• Aucun résultat trouvé

GaSb-AlSb QUANTUM WELLS. ELABORATION AND OPTICAL PROPERTIES

N/A
N/A
Protected

Academic year: 2021

Partager "GaSb-AlSb QUANTUM WELLS. ELABORATION AND OPTICAL PROPERTIES"

Copied!
5
0
0

Texte intégral

(1)

HAL Id: jpa-00226734

https://hal.archives-ouvertes.fr/jpa-00226734

Submitted on 1 Jan 1987

HAL

is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire

HAL, est

destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

GaSb-AlSb QUANTUM WELLS. ELABORATION AND OPTICAL PROPERTIES

C. Raisin, L. Lassabatere, P. Voisin, C. Alibert, C. Ance

To cite this version:

C. Raisin, L. Lassabatere, P. Voisin, C. Alibert, C. Ance. GaSb-AlSb QUANTUM WELLS. ELABO-

RATION AND OPTICAL PROPERTIES. Journal de Physique Colloques, 1987, 48 (C5), pp.C5-155-

C5-158. �10.1051/jphyscol:1987530�. �jpa-00226734�

(2)

JOURNAL DE PHYSIQUE

Colloque C5, supplement au n O 1 l , Tome 48, novembre 1987

GaSb-AlSb QUANTUM WELLS. ELABORATION AND OPTICAL PROPERTIES

C. RAISIN, L. LASSABATERE, P. VOISIN*, C. ALIBERT*' and C. ANCE'

LESIC, Universitk des Sciences et Techniques du Languedoc.

Place Eugene Bataillon, F - 3 4 0 6 0 Montpellier Cedex, France ' ~ r o u p e d e Physique des Solides d e 1'Ecole N o m a l e Supkrieure, 24, Rue Lhomond, F-75005 Paris, France

t *

Equipe Micro-Opto-Electronique de Mpl, Bat. Recherche Phys., Universitk des Sciences et Techniques du Languedoc, Place Eugene Bataillon, F - 3 4 0 6 0 Montpellier Cedex, France

t .

. Spectroscopie U.V. des Solides, Universitk des Sciences et Techniques du Languedoc, Place Eugene Batdillon,

F-34060 Montpellier Cedex, France

RESUME

Nous pr6sentons les r6sultats de caracterisation des surfaces au cours de la preparation et les propribt6s optiques d l u n puits quantique.

ABSTRACT

We present the results of surface characterization with reipect to the preparation process and some optical properties relevant to the quantum well structure.

INTRODUCTION The mismatch. between GaSb and AlSb is small (* = 7.10-'). The interface is' strained, but this strain is not too high and therefore the interface quality is good enough to permit interesting studies of the effects induced by the strain. This paper is devoted to a strained GaSb-A1Sb single quantum well structure obtained by the confinement of a GaSb layer between two AlSb spacer layer (1). We describe the main features of the elaboration processes and present a study of the low temperature electroreflectance, reflectance and photoluminescence of a single GaSb-A1Sb quantum well.

ELABORATION. GaSb-A1Sb QW obtained by confinement of GaSb between two spacer layer of AlSb are type I hetero-interfaces system (2). It is necessary to be able to fabricate reproducible high qua1 i ty interfaces. We have used the Molecular Bean Epi taxy (MBE) growth process and a characterization technique capable of giving details about the quality of an interface. The home-made apparatus used consists of three chambers : a loading chamber, an analysis chamber and a deposition chamber (3). Transportation between chambers is carried out by a magnetically coupled transfer rod. The growth chamber is equiped with a RHEED system and a quadripolar mass-spectrometer.The analysis chamber allows AES and surface potential measurements 0 by the Kelvin probe ( 4 ) .

The GaSb (100) substrates were indium-soldered on to the sample holder and chemically polished in a Brrnne-Methanol solution. Then, they were heated at 580°C under Sb plus Sb4 flux, under these conditions the oxide film was removed, the surface A s clean and presented good RHEED pattern.

Article published online by EDP Sciences and available at http://dx.doi.org/10.1051/jphyscol:1987530

(3)

C5-156 J O U R N A L DE P H Y S I Q U E

The sample studied consisted of a sustrate with a 1 pin GaSb buffer layer, and a qupntum well grown with the following sequence : a 1 000 thick AlSb barrier, a 9 0

-

5

fl

GaSb well, 200 8 AlSb barrier and finally a 90 fl of GaSb passivation layer to prevent oxidation of AlSb. AlSb and GaSb were grown at 560" C with flux ratios V/III L 3 ; the growth rates maintained at = 1 ft/s. Under these conditions we observed the same surface reconstruction (1 x 3) during the growth of GaSb and AlSb layers. (see the fig. 3 insert).

SURFACES AND INTERFACES CHARACTERIZATIONS RESULTS. The growth was initiated onto oxide free smooth GaSb substrate surface Sb depleied (0.3 atomic-monolayer) and with residual carbon contamination less than 5.10- monolayer (fig. lb). The work function (WF) increases because of superficial oxide layer desorption (fig. 2).

