• Aucun résultat trouvé

Nickel isotope fractionation during metal-silicate differentiation of planetesimals: Experimental petrology and ab initio calculations

N/A
N/A
Protected

Academic year: 2021

Partager "Nickel isotope fractionation during metal-silicate differentiation of planetesimals: Experimental petrology and ab initio calculations"

Copied!
21
0
0

Texte intégral

(1)

HAL Id: hal-02389834

https://hal.archives-ouvertes.fr/hal-02389834

Submitted on 29 Jun 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Nickel isotope fractionation during metal-silicate differentiation of planetesimals: Experimental petrology

and ab initio calculations

J. Guignard, G. Quitté, M. Méheut, M.J. Toplis, F. Poitrasson, D.

Connétable, M. Roskosz

To cite this version:

J. Guignard, G. Quitté, M. Méheut, M.J. Toplis, F. Poitrasson, et al.. Nickel isotope fractionation during metal-silicate differentiation of planetesimals: Experimental petrology and ab initio calcula- tions. Geochimica et Cosmochimica Acta, Elsevier, 2020, 269, pp.238-256. �10.1016/j.gca.2019.10.028�.

�hal-02389834�

(2)

OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible

Any correspondence concerning this service should be sent

to the repository administrator: tech-oatao@listes-diff.inp-toulouse.fr

This is an author’s version published in: http://oatao.univ-toulouse.fr/25154

To cite this version:

Guignard, Jérémy and Quitté, Ghylaine and Méheut, Merlin and Toplis, Michael J. and Poitrasson, Franck and Connétable, Damien and Roskosz, Mathieu Nickel isotope fractionation during metal-silicate differentiation of planetesimals: Experimental petrology and ab initio calculations. (2020) Geochimica et Cosmochimica Acta, 269. 238-256. ISSN 0016-7037

Official URL: https://doi.org/10.1016/j.gca.2019.10.028

(3)

!

% % ! #% %$!

% % % % %

% % "

+'` 1J@[=MS@U]`;`.LXDLYQ=`#+,` 1',` #,`.LXFZT=`M3J7=`

5.` 1J@[=MO@U]`9=`.LXDLYQ=`#+,` 1',` +`#,` 0XFXS=` N3J7=`

+!`/` %*,`$(` #,`/` `3DD^=`I@H`"LJOL` )` ` 0XFXS=`8=<``N3J7=`

"'"` #+,` 1"*``-M6LJJ=` 1J@[=MS@U_T` 2K@[=MS@U]` '@=MM=`=U`"3MA>`XMC` "XS]XI` &4U@LJ3D`9@OUL@M=`#3VXM=DH` '` ` ` MX=`X[@?` '3MBR` ` ` 3J7=`e

1G“9m¦cncAG¦W„9>czy9czy¦zP¦yc>lGn¦czzO¦a9¦;GGy¦GŸG…cwGy9nn ¦‚•9yc]GE¦9¦¦/¦žca¦zŸ `Gy¦_`9>ccG¦›9ƒ cy`¦

U„zw¦¦z¦!!¦9w¦9yE¦U|ƒ¦ƒ–y¦E•ƒ9czy¦U„zw¦¦z¦¦a¦'za¦lgyGc>¦9yE¦G‚™qc;ƒjš¦W„9>czy9czy¦a9›G¦;GGy¦–E cGE¦%¦žcƒG¦nzz¦G¦•¦ž9¦–GE¦cy¦žac>a¦aG¦wG9n¦ƒGGƒ›zcƒ¦c¦9¦•ƒG¦yc>lGo¦ždƒG¦aznEcy`¦9¦cnc>9G¦wGn¦EƒzpG¦zP¦9yzƒacG¦

EczcEG¦G–G>c>¦>zwzcczy¦)•ƒcy`¦aG¦>z•ƒG¦zP¦aG¦GŸG‡kwGy¦Ec\czy¦zP¦yc>lGn¦U„zw¦aG¦žcƒG¦z¦aG¦cqc>9G¦zD•ƒƒGE¦

8aG¦cxH>9nG¦z¦ƒG9>a¦>aGwc>9n¦G‚–cnc;…c•w¦ž9¦P3EGGyEGy¦9yE¦FLƒG9GE¦U„zw¦¦z¦¦az•ƒ¦9¦>zyEcdzy¦;G>9wG¦wzƒG¦

ƒGE•>cy`¦

8aG¦czzcI¦>zwcczy¦zP¦G9>a¦ƒOGƒ›zcƒ¦ž9¦EGGƒwjyGE¦; ¦1•nc>znnG>zƒ¦syE–>dœGn ¦(z–nGE¦5n9w9¦19¦6€>ƒzw¦

Gƒ ¦1(¦,(516¦9S‘Gƒ¦2c¦•ƒc]>9czy¦8aG¦czzcI¦>zwzcczy¦ž9¦U|–yE¦z¦;G¦>zy9y¦cy¦aG¦wG9nnc>¦žcŠ¦žac>a¦aGƒG¦

U|ƒG¦=a9›GE¦9¦9y¦cy]yc¦G¦ƒGGƒ›zcƒ¦3y¦aG¦>zyƒ9ƒ ¦ƒzy`¦lcyGi?¦U„9>czy9czy¦ž9¦z;Jƒ›GE¦gy¦aG¦cncAG¦wGq¦{2c¦Ezžy¦

z¦ " }~9w•¦ƒGo9c›G¦z¦aG¦9yE9ƒE¦-zzcI¦G‚–cnc;ƒc–w¦ž9¦ c>9qn¡¦ƒK>aGE¦9PGƒ¦¦az–ƒ¦+zƒ¦G‚–coc;ƒ9GE¦9w

eG¦9¦¦/¦ yz¦wG9n¦cnc>9G¦W„9>czy9czy¦ž9¦z;Gƒ›GE¦žcacy¦•y>G‡”9cy ¦64¦žca¦¤2c7fvfB$¦¦£¦

9w•¥8aGzƒGc>9n¦ An>•n9czy¦ zP¦ wG:n¦cnc>9G¦czzG¦ U„9>czy9czy¦9¦ G‚•cnc<ƒc•w¦ žGƒG¦ 9nz¦ GƒU|ƒwGE¦zy¦EcXGƒGy¦ wG9o¦

cnc>9G¦ Gw¦8aOG¦>9n>–n9czy¦>zy^w¦¦aG¦9;Gy>G¦zP¦U„9@“czy9czy¦9¦ac`a¦Gw€ƒ9•ƒG¦9yE¦¦9¦žKl¦GwGƒ9•ƒG¦

EGGyEGy>G¦U|ƒ¦2c¦czzcI¦U„9>czy9czy¦V|ƒ¦aG¦wG9n¦znc›cyG¦ 9yE¦wG9n¦ ƒzŸGyG¦9cƒ¦žca¦aG¦wG9q¦=cy`¦rc`an ¦nc`aGƒ¦

gzzcAnn ¦

3•ƒ¦GŸG…cwGy9n¦E99¦ žGƒG¦ ]y9nn ¦>zw9ƒGE¦žca¦y9•ƒ9o¦ 9wnG¦ 6z‹G¦ wGzcEG†cG¦zy ¦cƒzy¦ wGGz…cG¦ azž¦ 9¦

¤2c7hvhC>nzG¦z¦ GŸGˆcwGy9n¦ ›9n–G¦9¦G‚–cnc;ƒc—w¦žaGƒG9¦zaGƒ¦GŸac;c¦zdc›G¦wG9r¦cnc>9G¦U„9>czy9czy¦ a9¦

>z•tE¦ƒGTuM¦ljyGc>¦ƒz>OG¦(zy›GŒGn  ¦9nn9cG¦ Ecn9 ¦9¦ƒzy`¦yG`9c›G¦wG9n¦cngAG¦ Q‰>gzy9gzy¦8ac¦wz¦nclGn ¦

ƒG•n¦U„zw¦lcyGc>¦ƒz>OG¦žca¦2c¦EcY•czy¦U„zw¦aG¦cnc>9G¦z¦aG¦wG9n¦a9G¦E˜¦z¦9¦>a9y`G¦zP¦2c¦9ƒcczy¦>zG[>cGy¦

E–ƒcy`¦>zzncy`¦.y¦ac¦ƒGŽG>¦žG¦yzG¦a9¦cy¦aGG¦9nn9cG¦cƒzy¦czzG¦azž¦wG9n¦cnc>9G¦R‰>dzy9dzy¦b9¦c¦zzcG¦

EcƒG>czy¦z¦2c¦–zƒcy`¦aG¦cEG9¦zP¦lcyGc>¦czzG¦U„9>czy9czy ¦9z>c9GE¦žca¦+G¦2c¦cyGƒEcZ–czy¦

¢¦#¦*nG›dGƒ¦0’E¦&nn¦ƒc`a’¦ƒGNGE¦

\M:R`(C5H7JeCWNZNQWe*I2L7Z7WCK2IWe'7Z2e WCID52Z7e6C=8T7LZB2ZCNLe!`P7TCK7LZ2Ie P7ZTNIN?ae ".e 52I5\I2ZCNLe '<7NVCZ7We

NTT7WRL6BL?e2[Z@NTe2Ze$,*e0LC^7TWCZce67e.N\IN[X7e(,-e0+e(!-e/N\JN]7e"T2M7 I3@E`WGM=PP`F7T7Ka?\C?L2T6ET2PNKP7[e%e#[C?L2T6

@ZYS6NCNT? G?52

(4)

1. INTRODUCTION

Non traditional metal stable isotopes (e.g., Fe, Ni, Zn, Cu, Cr, Cd, Ga, Ge, Hg, Mo, U, W) have received growing attention over the past decade as they are powerful tools to trace (bio ) geochemical processes ranging from alteration at the Earth’s surface (e.g.McManus et al., 2002; Rouxel et al., 2003; Hohl et al., 2015; Noordmann et al., 2015;

Wang et al., 2016; Baronas et al., 2018) to metal silicate dif ferentiation in planets and asteroids (e.g.Poitrasson et al., 2005, 2009; Georg et al., 2007; Schoenberg and von Blanckenburg, 2006; Luais, 2007; Hin et al., 2013;

Bonnand et al., 2016; Kempl et al., 2016; Mahan et al., 2017; Liu et al., 2017; Bourdon et al., 2018).

