t e by w a t e r inflow i n c r e a s e d .

TABLE I SUMMARY OF SOIL PROPERTIES

% Clay S i z e % S i l t % Sand % Gravel S o i l <0.002 mm 0.002-0.06 0.06-2.0 > 2.0 W ~ , % W ~ , % IP, % MVS 4 MVS 5 MVS 6 MVS 9 Calgary S i l t No. 1 17.0 83.0 0 0

-

-

-

Calgary S i l t No. 2 30.0 70.0 0 0

-

-

-

Leda c l a y 80.2 19.8 9 0

-

-

-

*MVS = Mackenzie Valley S o i l s

(6)

Table I 1 g i v e s r e s u l t s t h a t show t h e s t r o n g e f f e c t o f t h e value o f t h e c o l d - s i d e temperature, although t h e experiments were c a r r i e d o u t e n t i r e l y

d i f f e r e n t l y than d e s c r i b e d above. In t h e s e e x p e r i -

ments t h e c o l d - s i d e f r e e z i n g temperatures were h e l d c o n s t a n t i n t h e f i r s t two s e t s o f experiments f o r t h r e e s u c c e s s i v e r u n s each, b u t t h e warni-side

temperature was changed. The heave r a t e was t h e

same f o r a l l t h r e e runs. The two s e t s o f e x p e r i -

ments were c a r r i e d o u t w i t h d i f f e r e n t overburden

p r e s s u r e s , 2 and 4 kg/cm2. The d i f f e r e n c e s i n t h e

amount o f f r o s t p e n e t r a t i o n f o r each run were, 3.7, 5 . 2 and 7.1 cm, f o r b o t h s e t s , r e s p e c t i v e l y , f o r

t h e same p e r i o d . I n t h e t h i r d s e t , t h e warm-side

temperature was h e l d c o n s t a n t and i n t h r e e succes- s i v e runs t h e c o l d - s i d e s t e p temperature was

changed. A t h r e e f o l d change i n s t e p temperature

r e s u l t e d i n a f i v e f o l d change i n heave r a t e . Again t h e f r o s t p e n e t r a t i o n depth corresponded wi'th t h e f i r s t two s e t s .

'Ihe i n f l u e n c e o f t h e c o l d-side temperature on heave r a t e i s summarized i n F i g . 5 by p l o t t i n g l o g a r i t h m heave r a t e v s 1 / T . R e s u l t s e x t r a c - t e d from s t u d i e s by Kaplar (1968), p l o t t e d i n t h e same way, a r e a l s o i n c l u d e d i n t h i s f i g u r e . The Combined I n f l u e n c e o f Overburden P r e s s u r e ,P,

and Cold-side . .- Temperature, T, on Total Heave Rate

A nunher o f r e s e a r c h workers ( e . g . , Koopmans and

M i l l e r 1966, Radd and O e r t l e 1966, Hoekstra 1969) have shown t h a t f o r s o i l s with an a p p r e c i a b l e c l a y c o n t e n t t h e t h e o r e t i c a l heaving p r e s s u r e / f r e e z i n g p o i n t d e p r e s s i o n r a t i o , given by Eq. ( I ) , can b e v e r i f i e d i n t h e l a b o r a t o r y w i t h i n experimental e r r o r . where AP = heaving p r e s s u r e AT = f r e e z i n g p o i n t d e p r e s s i o n a t t h e i c e l e n s below To, O C AH = s p e c i f i c h e a t o f f u s i o n V . = s p e c i f i c volume o f i c e - T = bulk i c e l w a t e r e q u i l i b r i u m 0 temperature, "C I t i s assumed t h a t t h e temperature a t t h e f a c e o f t h e growing i c e l e n s i s p r o p o r t i o n a l t o t h e c o l d - s i d e s t e p temperature, i . e . , t h e lower t h e c o l d - s i d e temperature t h e lower t h e temperature o f t h e i c e l e n s . Based on t h i s assumption and

Eq. ( I ) , an e v a l u a t i o n can b e made o f t h e P/T r a t i o a t t h e lower l i m i t o f t o t a l heave r a t e and AP/AT, t h a t is, a s P/T r e a c h e s t h e maximum value

o f AP/AT ( 1 1 . 3 kg/cm2 O C ) , t h e t o t a l heave r a t e

approaches t h e lower l i m i t .