The growth layer was monitored in situ using RHEED which provided information on both the film smoothness and the surface reconstructions. Spotty bulk -like patterns when the thickness of the layer is in the 20-70 E( range illustrate the rough growth due to substrate surface roughness (3). No further changes were observed in this pattern, which is characteristic of Ga(A1) stabilized (1 x 3) and Sb stabilized ( 2 x 3) or c (2 x 6 ) surface reconstructions. The work function topographies (T.W.F) are nearly flat (fig. 2), & inhomogeneities are smaller than 100 meV on GaSb and AlSb layers. Our TWF measurements indicate that WF (A1Sb)-WF (GaSb) S 200 meV.

FIGURE 1 : AES SPECTRA

a/ Chemical1 y polished GaSb

FIG. 2 : WORK FUNCTION TOPOGRAPHIES CHEMICALLY POLISHED (a), CLEAN SUBS- TRATE (b), GaSb (c) AND AlSb (d) epi- 1 ayers.

substrate.

b/ Clean GaSb substrate

C/ GaSb epilayer

(4)

The GaSb-A1Sb interface is studied during the formation by RHEED. The continuity of the diffraction streaks throughout the entire growth of the quantum well structure indicates the smoothness and abruptness of the hetero-interfaces despite the significant lattice mismatch. The study of physico-chemical and electrical caracteristics of GaSb-A1Sb interfaces are reported in this conference ( 5 ) .

OPTICAL PROPERTIES. The 30 K electroreflectance (ER) spectrum shown in fig. 131 exhibits several structures. The first one near 831 meV cqmes from the contribution of the exciton A - X in GaSb quantum well. Assuming 5x10-" for the EI~asb strain, 40 meV for the h8avy hole valence band offset E and standard values for the AlSb and GaSb band parameters [6], one obtains usingH the multi-band envelope function formalism [7] the energies of the main structures of the ER spectrum (LH1

+E

= 845

-

meV HH + E = 872 meV, HH +E = 1076 meV, LH +E = 1092 meV and LH -+E 11.26 eV [8$ ~eItweeh 0.92 eV and 21

g~

a three fold2 stTucture appears. lnl v&w of its anormalous electric-field dependence and the absence of expected QW transition in this energy range, this structure seems to be due to the surface quantum well formed by the 90

1

GaSb cap-layer. The three lines of the 2 K photoluminescence spectra shown in fig (3) are easily identified : at 779 meV the electron-acceptor e-A and at 796 meV the A - X bound exciton recombination in the bulk-like GaSb buffer 18~er. At 831 meV the Righ intensity line corresponds certainly to a recombination process within the GaSb QW. From comparison with the electroreflectance data it is clear that the QW luminescence arises from the recombination of exciton bound to shallow defects. The corresponding Stokes shift is 14 meV. The linewidth of = 20 meV results from the broadening and the spreading of the defect binding energies.

FIGURE 3 : ER SPECTRUM (-) AND

-

1

PHOTOLUMINESCENCE (....), FROM a

a

STRUCTURE SCHEMATIZED IN THE INSERT.

- i l ' . : : q y

~ P H ! ?

1

H " 2 - 3

L',

--,

\

j, ',J v"'-=r

-8 I ;* .

'..

:- ,

--

.. . . I

.

.

.

I . .

000 Pa) iOOO ID0

PHOTON ENERGY ( m a V )

Reflectance spectra has been performed in the 2-5 eV range for various temperatures. Fig. 4 shows the 4 K reflectance spectra. The reflectance structures correspond to transitions between higher band extrema of the GaSb (bulk, QW and cap-layer) or fundamental and higher extrema of AlSb (1000 A and 200 A spacers).

Energy transitions are obtained using second derivative technique on the reflectance spectra. In the low energy range as in bulk-GaSb the

E

transition occurs at 2.18 eV

L9]. The 2.16 eV structure corresponds to the E tradsition of the QW or the GaSb

cap-layer. For the E gap quantum effects are sAaller than near the E gap due to lower energy barrier2 and higher effective masses [lo]. So the observe8 20 meV red shift arises primarly from the strain which lowers the E, gao of the QW or GaSb cap-layer. The reflectance spectra also shows the E +

3

gap o f OaSb at 2.6 eV, the E, (2.94 eV), E + A (3.35 eV) gap of A1Sb. The s h c t re nezr4,4 2V corresponds to tne E edge of h a ~ b and AlSb. All these energies transitions are in agresnent with

bulk-{slues

[9,11,12,13].

(5)

C5-158 J O U R N A L D E PHYSIQUE

T=4K -

E l AlSb

i

/ E 2 '

r\

i\,

i

\

GaSb ,/lfi.. '1

b

1

\

1,

E l + A l

/ :tib !

e.

i , b h J '.

'.