Nickel (Ni) is the second most abundant element in the metallic cores of planetesimals and planets. It is thus an ele ment of major interest in the study of metal silicate differen tiation in the early solar system. Until recently, nickel isotopes have mainly been used for nucleosynthetic anoma lies applications (Quitte´ et al., 2006a; Regelous et al., 2008;

Steele et al., 2011; Render et al., 2018) and in radiochronol ogy (Shukolyukov and Lugmair, 1993; Quitte´ et al., 2011;

Tang and Dauphas, 2014) to date early events in the solar system based on the decay of60Fe to60Ni with a half life of 2.62 Ma (Rugel et al., 2009). Coupled with 26Al, 60Ni has also been used to quantify the available heat sources required for planetary melting, and thus to unravel thermal histories of meteorite parent bodies that accreted early in the protoplanetary disk (e.g. Tachibana and Huss, 2003;

Telus et al., 2018). Mass dependent fractionation of nickel stable isotopes in meteorites and planetary bodies has received much less attention than other elements such as iron and silicon, mostly due to technical and analytical issues. Nonetheless, for roughly ten years, analytical devel opments have allowed the study of stable nickel isotopes across a wide range of scientific fields, from biological (Cameron et al., 2009), to oceanic (Fuji et al., 2011;

Gueguen et al., 2016), environmental (Ratie´ et al., 2015a;

2016), planetary differentiation and cosmochemical pro cesses. First measured in the metallic phases (kamacite and/or taenite) of different types of meteorites (Quitte´

et al., 2006a; Cook et al., 2007; Dauphas, 2007; Moynier et al., 2007), nickel isotopic signatures exhibit large varia tions, from 0.05 to 0.30‰.amu!1. Similarly, the Ni iso tope composition also varies within meteorite groups, e.g., among ordinary chondrites or iron meteorites types (Gall et al., 2017and references therein). A fractionation is also observed as well in metal grains of CB/CH chondrites (Weyrauch et al., 2019). Last but not least, recent studies based on in situ measurements of nickel isotopes in silicate and metal phases in pallasites and mesosiderites show vari able metal silicate fractionation of nickel isotopes. In detail, pallasites exhibit negative metal silicate fractionation of nickel isotopes, from 0.106 ± 0.043 to 1.016

± 0.080‰.amu!1, whereas mesosiderites have positive metal silicate fractionation of nickel isotopes, spanning a narrower range, from 0.045 ± 0.009 to 0.170 ± 0.040‰. amu!1. These differences in sign, range and absolute values possibly reveal various processes such as equilibrium, kinetic (diffusion and/or volatility) (Chernonozhkin et al.,

2016, 2017). Thus, Ni isotope fractionation seems a power ful tool to unravel important questions in planetology.

However, nickel is strongly siderophile, which means that the Ni content in silicates is usually low. Nickel can be con sidered as a trace element in the main silicate minerals found in meteorites. For instance, nickel contents in mete oritic olivine is typically between 20 and 40 ppm in palla sites, but it can reach up to 0.25 wt% NiO in the olivines of more oxidized meteorites such as Rumurutiites (Petry et al., 1996). It is to note that in planetesimals, the main sil icate reservoir of Ni is olivine.

One of the key questions in planetology is whether the Ni isotope composition of the Bulk Silicate Earth (BSE) is chondritic or not. Based on various studies (Steele et al., 2011; Gueguen et al., 2013; Gall et al., 2017; Quitte´

et al., 2017; Klaver and Elliott, 2018), dNi values for the BSE span from 0.025‰.amu!1 to 0.115‰.amu!1 relative to chondrites. Hence it remains unclear whether the BSE and chondrites show the same isotopic composition within uncertainty or not, and nickel isotope data in planetary objects remain scarce. If this difference is confirmed, it could be explained by metal silicate differentiation. In par allel, the question can be tackled using an experimental approach. Contrary to iron, nickel is only present as Ni2+

in silicates. It can then help to decouple the various pro cesses responsible for isotope fractionation. According to Elardo and Shahar (2017), nickel is also an important ele ment to investigate, as it might be the ingredient controlling iron isotope fractionation during core formation. This remains a debated issue, however (Poitrasson et al., 2005, 2009; Chernonozhkin et al., 2016, 2017; Liu et al., 2017).

Until now, a single experimental study exists and explores the isotope fractionation of Ni in a metal talc system (Lazar et al., 2012). Besides metal silicate differentiation, Ni isotopes can be fractionated by volatile depletion pro cesses in a way similar to Fe and Si, as suggested by Quitte´ et al. (2017)to explain the differences in isotope sig natures between the Earth, the Moon, Mars and Vesta.

Indeed, nickel is a moderately volatile element that can eventually evaporate for long duration experiments at high temperature.

In the present study, high temperature (1623 K) experi ments have been performed under reducing conditions (fO2= 10!8.2and 10!9.9atm) to quantify kinetic and equi librium fractionations of nickel isotopes between a solid metal and a silicate melt under similar conditions. Accord ingly, most meteorites including pallasites, mesosiderites and primitive achondrites formed in a reducing environ ment (along the iron wu¨stite (IW) buffer to 5 log units below, i.e., from IW to IW 5). As stated above, Ni can only be present as Ni0 or Ni2+and its metal silicate partition coefficient depends on the oxygen fugacity. Hence, two dif ferent fO2conditions have been investigated in the frame of the present work. Additionally, first principles calculations were performed on different metal silicate mineral systems, namely Ni olivine and Ni diopside to determine theoretical equilibrium Ni isotope fractionation factors and their tem perature dependence. Both experimental and theoretical data are finally combined to interpret the variability of nickel isotopes signatures in meteorites.

(5)

2. METHODS 2.1. Experimental petrology

Experiments have been performed to approach metal silicate equilibrium in planetesimals. The metallic reservoir is a nickel wire 0.5 mm in diameter (Alfa Aesar, puratonic, 99.999%) and the silicate reservoir is a melt of anorthite diopside eutectic composition which corresponds to a good analogue of silicate composition in natural samples and that can cover a wide range of temperature under its liquid form. Pure Ni wire has been chosen instead of a Fe Ni alloy, more representative of a planetary metallic core, because Ni covers a wider range of fO2in its metallic form;

its solubility in the silicate glass is therefore easier to control under reducing conditions. Besides, using pure Ni avoids interactions between different elements such as Fe Ni inter diffusion processes or competition between both. A large batch of the glass ("50 g) was synthesized from reagent grade oxides (SiO2; Alfa Aesar, 99.8% and Al2O3; Acros Organics, 99+%, extra pure) or carbonates (CaCO3; Acros Organics, 99+% and 4(MgCO3)#Mg(OH)2#5(H2O);

Acros Organics, containing 40.39 wt% MgO). The starting mixture was first fired to 1073 1273 K for several hours to ensure complete dehydration and decarbonation. The mix ture was then melted in air in a platinum crucible at 1723 K for 2 hours, quenched and finely crushed in an alumina mortar. These steps were repeated twice to obtain a well homogenized glass as demonstrated by the multiple ("100) electron microprobe analyses of its composition (Table 1).

Time series experiments were performed using the wire loop set up. Glass droplets of approximately 30 mg were prepared and suspended on a Ni wire loop ($25 mg). In this setup, at high temperature, nickel diffuses from the wire to the silicate melt where its concentration rapidly reaches chemical equilibrium. For each experiment, 5 samples were loaded simultaneously in the furnace and quenched in air at different times, thereby allowing to quantify kinetic effects.

All experiments were performed at a single temperature (1623 ± 1 K). Two different oxygen fugacities (10!8.2 and 10!9.9atm; i.e., 2 and 3.7 log units below the Ni NiO buffer) were used, fixed by CO:CO2gas mixture. These conditions of temperatures and fO2have been chosen to mimic condi tions of metal silicate differentiation in natural objects. Run durations ranged from 30 minutes to 7 days (Table 2).

Replicate experiments were carried out in order to confirm the reproducibility of the experimental conditions and

results. In details, experiments at 24 hours were at least duplicated for both types of experiments.

2.2. Nickel separation and analysis

After experiments, the metallic wire and the silicate glass droplet were mechanically separated under a binocular microscope. Each part was then digested on a hotplate at 120 130!C for at least 3 days in a mixture of HCl, HF and HNO3with volume ratios 2:1:1 and 1:1:0.05, for metal and silicate, respectively, and in a total volume of 4 ml.

After digestion, samples were dried and then taken up in 2 ml of 6 N HCl twice to convert fluorides into chlorides.

A small aliquot of 5 % in volume was then saved for con centration analysis (using ICP OES and/or ICP MS) and the remaining solution was dried down again, ready for nickel separation.