The s o i l s f o r which heaving r a t e s were measured e x p e r i m e n t a l l y f o r a number o f c o l d - s i d e tempera-

t u r e s and overburden p r e s s u r e combinations were Leda c l a y , a l o c a l marine c l a y , and MVS 4 ( a s o i l from t h e Mackenzie River Valley, Northwest

T e r r i t o r i e s ) . The p l o t t e d r e s u l t s (Fig. 6)

i n d i c a t e t h a t t h e r e i s a 1 i n e a r r e l a t i o n w i t h i n

t h e observed range between logarithm o f t o t a l heave r a t e and P/T t h e r a t i o o f t h e overburden p r e s s u r e and t h e c o l d s i d e , f r e e z i n g temperature.

Figure 6 i s i n f a c t

A

combination of F i g s . 2 and

5; t h e r e s u l t s can b e expressed by t h e e q u a t i o n :

AP

- -

AH

1 1 . 3 k g / ( ~ m ~ - ~ C )

d h m ~

A T - m = (1) where

-

-

t o t a l heave r a t e , mm/min

TABLE I 1 HEAVING RUNS AT VARIOUS WARM- AND COLD-SIDE TEMPERATURES WITH REMOULDED LEDA CLAY

(80% CLAY SIZE; 20% FINE SILT)

S e t o f P r e c o n s o l i d a t i o n runs p r e s s u r e , kg/cm2 4.0 S e t 1 4 .O 4.0 4 .O S e t 2 4.0 4 . 0 4 . O S e t 3 4 . 0 4.0 P r e s s u r e during Temperature heaving o f r u n , kg/cm2 chamber, O C Temperature o f sample I n i t i a l Void c o l d s i d e Y o C M.C.,% Ratio -0.90 39.3 1.10 -0.95 39.7 1.10 -0.90 40.5 1.10 Depth o f O"C T o t a l heave isotherm a t r a t e , mm/min 2000 min.', cm

(7)

a and b a r e c o n s t a n t s ( p o s i t i v e ) depending on s o i l type p = overburden p r e s s u r e , kg/cm2 c o l d - s i d e f r e e z i n g temperature below O°C The f o l l o w i n g a r e t h e d e s i r a b l e f e a t u r e s o f t h e f r e e z i n g technique used and t h e i n t e r p r e t a t i o n suggested w i t h r e g a r d t o t h e l a b o r a t o r y e v a l u a t i o n o f f r o s t s u s c e p t i b i l i t y .

1 . The r e l a t i o n between f r o s t heave and time i s l i n e a r f o r t e s t p e r i o d s up t o 3 o r 4 days and i s independent of f r o s t p e n e t r a t i o n r a t e f o r a given s t e p f r e e z i n g temperature (Fig. 1 ) . A

c o n s t a n t heave r a t e i s e a s i l y achieved by t h i s method.

2. Tne f r o s t heave-time r e l a t i o n i s independent o f t h e r a t i o o f i n s i t u w a t e r and migratory water i n i c e formation. A t t h e beginning, heave i s t o t a l l y from i n s i t u w a t e r ; when f r o s t p e n e t r a - t i o n s t o p s , heave i s from migratory w a t e r o n l y .

3 . The f i e l d overburden p r e s s u r e a n t i c i p a t e d need n o t b e known i n advance o r simulated i n t h e f r e e z i n g t e s t ; t h e r a t e s a t o t h e r overburden p r e s s u r e s can b e c a l c u l a t e d o r o b t a i n e d g r a p h i -

c a l l y .

