• Aucun résultat trouvé

INVESTIGATION OF PERIPHERAL FISSION PROCESSES AT 30 MeV/u WITH 40Ar

N/A
N/A
Protected

Academic year: 2021

Partager "INVESTIGATION OF PERIPHERAL FISSION PROCESSES AT 30 MeV/u WITH 40Ar"

Copied!
4
0
0

Texte intégral

(1)

HAL Id: jpa-00225780

https://hal.archives-ouvertes.fr/jpa-00225780

Submitted on 1 Jan 1986

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INVESTIGATION OF PERIPHERAL FISSION PROCESSES AT 30 MeV/u WITH 40Ar

E.-M. Eckert, K. Hildenbrand, U. Lynen, W. Müller, H. Rabe, H. Sann, H.

Stelzer, R. Trockel, R. Wada, P. Lhénoret, et al.

To cite this version:

E.-M. Eckert, K. Hildenbrand, U. Lynen, W. Müller, H. Rabe, et al.. INVESTIGATION OF PE-

RIPHERAL FISSION PROCESSES AT 30 MeV/u WITH 40Ar. Journal de Physique Colloques, 1986,

47 (C4), pp.C4-105-C4-107. �10.1051/jphyscol:1986414�. �jpa-00225780�

(2)

JOURNAL DE PHYSIQUE

Colloque C4, supplement au n o 8 , Tome 47, aoQt 1986

INVESTIGATION OF PERIPHERAL FISSION PROCESSES AT 30 MeV/u WITH 4 0 A r

E.-M. E C K E R T , K.D. H I L D E N B R A N D * , U. L Y N E N " , W.F. J. ~ L L E R * , H.J. RABE', H. S A N N * , H. STELZER*, R. T R O C K E L * , R. W A D A * , P. L H ~ N O R E T '

,

R. LUCAS"

,

C. M A Z U R * * , C. N G ~ *

,

M. RIBRAG*.

,

E. TOMASI*

,

C. CERRUTI*

,

A. D E M E Y E R * and D

.

GUINET' '

Univ. Frankfurt, Inst. fiir Kernphysik, August-Euler Strasse 6 , D-6000 Frankfurt, F.R.G.

'GSI, Postfach 110541, 0-6100 Darmstadt, F.R.G.

"CEN-saclay, F-91191 Gif-sur-Yvette, France

'"'~nstitut de Physique Nucleaire de Lyon, 43 Boulevard du 11 novembre 1918, F-69622 Villeurbanne Cedex, France

A b s t r a c t

-

Using t a r g e t s of Th, Au, and Ta and an "'Ar-beam o f 30MeV/u b i n a r y f i s s i o n e v e n t s have been measured i n c o i n c i d e n c e w i t h an outgoing p r o j e c t i l e fragment. For p e r i p h e r a l c o l l i s i o n s t h e l i n e a r momentum and t h e a z i m u t h a l a n i s o t r o p y have been d e t e r - mined. The c o r r e l a t i o n between t h e l i n e a r momentum t r a n s f e r and t h e v e l o c i t y of t h e p r o j e c t i l e g i v e s i n d i c a t i o n s f o r two r e a c t i o n machanism

.

The mechanisms of heavy i o n r e a c t i o n s change from deep i n e l a s t i c c o l l i - s i o n s o r complete f u s i o n a t low bombarding e n e r g i e s t o a hydrodynamical behaviour a t r e l a t i v i s t i c e n e r g i e s . I n t h e i n t e r m e d i a t e energy r e g i o n between 20 and 100 fleV/u t h e d i f f e r e n t p r o c e s s e s a r e however not y e t w e l l known.

A t t h e cyclosynchrotron SARA i n Grenoble heavy t a r g e t s , such a s Ta, Au and Th were used t o measure t h e t r a n s f e r of e n e r g y , l i n e a r and a n g u l a r momen- tum by ""r p r o j e c t i l e s i n p e r i p h e r a l f i s s i o n p r o c e s s e s .