The latter consists of four steps and follows the method developed by Quitte´ and Oberli (2006b). The main differ ence in the chemical separation between metal and silicate is that the dimethylglyoxime (DMG) step (see below) is not used for Ni wires. Briefly, the samples were re dissolved in 2 ml 9 N HCl and loaded on a AG1 X8 anion exchange resin. As nickel elutes immediately, it was directly collected in the load fraction. Elution was completed with additional 4 ml of 9 N HCl. After evaporation, the sample was taken up in 2 ml 2 N HCl and loaded once more on the same resin. Nickel elution was again completed with 4 ml of HCl 2 N. These two steps allowed efficient separation of iron and zinc, two elements that have isobaric interferences with nickel at masses 58 and 64 respectively. The dry sam ples were then dissolved in 5 mL of 1 N HCl and 1 ml of 1 N ammonium citrate and the pH was adjusted to 8 9 with a few drops of concentrated ammonia. The samples were subsequently loaded on a Ni specific resin containing DMG that complexes Ni and lets most of all other elements flow through the resin. Only few elements form chelates with DMG: Ni, Co, Cu, Pd and Pt. Copper and Cu were separated during the first step using AG1 X8 resin, hence they are not present in the Ni cut anymore. Contrary to Ni, palladium only reacts with DMG in acid solution, and platinum and Pd are anyway removed later during the separation procedure (see below). Elution of this Ni DMG organic complex was achieved by adding 12 ml of 3 N HNO3. In order to break the Ni DMG complex, a few drops of HClO4were added to the solution before it was evaporated to dryness. To destroy organic matter orig inating from the resin and residual DMG in the case of

Table 1

Starting composition of the silicate glass.

Expected starting composition (wt%) aMeasured starting composition (wt%)

SiO2 50.33 50.52(35)b

CaO 23.49 22.95(31)b

Al2O3 15.39 15.22(25)b

MgO 10.79 11.30(19)b

a Average value of measurements made on 100 electron microprobe points.

bNumber in parentheses indicate two standard deviation on the last two digits.

(6)

Ni rich samples, the dried samples were then dissolved twice in a 30% H2O2+ 16 N HNO3 (1 ml + 1 ml) mixture and evaporated again to dryness. Finally, the samples were taken up in 0.2 ml H2O and loaded onto a AG50W X8 cationic resin for a final purification step. The main goal of this third step using small columns is to remove organic matter, as well as Pt and Pd if any. Matrix elements were washed out with 2.5 mL of 0.2 N HCl and nickel was eluted with 0.5 ml of 3 N HCl and evaporated to dryness. The yield of this procedure was 95 ± 3%. The small loss of Ni occurred when using dimethylglyoxime (DMG) on the sec ond column and induced no Ni isotope fractionation as wit nessed by the isotope composition of the processed standard, similar to that of the unprocessed isotope standard.

Nickel isotope measurements were performed using a combination of the standard sample bracketing technique and Cu doping using a Neptune MC ICPMS (ThermoFis cher Scientific) in ‘‘medium resolution mode”, i.e., a resolv ing power M/DM"7000 (5 95% peak edge definition) at the Observatoire Midi Pyre´ne´es, Toulouse. A double spike approach was not used for Ni isotope analyses in this study to avoid clean laboratory and our instrument contamina tion. Besides this study, we also conduct in Toulouse the measurement of mass independent variations of Ni isotopes in cosmochemical samples, which are particularly sensitive to small uncertainties in 61Ni, 62Ni and 64Ni, especially when looking at nucleosynthetic anomalies. The Cu doping method adopted in this study has a reproducibility compa rable to that attained using a double spike approach. All

nickel isotopes (58, 60, 61, 62, 64) were measured simulta neously as well as57Fe and66Zn in order to correct for iso baric interferences of58Fe on58Ni and64Zn on64Ni. These corrections are efficient if the Fe/Ni and Zn/Ni ratios are lower than 0.1 and 10!3 respectively (Quitte´ and Oberli, 2006b). This is always the case for Fe/Ni ratios, but more difficult to control for Zn/Ni due to external Zn contamina tion, hampering the systematic use of64Ni.

After nickel separation and purification, samples were dissolved in 0.1 N HCl and their Ni concentration was adjusted to match within 10 % the concentration of the bracketing standard (an Aldrich standard solution). More over, in order to correct for the instrumental mass bias, copper (Cu) was used as an internal standard and an expo nential law was considered for the calculation. Copper was added both to samples and standards, typically to half the concentration of nickel. Hence, 63Cu and65Cu were mea sured in a second cycle during the run in dynamic mode (one cycle for Ni, Fe and Zn isotopes, the other for Cu).

60Ni is a radiogenic isotope whose abundance may vary in meteorites due to in situ decay of60Fe. We therefore pre fer to avoid 60Ni when reporting mass dependent isotope fractionation in meteorites or in experiments when the experimental data are dedicated to interpret results obtained in natural samples. Besides, once evidence is pro vided that the observed fractionation follows a mass depen dent law (see Fig. 2), the reported di/jNi ratio does not matter (iandjcan be any isotope of Ni). Reporting the iso tope fractionation per atomic mass unit (a.m.u.) should allow a direct and easy comparison with literature data.

Table 2

Experimental data.

Sample Temperature

(K)

Log fO2

(atm)

Time (hours)

Concentration (103ppm)a

bdNiM(a.m.u 1) bdNiS(a.m.u 1) DNiM S Replicatesc

Niwire 298 Air 0 103 0.25 (06) 7

Niwire+(An:Di)melt 1623 8.2 0.5 2.64 (49)d 0.25 (08) 0.77 (08) 0.52 (11) 6/4

Niwire+(An:Di)melt 1623 8.2 1 3.74 (77)d 0.27 (03) 0.80 (11) 0.53 (11) 5/5

Niwire+(An:Di)melt 1623 8.2 2 4.88 (60)d 0.26 (03) 0.98 (05) 0.72 (06) 3/4

Niwire+(An:Di)melt 1623 8.2 3 5.68 (98)d 0.26 (09) 0.42 (04) 0.16 (10) 5/3

Niwire+(An:Di)melt 1623 8.2 5 6.01 (43)d 0.23 (05) 0.40 (11) 0.18 (12) 4/5

Niwire+(An:Di)melt 1623 8.2 10.6 6.97 (41)d 0.28 (06) 0.38 (04) 0.10 (07) 3/4

Niwire+(An:Di)melt 1623 8.2 17.9 8.81 (16)d 0.27 (02) 0.39 (04) 0.13 (05) 3/4

Niwire+(An:Di)melt 1623 8.2 24 9.13 (17)d 0.21 (05) 0.21 (06) 0.00 (07) 4/5

Niwire+(An:Di)melt 1623 8.2 24 8.95 (11)d 0.26 (02) 0.33 (06) 0.07 (07) 3/4

Niwire+(An:Di)melt 1623 8.2 48 9.20 (38)d 0.27 (05) 0.30 (06) 0.03 (08) 3/4

Niwire+(An:Di)melt 1623 8.2 168 8.90 (15)d 0.13 (01) 0.14 (01) 0.01 (01) 3/3

Niwire+(An:Di)melt 1623 9.9 0.5 1.01 (02)e 0.25 (02) 0.74 (04) 0.50 (05) 3/3

Niwire+(An:Di)melt 1623 9.9 1 1.14 (01)e 0.26 (02) 0.62 (03) 0.36 (03) 3/5

Niwire+(An:Di)melt 1623 9.9 2.8 1.31 (01)e 0.24 (02) 0.39 (03) 0.15 (04 3/4

Niwire+(An:Di)melt 1623 9.9 24 1.35 (01)e 0.24 (03) 0.27 (07) 0.03 (07) 3/4

Niwire+(An:Di)melt 1623 9.9 24 1.34 (01)e 0.24 (02) 0.27 (01) 0.03 (03) 3/4

Processed Ni std 298 Air 0.0003 0.02 (02) 3

Glass + Ni std 298 Air 0.0003 0.01 (02) 3

a Numbers in parentheses represent 2SD on the last two digits, determined from at least three replicates.

b M = Metal, S = silicate melt.

c Metal/silicate.

d Measured by ICP OES.

e Measured by ICP MS.

(7)

This notation has already been used by different authors for, e.g., Cu, Zn, Ca, Ni.

All nickel isotopic ratios are reported relative to the Ni Aldrich standard corrected for mass bias using the internal standard, and expressed according to the following equation:

dNi!‰:amu!1"

¼

iNi=jNi

ð Þsample!Cu

corr iNi=jNi

ð Þstd!Cu

corr

1

! ( 1000

i j

ð Þ

where(iNi/jNi)sample-Cu corris the measurediNi/jNiratio in the sample corrected for the mass bias using copper and(i Ni/jNi)std-Cu corr is the average of the iNi/jNi ratio of the standards that bracket the sample in the analytical sequence, corrected from mass bias using copper.Measure ments of the Aldrich standard solution relative to the certi fied SRM986 isotope standard confirmed that both have the same isotopic composition (dNi = 0.05 ± 0.06‰. amu!1). A standard processed through the whole separa tion procedure shows an isotopic composition of 0.02

± 0.02‰.amu!1demonstrating that our nickel purification procedure does not fractionate its isotopes. The external reproducibility (2 SD) achieved on standard replicates over a year, i.e., "300 measurements, is 0.04‰.amu!1 and 0.07‰.amu!1 for d(62Ni/58Ni) and d(64Ni/58Ni), respec tively. Similar reproducibility is found on the nickel wire (dNistarting metal= 0.25 ± 0.06‰.amu!1, n = 7 replicates).