4 . The c o l d - s i d e f r e e z i n g temperature used must b e h e l d c o n s t a n t t o c a l c u l a t e t h e P/T r a t i o

c o r r e c t l y . Any s u i t a b l e f r e e z i n g s t e p tempera- t u r e , however, can b e used which can b e

c o n v e n i e n t l y produced by t h e a v a i l a b l e f r e e z i n g equipment.

5 . There i s no w a l l a d f r e e z e problem, hence t h e r e ' i s no need f o r a t a p e r e d c e l l , o r movable r i n g s , e t c . The design o f t h e c e l l , borrowed from Northern Engineering S e r v i c e s , Calgary, i s g i v e n i n t h e p a p e r by Penner and Ueda (1977).

6 . Only one f r e e z i n g t e s t i s r e q u i r e d s i n c e a second s t e p f r e e z i n g temperature can b e imposed i n t h e same experiment t o e s t a b l i s h t h e r e l a - t i o n between l o g a r i t h m heave r a t e vs PIT (Fig. 4 and 7 ) .

7. As t h e r e l a t i o n between t o t a l heave and time i s l i n e a r , t h e experiment can b e terminated a f t e r a r e l a t i v e l y s h o r t time. The o r i g i n a l ACFEL f r o s t heaving experiments r e q u i r e d 24 days t o complete.

CONCLUDING REMARKS

The heaving response t o a s t e p f r e e z i n g tempera- t u r e has been analyzed elsewhere (Penner and Ueda 1977) and a mechanical model was developed t o h e l p understand t h e heaving p r o c e s s (Ueda and Penner)

.

I t i s e v i d e n t from F i g . 1 t h a t i f any heaving o c c u r s d u r i n g t h e f i r s t s t a g e s o f t h e t e s t , a l t h o u g h w a t e r i s e x p e l l e d i n i t i a l l y , water flow must r e v e r s e i f t h e t o t a l heave l i n e a r l y i n c r e a s e s w i t h time. Expulsion d u r i n g t h e e a r l y s t a g e s i s r e l a t e d t o overburden and f r e e z i n g temperature

(Ueda and Penner)

.

The r a t i o o f a p p l i e d overburden p r e i s u r e

t o f r e e z i n g temperature can b e expressed b y an e x p o n e n t i a l f u n c t i o n o f t h e heave r a t e . This grea_tly enhances the. u t i l i t y o f t h e heave t e s t .

'1t i d b e l i e v e d t h a t although a sound approach t o f r o s t s u s c e p t i b i l i t y e v a l u a t i o n o f s o i l s h a s been p r e s e n t e d t h e r e a r e s t i l l a s p e c t s o f t h e t e s t

t h a t need c l a r i f i c a t i o n t o e s t a b l i s h f u l l y i t s u l t i m a t e u s e f u l n e s s . Hence, t h e t e n t a t i v e n a t u r e o f t h e approach should b e k e p t i n mind. F i n a l 1 y,

no mention, has been made o f t h e c r i t i c a l r a t e o f

i

heave t h a t determines a f r o s t - s u s c e p t i b l e s o i l .

A t p r e s e n t , a t l e a s t , t h e s c a l e o f heave r a t e s developed by CRREL a r e thought t o b e a c c e p t a b l e

(Line11 and Kaplar 1959).

ACKNOWLEDGEMENTS

I

Appreciation i s e x p r e s s e d t o Northern Engineer- i n g S e r v i c e s f o r t h e use o f t h e i r f r o s t c e l l and f o r a l l o w i n g m o d i f i c a t i o n s t o be made. This paper i s a c o n t r i b u t i o n from t h e D i v i s i o n o f Building Research, National Research Council o f Canada, and i s p u b l i s h e d w i t h t h e approval of t h e D i r e c t o r o f t h e D i v i s i o n .

REFERENCES

I

I

ARVIDSON, W . D . , and MlRGENSTERN, N . R . 1974. Water flow induced by s o i l f r e e z i n g . P r o c . , 27th Can. Geotech. Conf., Edmontpn, A1 t a . , pp. 137-143. BESKOW, G. 1935. S o i l f r e e z i n g and f r o s t heaving

w i t h s p e c i a l a p p l i c a t i o n t o roads and railways. T r a n s l a t e d by J . O . Osterberg, Tech. I n s t . , North- western U n i v e r s i t y , 1947.