P e r i p h e r a l c o l l i s i o n s were s e l e c t e d r e q u i r i n g a p r o j e c t i l e fragment w i t h 2>=12, which were i d e n t i f i e d w i t h an i o n i s a t i o n chamber ( I C ) a t a n g l e s between 6'- 13'. The d i r e c t i o n of t h e p r o j e c t i l e fragment t o g e t h e r w i t h t h e beam a x i s determined t h e r e a c t i o n p l a n e . A s e t o f 10 l a r g e a r e a p a r - a l l e l p l a t e d e t e c t o r s ( 20'<0<160°), measured t h e t i m e o f f l i g h t , t h e energy and t h e p o s i t i o n of heavy t a r g e t fragments.

Because of t h e small s o l i d a n g l e of t h e I C ( R = 6 msr) we t r i e d t o o b t a i n b e t t e r s t a t i s t i c s u s i n g an a n n u l a r I C and PPD (each o f them c o n s i s t i n g of 12 e-lements) and a s e t o f 6 q u a d r a t i c PPD's t o measure most o f t h e p r o j e c - ti1 fragments w i t h a AE

-

time of f l i g h t t e c h n i q u e . Furthermore 6 t e l e -

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1986414

(3)

JOURNAL

DE

PHYSIQUE

scopes were used to measure the charge and the energy of light-particles at angles between 13' and 120'.

In order to determine the angular momentum transferred to the target, we measured the azimuthal anisotropy (ratio of the yield at 180" and 9 0 ' ) of the fission fragments in relation to the reaction plane. Fig.1 shows, that this anisotropy is twice higher for Au than for Th.

Fig. 1

The azimuthal anisotropy for Th and Au

In addition the linear momentum p l l transferred to the target was deter- mined by measuring the folding angle of the two fission fragments, which were detected in coincidence with the projectile fragments. In Fig.2 the dependence of the azimuthal anisotropy on the linear momentum of the tar- get is shown. Because of the lower fission barrier of Th in relation to Au the anisotropy at low p l is higher for Au than for Th.

Fig. 2

The anisotropy in dependence of the linear momentum trans- ferred to the target for Th and Au

P, O F FlSSlONING SYSTEM (GEV/C)

(4)

In Fig.3 the correlation between the energy per nucleon of the projectile fragment and the folding angle of the fission fragments is shown. The arrow indicates p, ,=0. The folding angle of 120' corresponds to about 4 GeV/c. Projectile fragments with Zt17 remain at their initial velocity (30MeV/u) and therefore only small linear momenta can be transferred to the target. This reaction mechanism can be understood in the framework of fragmentation processes1.

With decreasing charge of the projectile fragment the linear momentum of the target increases and at the same time the energy per nucleon of the projectile is reduced.

For Z=8 this second process dominates, but there also remains a contribution of frag- mentation.

REFERENCES

Fig. 3

The energy per nucleon of the projectile fragment in dependence of the folding angle of the two fission fragments for Th

Références

Documents relatifs

This calculation supports the explanation that the enhance- ment of the ISOLDE data compared to the GSI data is partly due to low-energy fission produced in secondary reactions

The heavy nuclei exist only because shell effects create gaps in the density of single particle states and stabilise the nucleus against the liquid drop fission process: The

M. Leblanc, et al.. Gamma ray multiplicity in the quasi-fission of Cu + Au at 443 MeV.. La valeur obtenue croit avec le degré d’inélasticité. En tenant compte du moment

If all the fission fragments come in average from the same Z f is of the fissioning nucleus, then the average values for each Z of the experimental and calculated.. velocities

283 isotopes of elements gadolinium to rhenium in the mass range 147 to 184 are observed and cross sections measured.. All the fragments are formed by fission of excited parent

In order to avoid such systematic uncertainties in the final cross-sectional values, it was decided to use the U5b as reference target for the cross section in this neutron energy

Effects of the nuclear structure of fission fragments on the high-energy prompt fission γ-ray spectrum inH. 235 U(n_th,

This estimation procedure allows to consider various smoothness classes for the regression function and for the density g when the errors are either ordinary smooth or super smooth,