To check accuracy of the isotope measurements, a glass droplet comparable to those used for the experiments, but doped with our Aldrich Ni standard, was also processed:

it yields adNi of 0.01 ± 0.02‰.amu!1, undistinguishable from the matrix free processed and unprocessed standards.

Hence, isotope analyses are not hampered by matrix effects.

We also note that there is no evidence of correlation between the reproducibility and odd / even isotope pairs, indicating no significant mass independent fractionation effect, if any. The external reproducibility on the samples is calculated on at least three replicate measurements (Table 2). Finally, the nickel isotope fractionation between metal and silicate melt (DNiM-Sin amu!1) is expressed as:

DNiM!S¼dNiM dNiS; ð2Þ

withdNiMthe nickel isotope composition in the metal (in amu!1) and dNiSthe isotope composition of the silicate melt (in amu!1).

2.3. ab-initio calculation

A theoretical approach was also used to estimate the DNiM!S at equilibrium for different metal silicate systems with the aim to compare them with the experimental data, to refine the interpretation of the latter and to extrapolate to lower temperature conditions.

Equilibrium fractionation properties of condensed phases are expressed theoretically by theirbfactors, which are related to the change in free energy associated with iso topic substitution in a particular phase. The connection between the Dvalues and the bfactors is expressed via the isotopic fractionation between phases A and B:

DNiA!B¼1000 lnbNiA 1000 lnbNiB; ð3Þ

where lnbΝiA(B)are the so calledbfactors of Ni isotopes in phase A (respectively B).

bfactors of metal and silicate phases have then been computed from their phonon frequencies based on the gen eral theory (see e.g.Meheut et al., 2007).

For the metal (pure Ni, fcc structure), the phonon fre quencies were computed from first principles using density functional theory (DFT) (Hohenberg and Kohn, 1964;

Kohn and Sham, 1965). The calculation was based on the exchange correlation functional of Perdew, Burk and Ernz erhof (PBE) (Perdew et al., 1996), a plane wave basis set, and atomic pseudopotentials as implemented in the Quan tum Espresso package (Giannozzi et al., 2009). Pseudopo tentials used for Si, O, H are described in Me´heut et al.

(2007). The pseudopotential used for Ni comes from the GBRV (Garrity, Benneth, Rabe, Vanderbilt) pseudopoten tial library version 1.4 (Garrity et al., 2014), verified within the SSSP (Standard Solid State Pseudopotentials) effort (Lejaeghere et al., 2016).

For the silicate phases, the calculation may be more dif ficult. Indeed, insulators containing transition elements appear sometimes challenging to model, due to the failure of classical DFT methods to model strongly correlated elec tronic systems (Cococcioni et al., 2005). In this case, a + U correction might be necessary for the calculation to cor rectly reproduce the insulating behavior of these systems (Cococcioni et al., 2005). However, we note that the insulat ing materials considered in this study (Ni olivine and Ni diopside) were found to be insulators even without a +U correction, suggesting that this latter correction is not nec essary in the calculations (Zbiri et al., 2008). Therefore, in the present study calculations were performed without the +U correction. Finally, these different phases show com plex magnetic orders (Hagemann et al., 2000; Durand et al., 1996). In order to quantify the effect of this order, dif ferent tests have been performed on Ni olivine structure (see discussion in the Appendix). Such tests show that the type of magnetic order has a negligible effect on the calcu lated fractionation properties (Fig. 1 of the Appendix).

Following these considerations, in the rest of this study, the magnetic structure considered for Ni olivine is the one referred to as configuration 1 by Cococcioni et al. (2005) (who studied Fe olivine), as it is slightly better in reproduc ing experimental structure (see Appendix). For Ni metal and Ni diopside, a ferromagnetic structure was considered.

The structural parameters of Ni metal were found to be vir tually indistinguishable from experimental ones, whereas those of silicates were found to be 1 2% larger than the experimental ones, which is typical of this type of method (Table 1 of Appendix).

Electronic wave functions were expanded in plane waves up to an energy cutoff ecut= 60Ry for the metal and ecut= 80Ry for the silicates, and the charge density cut off set to 8ecut. The electronic structure integration was performed by sampling the first Brillouin zone with a 20(20(20 k points grid for the Ni metal, a 2(2(2 k point grid for Ni2SiO4 and a 2(3(2 k point grid for CaNiSi2O6.

The dynamical matrices were computed using the linear response ofBaroni et al. (2001), with the PWSCF package

(8)

C}P’’“¶|»^©»P» -))6»^²PV©´»±}ªz}’»@Bk»“’»\}p^ž^’ª v¡}\¤»“j»»¯c©“Ÿ¤» 4»³»4»³»4»n•Ÿ» G}» ^©P‹» -»³»-»³»-» n•Ÿ

G}K}·» -»³»/»³»-»rŸ»?PG}K}H Lz^»šz“’“’» s^¬^’»

V}^¤» ±^Ÿ^»ªz^’» “S©P}’^\»}’» P’´» š“}’©» “j»Ÿ^VƒšŸ“VP‰» ¤šPV^

¬¤}’v»©z^»¤©P’\Pž\»B“¬ž}^Ÿ»}’©^¡š“‹Pª}“’»©cz’}¬^»B“Ÿ»¤}"

}VP©^»Pª^Ÿ€PŠ¤»ª{^»¯~TŸPª~“’PŠ»šPŸª~ª€“’»t’V©~“’»±P¤»V“’»

¯^Ÿv^\»±}ªz»P»2»2»}’©^žš“Pª}“’»vžƒ\»±z}^»rŸ»^ªP‰

P»-)»³»-)»³»-)»y}\»±P¤»¬¤e»

?“’V^’ª¡Pª}“’¤»“j»G}»zP¯^»“’

´»S^^’»^P¤¬Ÿ^\»}’»S¬‰ˆ

¤}

}Y©^» v

P¤¦¤» Pjª^Ÿ» ¤Pš

^»\}v^¤©}“’» ¬¤}’v» D?J»HAK» Pª DJCJ»JP¡}¤»“ž»D?J»FK»Pª»ªz^»HFJ»L“¬

“¬¤^»\^š^’\}’v

“’»}’¤©Ÿ¬^’ª»P¯P}

PS}‹}ª´»LPS

^»-»»B}v»*»G}Vˆ^"

V“’»

V^’ªžP©“’» }’» ªz^» ±}Ÿ^»zP¤» ’“ª» S^^’» b¤¬ž^\» ¤}’V^» }ª» }¤»

P\^» “j» ¬

ªŸPš¬ž^» G}» B“Ÿ» ^²š^ž}_’ª¤» š^Ÿr¡^\» Pª jH

+)¥".»P©»B}v»

P»ªz^»G}»V“’V^’©ŸPª}“’» }’VŸ^P¤^¤

±}©z»©}^»s“»-2))»šš»Pjª^Ÿ»/)»}’¬ªi» “j»z^Pª»ªŸ^Pª»

^’ª»Pª»*2-/»

©“»¸6)))»šš»Pj©^Ÿ»*36»z“¬Ÿ¤»B“ž»

“’v^Ÿ

\¬ŸPª}“’¤»V“’V^’ªŸPª}“’»Ÿ^P}’¤»V“’¤©P’ª»Pª»Eb¤ª»¬š»ª“»04 z“¬Ÿ¤»¤¬vv^¤ª}’v»©zPª»Vz^}VP‹»^¬}‹}SŸ}¬»}¤»Ÿ^PVz^\»B“Ÿ

^²š^ž^’©¤»š^Ÿo•Ÿ^\»¬’\^ž»“ž^»Ÿe¬V}’v»V“’\}ª}“’¤»}^

jH

+)

P©»B}v»

S»©z^»G}»V“’V^’©ŸPª}“’»}’VŸ^P¤^¤

s“» +)))»šš» Pjª^Ÿ» )1» z“¬ž¤» “j» z^Pª» ªŸ^P©^’ª» ª“

+/))»šš»Pjª^Ÿ»-4»z“¬ž¤:»B“Ÿ»

“’v^ž»©}^¤»¬š»ª“»-0»z“¬ž¤

ªz}¤»V“’Z’©ŸPª}“’»ž^P}’¤»¤ªPS

^»Lz¬¤»Vz^‚WP

"

^¬}‹}S»

Ÿ}¬»}¤»Ÿ^PVz^\»¸»2»ª}_¤»nR¤©^ž»¬’\^ž»ªz^¤^»“Ÿ^»Ÿ^\¬V}’v V“’\}ª}“’¤»Lzi^» Ÿi¬‰ª¤»Pž^»}’»¯^Ÿ´»v““\»PvŸ^^^’©»±}ªz

šŸ^¯}“¬¤»¤ª¬\}i»“’»©z^»¤“

¬S‹}©´» “j»G}»}’»P» ¤}‹}Yª^» ^

ª

“j»¤}}

PŸ»V“š“¤}ª}“’»P©»¯P¡“¬¤»©^š^ŸPª¬Ÿ^¤»P’\»“²´v^’

n­vPV}ª´»V“’\}ª}“’¤»¤^^»A»/»}’»@}’v±^‹‹»^©»P

» +660

B“Ÿ» bVz» ^²š^¡`’©» ªz^»}¤“ª“š}a»V“š“¤}ª}“’¤» “j»©z^

^ªP"±}ž^»P’\» “j»ªz^»¤}}VPª^»^‰ª»zP¯^»Sf’» \^ª^Ÿ}’e

P’\» Pž^» šŸ^¤^’ª^\»}’»MPS^»-»B}v¤»-»P’\» /»Lz^»¤ªPŸª}’v

^ªP" G~!;» zP¤» P» V“š“¤}©}“’» “j» ”G}!"