CASAGRANDE, A. 1938. E f f e c t s o f f r o s t i n s o i l s . Permanent I n t l

.

A s s o c i a t i o n o f Road Congresses, 1 s t & 2nd S e c t i o n s combined, 8 t h Congress, The Hague, 6 t h Question, p . 10.

HOEKSTRA, P . 1969. Water movement and f r e e z i n g p r e s s u r e s . Proc., S o i l Science S o c i e t y o f America, Vol. 33, pp. 512-518.

KAPLAR, C.W. 1968. New experiments t q s i m p l i f y f r o s t s u s c e p t i b i l i t y t e s t i n g o f s o i l s . Ilighway Res. Bd., HRB Record 215, NAS/NRC Washington, D.C. pp. 48-59.

KOOPWS, R.W.R., and MILLER, R.D. 1966. S o i l . f r e e z i n g and s o i l w a t e r c h a r a c t e r i s t i c curves. Proc., S o i l Science S o c i e t y o f America, Vol. 30, pp. 680-684.

LINELL, K . A . , and KAPLAR, G.W. 1959. The f a c t o r o f s o i l and m a t e r i a l type i n f r o s t a c t i o n . Highway Res. Bd., HRB B u l l . 225, NAS/NRC Washington, D.C. p p . 81-126.

McROBERTS, E . C . , and NIXON, J . F . 1975. Some g e o t e c h n i c a l o b s e r v a t i o n s on t h e r o l e o f s u r - charge i n s o i l f r e e z i n g . Proc., Conf. on S o i l Water Problems i n Cold Regions, Calgary 1975, pp. 42-57.

PENNER, E., and UEDA, T. 1977. The dependence o f f r o s t heaving on l o a d a p p l i c a t i o n - p r e l i m i n a r y r e s u l t s . I n t l . Symposium on F r o s t Action i n S o i l s . U n i v e r s i t y o f ~ u l e ; , ~ u l e z , Sweden. Proc., Vol. 1 , pp. 92-101.

RADD, F.J., and OERTLE, D.H. 1973. Experimental p r e s s u r e s t u d i e s o f f r o s t heave mechanisms and t h e growth-fusion behaviour o f i c e . North American C o n t r i b u t i o n t o t h e Second I n t e r n a t i o n -

a l Conference on Permafrost, Yakutsk, S i b e r i a , pp. 377-384.

(8)

1 J . 1948. F r o s t damage t o roads i n Denmark. I1.S. CORPS OF ENGINEERS, 1953. The u n i f i e d s o i l

Proc. 2nd I n t l . Conf. S o i l Mechanics and Founda- c l a s s i f i c a t i o n system, Appendix B:

t i o n Engineering, Rotterdam, Vol. 2 p . 287. C h a r a c t e r i s t i c s of s o i l groups p e r t a i n i n g t o

UEDA, T. and PENNER, E. Mechanical analogy o f a roads and a i r f i e l d s . U.S. Dept. of Army,

c o n s t a n t heave r a t e . Discussion paper submitted Waterways Experimental S t a t i o n , Vicksburg, Miss.

August 1977 f o r p u b l i c a t i o n . To b e i n Vol. 2 o f Tech. Memo. 3-357.

I n t l . Symposium on F r o s t Action i n S o i l s , Univ. o f L u l e l , L u l e l , Sweden. E L A P S E D TIME, m i n

-

u r - 2 1 I I I I

I

o 1000 2000 3000 a000 E L A P S E D TIME, m i n

Figure 1 F r o s t p e n e t r a t i o n and heave measurements

f o r MVS 2 a t 1 . 0 kg/cm2 (above) and 4 . 0 kg/cm2 (below)

.