I \

I I I 1 I

-

2.5 3.5 4.5 eY

FIGURE 3 : RifiECTAHCE FROM GaSb-AlSb QW STRUCTURE.

CONCLUSION. A h i g h q u a l i t y GaSb-A1Sb QW s t r u c t u r e has been grown. The q u a l i t y and p r o p e r t i e s o f surfaces and i n t e r f a c e s has been characterized w i t h respect t o t h e e l a b o r a t i o n process. These s t r u c t u r e s present n i c e e l e c t r o r e f l e c t a n c e , r e f l e c t a n c e and photoluminescence p r o p e r t i e s , t h e a n a l y s i s o f which can be c o r r e l a t e d t o confinement energy e f f e c t and t o t h e p l a s t i c r e l a x a t i o n o f AlSb spacer and s t r a i n e d GaSb l a y e r , c o n s i s t e n t w i t h mean f e a t u r e s o f t h e s t r u c t u r e .

Acknowledgements : LESlC (U.A. 787), GPS-ENS (U.A. 392), EM2 (U.A. 17) and Spectroscopie U.V. des Solides (U.A. 790) a r e "UnitCs AssociCes au CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE".

P. VOISIN, S u r f . S c i . 168, 546, 1986 and P. VOISIN, C. DELALANDE, G. BASTARD, M. VOOS, L.L. CPANG, A. SEGMULLER, C.A. CHANG and L. ESAKI, S u p e r l a t t i c e s M i c r o s t r u c t u r e s 1, 155, 1985.

L. ESAKI, Molecular Sean E p i t a x y and Heterostrirctures, L.L. CHANG, K. PLOOG Ed ; Martinus N i j h o f f Publishers, 1985.

C. RAISIN. B. SAGUINTAAH. H. TEGMOUSSE. L. LASSABATERE. B. GIRAULT, and C. ALIBERT; Ann. ~elecomnun. 4;, 50, 1986..

L. LASSABATERE, J.M. PALAU, E, VIEUJOT-TESTEMALE, A. ISMAIL, C. RAISIN, J. BONNET and L . SOONCKINDT, J. Vac. S c i . Technol. B l , 540, 1983.

C. RAISIN, H. TEGMOQSSE md L. LASSASATERE, Formation and properties o f MBE grown AlSb-GaSb (100) i n t e r f a c e s ( i n t h i s conference).

LANOOLT-BORNSTEIN, N m r i c a l d a t a and f u n c t i o n a l r e l a t i o n s h i p s i n science and technology, e d i t e d b y 0. MADELUNG, Group 111, v o l

.

17. (Springer-Verlag, 1982 1.

J.Y.. MARZIN, i n "Heterojunctions and semiconductor s u p e r l a t t i c e s "

,

e d i t e d by G. ALLAN, G. BASTARD. M. LANNOO and M. VOOS (Springer-Verlag, 1986), p. 161 ; J.Y. MARZIN and P. VOISIN, unpublished.

C. RAISIN, L. LASSABATERE, C. ALIBERT, 8. GIRAULT, G. ABOEL-FATTAH and, P. VOISIN. S o l i d S t a t e Comn ; 61, 17, 1987.

C. ALIBERT, A. JOULLIE, A.M. ;OULLIE and C. ANCE, Phys. Rev. 827, 4946, (1983).

M. ERMAN, J.B. THEETEN, P. FRILL:.W, 5. GAILLARD, F.J. HUA and C. ALIBERT.

Journal o f Applied Phys. 56, 32al (1984).

A. JOULLIE, B. GIRAULT, A: M. u W L I E and A. ZEIN-EOOINE.

Phys. Rev. B 25, 7830, (1982).

O.E. ASPNES, C.G. OLSON and 0.V. LYNCH Phys. Rev. 814, 4450, (1976).

M. CARDONA, K.L. SHAKLEE and F.H. POLLAK. Phys. Rev. 154, 696 (1967).

Références

Documents relatifs

This system was chosen as it is useful in infrared emission, finally, we introduce the optimum structure of quantum well to obtain the maximum optical gain, at room temperature

Electrical and optical investigations performed on type-II broken gap InAs/InSb/GaSb superlattices grown on GaSb substrate are reported.. Inter-miniband transitions are identified

We analyze theoretically the importance of the electron-electron interaction and the excitonic effects in the optical properties, keeping in mind the influence of

la présence de dislocations dans ces systèmes peut constituer un facteur de stabilité des dispositifs. En particulier, si ces dislocations s’organisent dans le plan

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des

- The optical and transport properties of flash-evaporated amorphous GaSb thxn films are described as a function of preparation conditions.. The results for

Fig.. modes of the SSQW expected on the basis of presently known behavior of the GaAs and A10,32Ga0.68As optical phonon branches. A detailed discussion of the

We have investigated temperature and magnetic field induced changes in the occupation of the r- and Gpoint minima of the conduction band of GaSb/AlSb quantum wells in the