)-1»

))2P¬,»^P¤¬Ÿe»“’»3»Ÿ^šƒVP©^¤» D’»P„"¤Pš‰^¤

G}»}’»S“©z» ^ªP"P’\» ¤}‰}VP©^»}¤» }¤“©“š}VP‹‹´» ‹}vz©^ž»V“£»

šPž^\»©“»ªz^»SŸPVˆ^ª}’v»¤ªP’\PŸ\¤<»ªz^}ž»”G}»¯Q‹¬^¤»ŸP’v}’v s“» )-4»©“» ) */—™P¬"j–Ÿ»“’v^¤©»^²š^ž}‘`’ª»¤^^

^²šP’Pª}“’» S^“±» rŸ» ªz^» ^ªP‰» P’\» o “» )64» ª“

)*0˜™P¬"rŸ»ªz^»¤Y©^»^©»LPS^»-»P»ªzŸ^^»

}¤“©“š^»\}PvŸP»5G}»¯¤»” G}»G»\P©P»š“ª»“’»P»P¤¤

\^š^’\^’ª»sPVª}“’Pª}“’»’^»±}©z»P»¤“š^»“j»)623»

))21 V“’¤}\^Ÿ’v»P’\»^žž“Ÿ»SPŸ¤»“’»bVz»š“}’©»?“’¤}\^žƒ’v

\}lm^Ÿ^’ª»\P©P¤^©¤»rŸ»^PVz»šzP¤^»\¬ž}’v»ˆ}’^©}V»“Ÿ»^¬}}S»

Ÿ}¬»^²œŸ^’©¤»¤z“±»ªzP©»¤“š^¤»P’\»^žž“Ÿ»SPž¤»©zPª»PŸ^

}’»ªz^»¤P^»ŸP’x»“j»ªz^»±z“^»\PªP¤^ª»B}v»-»Lzgž^ª}VP‰

^¬}}U¡}¬» ¹» P’\» ˆ}’^©}V» ¹» ^²š“’^’ª¤» zP¯^» P¤“

S^^’»VP‹X¬ŽP©^\»P’\»Ÿ^š“Ÿª^\»}’»P  ¬,»PV[Ÿ\}’v»ª“»©z^

rŽ“±}’v» ^¬Pª}“’¤» “]^\» o “»N“¬’v» ^ª» P!» -))- B}v»-7»

›» =» %Œ$'O&>'8#9»³» 0

i

i

i

i

i

ii

i

i

ii

i

i

i

i

º

/ Gi,i

@!iiPf0i2YKi i i i i

i +.i i i

h"i,i i.iii2[i i i

'EB ii &aOH\YEOLiO<i-Ei7OM9LYV1YEOLiELiRSiELiYC9iWEHE71Y9iK9HYi bEZCi ZEK9i1L8iAViYDiYbOiWY_F98iOcdB9Li?^B17EYdi7OL8EYFOLWi1i i gi 1ZKi 1L8i 4i i gi 1YK i$6KE71Hi9U\EHE4VE]Ki EWi V917598 1<Y9Vi iCO\VWi?QViYC9iKOWYiOcE8EeFLBi7OL8FYEOLWi1i1L8i1>Y9ViOLHdi i CO\Vi ELi YC9i OYC9Vi 71Xi 4 i )Li 4OYCi 71XWi 7ONLZV1YEOLWi K91W\V98i 1Yi 9U]EIE4VE`i 1V9i ELi a9Vdi BOO8i 1BV:K9LYi bEYCi YC9i WOH]4EHEYdiO=i-EiELiWEIE71Z9iK9IYibEYCiWEKEH3Vi7OKTWEYEOLi71H7\I1Y98i

=VOKiYC9iWOH\4FHEYdiH1bi1<Z9Vi%ELBb9HHi9Zi 1H ii i

³»

1

±z^Ÿ^»}¤» ©z^» P¤¤»“j» P»v€¯^’»€¤“©“š^»¹"P’\» ¹…"PŸ^

r¬’\»©“»S^»¯^ž´»V“¤^»Ÿ^¤š^V«¯^´»)66-»P’\»)640:»ªz^ž^»

n•Ÿ^»“’»¤¬Vz»’PŸž“±»žP’v^»“j» }¨ª“š}a»V“š“¤}ª}“’»ªz^´

Pž^» SPŸ^´» \}¤©}’v¬}¤zPS^»B}v» -»B}’P‰µ» SP¤^\»“’» ªz}¤

/»}¤“ª“ši»š“©»“’»P»’Pžž“±»ŸP’v^»“j»[š“¤}©ƒ“’»©z^»V¬Ÿ

Ÿ^’©»P’P´©ƒVP"šŸ^V¤}“’»\“^¤»’“ª»š^Ÿ}ª»©“»\}¤V¬¤¤»©z^»“Ÿ}»

v}’» ˆ}’^©†X» P’\(“ž» h¬}}SŸ}®» “j»ªz^» “S¤^Ÿ°^\» }¤“©“š^

¯PŸ}P©}“’¤»B}v»-»\}lm^Ÿ^’ª»¤‹“š^¤»rŸ»ªz^»\}p^Ÿ^’©»¤¬S¤^©¤

Lz^» ^¯“¬©}“’» “j» }¤“ª“š}a»V“š“¤}ª}“’¤»”G}» “j»^PVz

Ÿ^¤^Ÿ¯“}Ÿ»¢¤š^V©¯^´»”Gƒ"P’\»5G}¤»rŸ»^ªP‹»P’\»§‹}VPª^

±}©z»ª}^»P’\»rŸ»ª±“»\}lm^Ÿ^’©»“²´v^’»n­vPV}©´»V“’\}ª}“’¤

}¤»¤z“±’»}’»B}v»/P»S»B“ž»©z^»^ªP"Ÿi^ž¯“}Ÿ» s“»I»ª“

04»z“¬Ÿ¤»“j z^Pª»ªŸ^Pª‘_’ª»P’\»±zPª^¯^Ÿ»©z^»“²´v^’»uvPV»

}©´»V“’\}«“’¤»”G"ž^P}’¤»V“’¤ªP’©»±}ªz}’»¬’V^ŸªP}’ª}^¤

”G}"

)-1»

))1—™P¬,» P’\» }’\ƒ¤ª}’v¬}¤zPS^

s“»©z^»¤ªPž©’v» ^©P"”G w» "

)-1»

P¬,»’»

3»Ÿ^š‡XPª^¤»LPS^»-»B}v»/P»S»B“Ÿ»ªz^»¤}

VPª^»o PV©}“’¤»”G}¤»}¤»¤©Ÿ“’v´»©}^»\^š^’\^’ª»P’\»Sd“^¤

z^P¯}^ž»±}©z»ª}_»\¬ž’v»ªz^»qŸ¤ª»-0» z“¬ž¤»¤©PŸª}’v»s“

¯P‰¬^¤»Pª» )33»

))4—™P¬"Pjª^ž»/)»}’¬©i»\^VŸ^P¤

}’v»ª“» )64»

))1P¬"Pjª^ž»-»z“¬Ÿ¤»P©»jH

+)

(9)