-

- I I I 1 I I

-

-

-

-

-

-

-

-

-

-

-

-

-

C O l D S l D l W A R M Z l O C M Y 5 5 4 4 - 0 . 8 6

-

M V I 1 -0.90 1 . 7 0 M V S 3 - I . A 3 Z . A 0 C A l G h l Y 2 - 0 . 9 7 1 . 3 U C A l G A U Y 1 - 0 . V 7 7.30

-

L E D A C L A Y - 0 . P j I . I0 l t c n C L A Y - 1 .8? 2.30 I I I I I I I 0 1 Z 3 4 5 P R E S S U R E , k g l c m 2

(9)

-

T E M P E R A T U R E , 'C C O L D S l D E W A R M S l D E T O T A L H E A V E R A T E

-

( C H A M B E R ) ( C H A M B E R ) ( x 1 0 J mm,min, R U N 4 - 0 . 9 0 1 . 3 0 1 . 8 4 R U N 5 - 0 . 9 0 2 . 2 2 1 . 9 6 R U N 6 - 0 9 5 3 . 8 8 1 . 9 0 0 0 2 4 6 8 1 0 1 2 1 4 1 6 18 20 22 24 2 6 28 3 0 TIME, m i n

Figure 3 Typical temperature g r a d i e n t changes i n t h e f r o Zen p o r t i o n d u r i n g f r e e z i n g t e s t s .

f.

WHERE T = THE DEGREES BELOW 0 ° C Figure 5 T o t a l heave r a t e v s temperature.

ELAPSED T I M E , m i n

Figure 4 The i n f l u e n c e o f lowering t h e c o l d s i d e temperature on heaving r a t e . C O L D S I D E T i l l = -0 4O.C ( 2 ) - 1 45.C W A R M S I D E 1 * 2 3 0 ' C c O N 5 O L l D a T l O N P = 4 k g / c m 2 OVERBURDEN P = 2 k g / c m 2 MC = 3 9 . 8 ' 0 SOIL TYPE L t D A C L A Y

+,

k g l l c m T I . WHERE T = T H E DEGREES BELOW O°C

t , m i n

Figure 7 The i n f l u e n c e o f lowering t h e c o l d s i d e Figure 6 Heaving r a t e vs t h e overburden temperature on heaving r a t e . p r e s s u r e / s t e p temperature r a t i o .

Figure

Figure  3   shows  t h e   d r a s t i c   changes  i n   t h e   tempera-  t u r e   g r a d i e n t   i n   t h e   f r o z e n   p o r t i o n   d u r i n g   t y p i c a l   t e s t   runs
TABLE  I 1   HEAVING  RUNS  AT  VARIOUS  WARM-  AND  COLD-SIDE  TEMPERATURES  WITH  REMOULDED  LEDA  CLAY  (80%  CLAY  SIZE;  20% FINE  SILT)
Figure  2  Total  heave  r a t e   v s   p r e s s u r e .
Figure  7  The  i n f l u e n c e   o f   lowering  t h e   c o l d   s i d e   Figure  6  Heaving  r a t e   vs  t h e   overburden  temperature  on  heaving  r a t e

Références

Documents relatifs

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB..

Vidal, Paul-Etienne and Medjahed, Hassen and Dienot, Jean-Marc and Nogarède, Bertrand Mechanical stress induced by electromagnetic forces. on wire bonds of high

Second, based on the generic modeling language of Unified Cubes, we propose a two-stage process to (a) transform various schemas into a generic conceptual representation

Un exemple : l’échange de clé de Diffie-Hellmann Opérations entre points de courbe elliptique Le Produit scalaire de points. 2

In support of a performance (energy budget) energy conservation standard, this paper explores by means of computer simula- tion, the variation of energy

Afin de mieux comprendre la communication os/cartilage dans la physiopathologie de l’arthrose, ce travail de thèse s’est consacré à étudier le rôle de la

Damage to potable water supplies from de-icing chemicals will usually only occur where excessive amounts of salt have been applied or poor salt storage practice has been