>“uŸ “zŸ Ÿ'>u–>S“HˆŸ #Ÿ az–‰Ÿ 1zˆŸ lzw_HˆŸ

ŠbuHŸbwŸ“aHŸ‰>w`Ÿ#Ÿ“zŸ#)Ÿaz–ˆŸ{6bŸGzHŸwz“ŸH™zl™HŸ–_Ÿ

_H“bw_Ÿ“a>“Ÿb’“zƒcIŸH‡–bob@‰b–uŸbŸˆH>BaHGŸ;aHŸ>uHŸ“‰HwGŸ

bŸ]–wGŸ]‰ŸH›…‰buHw“Ÿ>“Ÿ lzšH‰ŸT8

>“uŸ]ˆŸ#Ÿ

az–‰Ÿ;aH‰HWˆHŸ >wŸ H‡—blb@‰b˜Ÿbz“z…ŸW‹>B“bzw>“bzwŸ ZBŸ

“z‰ŸzUŸ-7dŸzUŸ Ÿ$>u–Ÿ AH“šQwŸuH“>mŸ>wG

blbB>“HŸ a>Ÿ @HHwŸ bwWO‰‰HGŸ ^zuŸ Gb[H‰Hw“Ÿ #ŸaŸ >wGŸ #)ŸaŸ

H›ƒHˆbuNw“ŸH›ƒHˆbuHw“Ÿ >“Ÿ'"Ÿ4Ÿ>wGŸ T8

>“uŸ

X‰Ÿ #ŸaŸ >wGŸ #)ŸaŸ ƒH‰W‰vNGŸ “šbBHŸ =b“abwŸ –xDHˆ“>bw“œŸ

“aH‰HŸbŸ“a–ŸwzŸuH“>lŸbtbB>“HŸuHl“ŸW‹>B“bzw>“bzwŸzTŸ6bŸczŸ

“zƒHŸ>“ŸH‡–blb@‰b˜Ÿ–wGH‰Ÿ“aHHŸBzwGb“bzwŸ

2zšH™H‰Ÿ]‰Ÿ“aHŸlzw_H“ŸH›…‰buHw”>lŸˆ–wŸcHŸ“Ÿ

')Ÿ

az–‰Ÿ@z“aŸuH“>lŸ>wGŸ blbB>“HŸuHl“Ÿbz“zƒHŸBzuƒzb“bzwŸ

H™zl™HŸ “zš>‰GŸ lb_a“lœŸ aH>™bH‰Ÿ Bzu†b“bzwŸ {6b

"Ÿ>u– >wGŸ {6bŸ

#Ÿn‚>u–

‰HƒHB•b™HlœŸ;abŸbwGbB>“HŸ“a>“Ÿlb_a“Ÿbz“zƒHŸ>‰HŸƒ>‰“b>llœŸ

lz“ŸTŒzuŸ“aHŸz™Hˆ>llŸuH“>oŸŸblbB>“HŸœ“Hu ŸšabBaŸu>œŸ

bw“H‰ƒ‰H“HGŸ >Ÿ“aHŸ‰H–l“ŸzTŸ >Ÿ u>llŸ >uz–w“Ÿ zSŸ 6bŸ3zŸ @œŸ

™zl>“blb“œŸ bwŸ “aHŸ zƒHwŸ H›ƒH‰buHw“>lŸ œ“HuŸ >Ÿ >o‰H>GœŸ

z@Hˆ™HGŸbwŸ “aHŸ B>HŸ zSŸ b‰zwŸ bz“z…Ÿ bwŸ bubl>‰Ÿ œ“HuŸ

9‰bHŸ H“Ÿ>lŸ )Ÿ5z‰Hz™H‰Ÿ >BBzˆGbw_Ÿ“zŸ=>w_ŸH“Ÿ>lŸ

**#Ÿ>wGŸ;–Bacœ>u>Ÿ>wGŸ1–icuz“zŸ**%Ÿ“aHŸH™>ƒz‰>Ÿ

“b™HŸ3zŸzTŸb‰zwŸƒˆHWO‰Hw“b>llœŸzBB–‰ŸbwŸuH“>lŸ“a>“ŸbwŸ“aHŸbrŸ

bB>“HŸ 2zšH™H‰Ÿ 6bŸ ˆHu>bwŸ “aHŸ >uHŸ šb“abwŸ

–wBH‰“>bw“bHŸ>ŸGH“H‰ubwHGŸW‰Ÿ#ŸaŸ z‰Ÿ#)ŸaŸH›ƒHbuHw“Ÿ

bHŸ 6bŸ

Ÿ>u–Ÿ –__H“bw_Ÿ “a>“Ÿ “aH

“buHElHŸV‰Ÿbz“zƒbJŸ‰HŸH‡–blb@‰>“bzwŸzTŸ“aHŸ>uƒlHŸbŸZ“HˆŸ

“a>wŸH™>ƒz‰>“c™HŸ3zŸzSŸwbBjHlŸ

yeCkKpŸ h|”}„KŸ

;aHŸ H™zl–“czwŸ šb“aŸ “Hu…ˆ>“–‰HŸ W‰Ÿ <Ÿ,Ÿ#Ÿ zTŸ

‰HG–BHGŸƒ>‰“b“bzwŸY€wB“bzwŸˆ>“bzŸ>ozŸB>llHGŸžŸZB“zˆŸzT zTŸuH“>lŸ>wGŸblbB>“HŸbŸbll–“‰>“HGŸbwŸ1b_Ÿ#Ÿ1zˆŸ>llŸ

ƒa>HŸžŸW?B“zˆŸGHB‰H>‘ŸlcwH>‰lœŸšb“aŸcwB‰H>bw_Ÿ“HuƒH‰>Ÿ

“–ˆHŸbHŸGP‰H>bw_Ÿ n;!Ÿ5H“>Ÿ6c~Ÿz‰Ÿ1H~ŸH›ab@b“ŸlzšHˆŸ

žŸZB“zˆŸFuƒ>ˆHGŸ“zŸblbE“HŸubwH‰>fŸšaH‰HŸ6bŸbŸƒ‰HHw“Ÿ

>Ÿ6b(Ÿ Bzwb“Hw“lŸšb“aŸ“aHŸˆ–sLŸzTŸ“a–u@ŸˆHl>“bw_ŸW‹>BŸ

“bzw>“bzwŸ>wGŸ ‰HGz›Ÿ“>“HŸ:Ba>–@qHŸ #ŸHHŸ>lzŸGbB–Ÿ

bzwŸ bwŸ “aHŸ .ƒƒHwGb›Ÿ PŸ Ÿ 1zˆŸ “aHŸ q>““HˆŸ 6bŸˆbBaŸ

zlb™bwHŸ 6b:b8 z‰“az‰azu@bBŸ “‰–B“–‰HŸ >wGŸ 6bŸˆbBaŸ

ƒœˆz›HwHŸ0>6b:buzwzBobwbBŸ“‰–B“—‰HŸ>‰HŸ@>‰HlœŸGbŸ

“bw_–ba>@lHŸ>“Ÿ>wœŸ“HuƒHˆ>“—ˆHŸ–__H“bw_Ÿ“a>“ŸwgBjHlŸbzŸ

“zƒHŸ a>™HŸ bubl>‰Ÿ ƒ‰zƒHˆ“cHŸ ‰H_>‰GlHŸ zSŸ “aHŸ “‰–B“–‰HŸ

>wGŸBzuƒzb“bzwŸzTŸ“aHHŸ>waœG‰z–ŸblbB>“RŸ

1ˆzuŸ “aHŸ B>lB–l>“bzwŸ zTŸ “aHHŸ žŸV?B“z‰Ÿ H‡–blb@ˆb–uŸ

uH“>nŸblbB>“HŸV‹>B“bzw>“bzwŸ6bŸa>™HŸ@HHwŸGH“MŽubwHGŸ

>Ÿ >Ÿ WwB“bzwŸ zSŸ “Hu…ˆ>“–‰HŸ >wGŸ ˆHƒz‰“HGŸ bwŸ >u–

1b_Ÿ &Ÿ/H“Ÿ\“Ÿ“zŸ “aHŸElB–l>“bzwŸW‰ŸuH“>lŸzlb™bwHŸ>wGŸ

uH“>nŸƒœˆz›HwHŸœ“HuŸ>‰HŸGHBˆb@HGŸ@œŸ“aHŸH‡–>“czw+Ÿ

Q

P .0

J0 4 B1

2

Q

!

% (

* - Q

-GC6:HH:7QHM3@73F7HQ

*;@/;=<53K8Q?8>K#QI=CD8Q%Q!!QNQQ

(E/<>;53L8Q?8=L"QI>CD8Q&QNQ Q

+<A,8M3#QH=CD8Q'Q QNQ Q OQ)E,9K3$QH=CD6Q%QQu|

I>CD8Q#Q

!%|vwxyz

!% !! - * ( % ! !|

3TP|#| <RhH|Tj`k`cD|CT>Ph>\|2>k>|NaZ[`r| kQD|khD]C|DscFkDC|M`h|\>jj|CDcD]CD]l|Lh>BlT`]>kT`]|TD|>|ZT_|rTkQ|>|jY`d|Dgm>Z|k`|"| ?Z>BV|

ZT]D|7`]P|>]C|jQ`hk|C>jSC|ZT]Dj|hDchDjD]k|WT]DlTB|{X^|

,+&|>]C|DgmTZT?iUo|{

,,#|jZ`ej|B>ZBm[>kG|rTkQ|lRD|Nai\mZ>j|`L|=`m]P|

Dl| >Z|# #|>]C|>hD|?>hD[t|CTjlT]PmTjQ>?ZD|`]|k@Tj|h>]PD|`M|p>ZmDj|2>k>jDk|Mbh|D>B@| cQ>jD|@>j|?H]|jcZTk|?DkrH]|WT]DkTB|>]C|DgmT[T?hTm\|

DscDhT\D]kj|;Z`cDj|>]C|Dhh`hj|#;2|Q>qD|?H]|CDkDh\T]DC|M`h| D>B@|jm?|C>k>jDl|B`]jUCJT]P|Dhh`h|Ahj|`]|?`kQ|>]C|5]|>]t|B>jD|Tk| Tj|

T\fjjT?ZD| k`|BZD>hZt|CTjkT]PmTjQ|?DlrI|WT]DkUB|>]C|DgmTZT?hTm\|DOEkj|:Y`lkDC|Dhh`hj|>hD|#;2| 2>iW|PhH]|BThBZDj|

WT_lTB|jTZTB>kD|\DZk.|

8TPQk|PhI|BThBYDj|

DgmT[T?iTm\|jTZTB>kD|\D[l/|hDC|BThBYDj|

WT]DlTB|9T| rThD|`h>]PD|BThBZDj|

DgmT[T?hTm\|9T| rThD/|C>hW|?ZnD|BThBZK|

?h>BW|

DkT]P|jk>]C>hCj|ZTPQk|?[mD|BThBYD|

jl>]C>hCj|ch`BDjjDC|`]|B`Zm\]j|

(10)

J

| -.%

-.&

-.5

•J;

-). Uõø–zÓ×ÑÂ|å

h#.% ف ãø

% &ø 5ø ; Ÿ #% #& #5 #;

.

-% ºø òø

¯øœKø­øKøšj{›{ø®øKKø

÷øUñ& —ó?˜Ž??ëŽ???ø

Ìø -i5ø öø -i.;

-#ø h#%

§

5W

&

n

%

# #W %

jøôUz҈ÔÁ»äÆ

Úø´ø

%W

ªí£ø

sîsø

n

#

ì#øø % 5 ; ) m% m& )5 );

²+køMkø O\ DøÝø7ø8¦O3øø7 øÖø7 ‹ø!øYƒ ø2ø øZ_4ø8Søu4ø N$Møyø2ø…

4ø2ø81dø4ø LN$Møyø2ø…¤ø

Løø tïtøø±ø1ø ø$¸·øø 7 ø8Ëø¹1ˆ ø$SøO ø>4ø7Çø Š!3D1!øø €2ø¿`‚øL¨øÛø$&

>!fø>!ø ø>ø~ 3 ø Š! 31!JøO\ ø‰ø7øYø øZ_ø øøFÍø ø!++ +øøÏ34

‹ F3ø1 >FTø`€ }ø\ Dø4‰ø7øYøD ø ø ø4+ aøF31 ø¶ ! 2ø ß! 1!øZ_øø3øF a +2ø+‚ ø`>ø~ Dø‡! ø8fø+ aø dJø

A

c)

)./q/øQø

:/rø Qø

A

c)

A¥&øQø‘ø:B/øQø ’

q

Xøø *Ræø Œø Gø ø ÅÊ (ø Hø ø 'ø Pø øøH]ø*^øEøçøøø(“

ø ø ð0[žø G'ø *Rø ¬I@¡ø

ø l/Il™ø AB:oø,øø CøøÞ9ø*^øEøGgøø rI@

ø BI@*^øø(èø vø 0ø "E

=ø <†ø ,0"=<9ø ø ø Àø ]ø ø à øøø(øCø0,(éøøeø

,((ø ø â9ø Cøø †'ø ]Eø ,"Õøø”ø:))øø"ø/9øPÐÈø0³=<ø½(øá„ø øø[GøøØø*àgø'ø*R :b@ø&øøBb@ø AB:oøv øø0"=<øøøøøø*Rø

ø„øøEøøÎ'66øø(

'ø Gø ,"ø /eTø êø ø H'ø

¾ø 0"=<ø ø ¢VPø Éø H'ø,X wø "'¼669ø ø ø *Ü6ø Cø VP,"ø /9

"(Tø Ä'[ø øXw"øøøøø0"=<

(øøø6øHø'6ø ø ŒøC

(11)

jI¡C;sC’u;l|{‹¡—lj¡|’„¡I˜€LˆlyI{;s¡G;;¡;¡lŽ|€lJ¡Iƒ’l¡

sl>„l’y¡ž4l

¡œ¡!;y’. Ÿ8jI„I]~„I¡—ljl{¡

’{CI„;l{lI‹¡ >|j¡ |’„¡ I˜€I„lyI{;s¡ ;{G¡ jS„IlC;s¡

;€€„|;CjU¡;i„II¡—lj¡I;Cj¡|jI„¡0li‹¡ C¡;{G¡# ¡

.˜€I‡lyI{‹¡;{G¡

C;sC’u;l|{‹¡g|y¡jl‹¡ ‹’Gš¡

‹j|—¡j;¡’{GI„¡C|{Gll|{‹¡„ItI–;{¡|¡yI;s¡‹lslC;I¡GlZ\I„¡

I{l;l|{¡l{¡€s;{II‹py;s‹¡lI¡jlij¡Iy€I„;’„I¡ & ¡

;{G¡{Iislil>sI¡€„I‹‹’„I¡IaIC‹¡{lCqIt¡l‹||¡W„=Cl|{;l|{¡

;¡ Iƒ’lsp>‡l’y¡ l‹¡ {Iislil?sI¡ —lj¡ ž4l

7¡ –;s’I‹¡ |X¡ ¡

œ¡!;y’

l{¡ |’„¡ I˜„lyI{‹¡ ;{G¡ $};y’

l{`„„P¡ h|y¡ C=sC’s;l|{‹¡ 8;>sI¡¡

0li‹¡ C¡;{G¡

# ¡,I‹lGI‹¡l{¡ I˜€I„pyI{‹¡;;l{zK{¡ |Y¡l‹||€lJ¡Iƒ’lsl>¡

‡l’y¡l‹¡{|¡X5

GI€I{GI{¡0li¡ ¡—jI„I;‹¡CjV{lC;s¡Iƒ’l¡

sl>„l•¡ l‹¡ 0li¡ ¡ 9jl‹¡ X5

GL€I{GI{CI¡ |Y¡ CjIylC;s¡

Iƒ’lsl@„l’y¡l‹¡G’I¡|¡ jI¡ –;„l;l|{‹¡|Y¡yI;s‹lslC;I¡€;„l¡

l|{l{i¡CdClI{¡—jlCj¡l‹¡jlijI„¡;¡y|„I¡„IG’Cl{i¡C|{Gl¡

l|{‹¡ sNGl{i¡|¡ _‹I„¡ ’„;l|{¡ |X¡‹lulC;I¡;¡ u|—I„¡X5

7›Ÿ

5{¡ jI¡ |jI„¡ j;{G¡;;l{yI{¡|X¡ l‹||€lJ¡Iƒ’lsl@„l’y¡ l‹¡

{|¡ GI€I{GI{¡ |{¡ jI¡€;„ll|{¡ EIdClI{+¡ jI„If„I¡l‹|¡

|€I¡ Glb’‹l|{¡ C|{l{’U¡ ;YI„¡ CjIynC;s¡ Iƒ’ltl>„p’y¡ l‹¡

„I;CjIG¡ ;‹¡s|{i¡ ;‹¡ Iy€I„;’„I¡ lI¡ GlZ[’‹l|{¡ C|IelI{¡

l‹¡jlij¡I{|’ij¡

9|¡jI¡>I‹¡|X¡|’„¡r{|—tPiI¡>If„I¡jI¡C’„„I{¡—|„q¡;¡

‹m{isI¡I˜€L„myI{;s¡‹’Gš¡j;‹¡AII{¡€’Asm‹kIG¡|{¡4m¡m‹||€I¡

g;Cl|{;l|{¡B—II{¡yI;s¡;{G¡‹lspC;I¡3;›;„ I¡;s¡¡

2{¡j;¡‹’Gš¡p‹||€I¡h;Cl|{;l|{¡>I—II{¡;¡‹š{jIlC¡4l¡

;sC¡ l‹||€lC;ssš¡ ‹€lqIG¡ ;{G¡ 4l¡yI;t¡ {;’„;s¡ l‹||€lJ¡

;>’{G;{D ¡—;‹¡I‹py;IG¡’‹p{i¡jI¡j„Q¡l‹||€I¡yIj|G¡

l{¡ ;¡ €l‹|{¡ Fsl{GI„¡ ;€€;„;’‹¡ ;¡ GlaI‰{¡ Iy€I„;’„I‹¡

]†|y¡ (( ¡|¡ ( ¡ „Is;l–Isš¡ s|—¡ €„I‹‹’Š¡ Ÿ¡ ¡ 16; ¡

;{G¡ |˜šiI{¡ ^“i;Clš¡>’cM„IG¡ ;„|’{G¡jI¡4l4l5¡T’lsl>¡

‡l’y¡:{GI„¡jI‹I¡C|{Gll|{‹¡H¡'4l

‘<x¡lI¡H

4l%

4l

Œ ¡ —;‹¡ f’{G¡ |¡ >I¡ ‹š‹R;lC;ssš¡ ‚‹ll–I¡ ;{G¡ |¡

GIC„I;‹I¡ —lj¡ l{C„Ol{i¡ Iy„;’„I¡ h|y¡ !"¡¡

|¡ )¡œ¡ ¡H9¡ !¡-|{‹lGI„l{i¡jI¡yI;s¡;sC¡

‹š‹Iy¡3=›;„ I¡;t¡¡GIy|{‹„;IG¡j;¡jI¡g;Cl|{¡

;l|{¡ C|’vG¡ B¡ C;wC’s;P¡ ;‹¡

$œ¡™¡  /˜„;€|s;l|{¡’‹l{i¡jl‹¡Iƒ”l|{¡‹j|—‹¡

j;¡jI¡W‡;Cl|{;l|{¡_C|„¡;¡C|„I¡y;{sI¡>|’{G;„š¡C|{¡

Gl…l|{‹¡ l‹¡ {Iislio@sI*¡ ž4l¡ yI;s¡;sC¡ l‹¡ ;y’

;¡

;{G¡ –;„lI‹¡ >I—II{¡ $¡ ;{G¡ !$;y’

f„¡

:&&&Ÿ 0?'%Ÿ

\l†l‡c”ˆlŸRŸ

0%&&Ÿ I&%Ÿ G(&Ÿ

4!FŸ

4">Ÿ

4"9Ÿ

%HŸ

%FŸ

%>Ÿ

%:Ÿ

%DŸ

Pm

œOfe‚‚ŸK;))/Ÿ

œOnp„iŸ];-;Ÿ

žžžX}b|–|€oSr2$CPMEzXN<*1@Ÿ

žžžZ™‰ƒ—hoTrPo… 2A[w,ŸQ=)*JŸ

š^sƒ~Ÿtd#Šd{‘ŸaŸN;+3BŸ

UxqjgŸ`vy‹ŸŒ’•k˜Ÿ

,6|–|€oV|[zYŸŽ’•k™Ÿ

Z™‰ƒ—hoLWxy,Ÿ_uyŸ“•k™Ÿ

5"DŸ

*NL v v 6v1@>p>vNj`k`dNAvd6fkNkN`]vEm^kN`]vf6kN`juvG7=k`fjv`Fv N]v>NHI@g@]kv\O_f6PvjeN@jvfC@q6]kvJ`fvdT6]@kDN\6Ujvk6U=v6jv6 FXYZ[=lN`]v`Evl@\d@f6lnf@v =6U=nU6l@>v9tvlM@v )*3v\@kM`?v *`fv=`\d6fNj`]vuvE8=l`fjv`Ev*@v>@k@f\N]@>v9tv/1,52v/oU@6fv1@j`]6]l ,]@U6jkQ=v5vf6tv2=6kk@fN]Lv6f@vjM`r]vKbfv jN\NT6fv jdBN@jv %&Ud @kv6U v "v%v4jXYZ[c6v@kv6U v #v%v.6=Sj`]v@kv6Wv

!$v%v)6mdM6jv@kv6Uv v uvG7=k`fjv N]=f@6j@vrNkMv`sN>6kN`]vjl6l@v`Ev/NvGi`\v/Nl`v/N6jvr@UUv6jvGbfv*@vuvG7=k`fj '@jN>@jv6vjO\NU6fv9@M6qN`fv=6]v<v`9j@fq@>vE`fv`UNqN]@v6]>vdtf`s@]@v=`]k6NvaN]LvOf`]v`hv]N=S@Vv/O2N06]>v(6/N2O06f@vn]>OjkN]LnOjM6:U@v

(12)

%& ((

q q q q q

q

*%,"q*K *Qq

q

10@1Y@0U:MJdG4U0AC;Z:K4d +(d

10@1Y@0U:MJdG4U0AO^QN[4K4d+&d

`b%X?9d5Sd0D d -%.!d G6V0@M@<Z9L6d+&-%."d abG7T0@O_R\7L8d+'-'.#d

cd$]O4P>H4KU0Bd2/U0ddd)d *0Wd4Td0AdG4T0@U0E1 d4[Od

q d q

$LFqq #k[SgfM[Yq[>qeG8qX8e0SqcLSL50e8qMc[e[]8q@b05eL[Y0eL[Yq @25e[aq0eq8`gNSL3aLiqp+LqLYq 0Xgq q0cq0q>gY5eM[Yq[>qf8X]8a0ega8q.G8qX8f0U [VLjLY8]oa[n8Y8qBb05eL[Y0eL[Yq)0ccq68]8Y68Yeq@b05eL[Y0eL[Yq)!%q0a8q@\gY6qe[q38qY8F0fLk8q0Y6q8nea0][S0eL[Yq mNfGqe8X]8a0ega8qcH[mq0q m80Rq 68]8Y7Y5oq #n^aLX8Ye0Sq 60e0q [Yq X8f0Wqe0V5q (0aq 8fq 0Sq q 6[q Y[eq X0f5Gq [gaq eJ[a8eL50Sq 50S5gS0eL[Ycq [Yl9adSoq [gaq 8n]8aLX8Ye1Sq 60e0q _LYecq[Yq X8e0SqcLSL50f8qX8Seq0eq 4LFHqe8X]8a0ega8q0Fa;cqmLeHqeH8q50S5gS0eL[YcqmMfILYq8aa[aq 30acq [YfaL3geM[Yq[>qYg5S81aq E8S6qcHM>fq8C:ecq+$-#q40cq3;Yq51S5gV0e86q$hOq8fq0Sqq0Y6qMcqY[fqcLFZLAP50Yeqa8S0eNk8qe[qfJqf[e0Sq>a05fL[Y0eL[Yq/L6fIq[>qeHLcq5gaj8q cH[mcqeH8qk0aL03LSLeoq[?qeHLcq]a[5<cq@\aqeH8q6LD8a8YeqMc[e[]8cqa0eM[cq

y?gk?p5y{o?u† Nqig† † >i~h† yi† †,† -5ƒp† ?y† 5a†

† *?h:?†5y† y?gk?p5y{p?u†iI†g?y5a†uYaY:5y?† >YKP?p?hyY5†

yYih † Y?† 58i}?† yX?† g?ayYhW† kiYhy† iI† )?/Y† 5aai€† p?a?}5hy†

iI†ka5h?y?uYg5au†† †hi†g?y5a†uYaY:5y?†Nq5:yYih5†

yYih†iI†/Y†Yuiyik?u†~i{a>†i::{o†~YyXYh†5yz7Yh58a?†5h5a€yY:5b†

kp?:Ywih† *i~?}?p † iha€†z5a:†X5u†8Eh† Yh}?uyYW5y?>† ~X\a?†

yXYu†gYh?p5Z†Yu†hiy†p?kp?vhz7yY}?†iI†uYaY;y?u†V{h>†Yh†g?y?†

ipYy?u†(ih}?pu?c€ †yX?†ktu?hy†uy{>€†V:{vu†ih†iaY}Yh?†5h>†

k€pi?h?†y~i†iI†yX?†g5_ip†uYaY:5y?†kX5uG†iI†ka5h?yGYg5au†

&y† †( i{o† ?k?pYg@hyu† 5h>† :5a:{a5yYihu† uXi~†

p?uk?:yY}?a€† …/Y1†%††„†5g{ 5h>†

5g{}5a{?u† yX5y† 5o?† Yh† Wii>† 5Wp??g?hy† ~YyX† yXiv† iI -5‚5o†3,=I4U0BU0Fd%††„†5g{5y† yX?† u5g?

y?gk?p5y{o?† +hy?p?uyYhWa€ † g?y5a†z5a:† hY:`?a† Jr5:y[ih5y[ih†

>?:p?5u?u† ~YyX† Yh:o?5uYhW† y?glp5y{o?† ~XYa?† yX?† g?y5a†

iaY}YhBk€pi?h?†[h:pCu?u†)YW† † +y†Yu†5aui†gir?†y?gk?p†

5y{o?† >?k?h>?hy† [h† zX?† ;?† iI† yX?† g?y5a†y5a:† u€uy?g†

)YW††3XYu†>YR?p?h<†iI†8?X5}Yip†9y~??h†iaY}Yh?k€pi†

?h?†5h>†y5a:†Yu†hiy†yp[}Y5a†yi†Hka5Yh†8?:5{v†,=duYy?u†5p?†uYg†

Ya5p†Yh†yX?u?†kX5u?u†yX?†iha€†>YR?th:?†8?YhW†yX?†kp?u?h<†iI†

X€>pi€b†Wpi{ku†([h†y5a:†0h?†?ka5h5yYih†Yu†yX5y†yX\u†Yu†

p?a5y?>†yi†yX?†YhX?o?hy†aYgYyu†iI†yX?†yXt?†Yuiyik?u†g?yXj†[h†

yX?†>?y?pg[h5y[ih† iI† ?n{YaY8pY|g† Yuiyik?†Nq5:yYih5yYih† Vp†

g?y5b†iY>?† io† u\aY;y?† u€uy?gu† &u† o?}Y?~D† r?:?hya€†

(5i†5h>†'5i††'i{p>ih†?y†5a † †yXYu†?k?rYg?h†

y5a† 5kkpi5:X† g5€†aC>†yi†Yh:ioo?:y† F{YaY8pY{g†Nq5:yYih5†

yYih† N6:yipu† >{?† yi† u{T:Y?hya€† 5:={hy?>† Vp† `Yh?yY:†

?KO?:yu†Yh† yX?†yXp??†[xyik?†>Y5Wp5g4† .ip?i}?p † yX?†{u?†iI†

5†g?y5aaY:†:5m{a?†Wia>†Yh†yXYu†:5u?†>Yp?:ya€†Yh†:ihy5:y†~YyX†

5† g?y5afY:† u5gka?† [hypi>{:?u† 5† yXYp>† o?u?o}iYo† yX5y† g5€†

5KQ?:y† yX?† Yuiyik?† Nq5:yYih5yYih† iI† Yhy?p?uy† 3XYu† Uh>YhW†

~5u† Yh>??>† 5† g5_ip† pG{ay† iI† yX?† uy{>€† iI†-55p† ?y† 5a†

†yX5y† XYWXaYWXy?>† Vp† dihW† o{h† >{o5y[ihu† `Yh?yY:†

?R?:yu† :5{u?>† 8€† u{:X† Yhy?o5:yYihu† ){pyX?o† ?k?o[g?hy5e†

5h>† yX?ip?y[:5a† Yh}?uy[W5yYihu† 5o?† pF{Yp?>† Vp† h]:`?a† [ui†

yik?u† 5y† ai~† y?glp5y{o?† y?glp5y{p?† p5hW?† iI† †

†yi†:a5pYI€†yX?†p?5uihu†Vp†yX[u†>Yu:o?k5h:€†

( $(#$( "$$(('( !##(

.5uu†>?k?h>?hy†`Yh?y^:†Yuiyik?†Nq5:yYih5yYih†Yh†5†g?y5a†

uYaY:5y?†u€uy?g†:5h†8?†>{?†yi†>YKO?sAhy†koi<uu?u!††?}5ki†

p5yYih"††:X?gY:5b† >\S{uYih† Yh† 5† uYaY:5y?† g?ay"††Wo5Yh†

8i{h>5p€† >YKL{u\ih†Yh† uiaY>† uYaY:5y?u#††}ia{g?† >YKL{u\ih†

Yh† g?y5au$††yX?pg5a† 2ip?y† >YKL{uYih† Yh† uYf^:5y?† g?ayu†

/iy?~ioyX€† yX?pg5a† >YKM{uYih†Yh†g?fyu†Yu† g5h€† ip>?pu†iI†

(13)

magnitude faster than chemical diffusion (Richter et al., 2009). Whatever the process considered, light isotopes have a higher diffusion coefficient than heavier isotopes and migrate faster. Diffusion coefficientsDiandDjof two iso topesiandjof a given element, respectively, can be related to the massesmiandmjof the isotopes as follows:

Di=Dj¼ mi=mj

! "bDiff ð8Þ

withbDiffbeing the fractionation factor. The starting phase then becomes isotopically heavier, while the phase where Ni goes into is increasingly enriched in light isotopes. Diffusion processes explain for instance the Ni isotope signature of kamacite and taenite in iron meteorites (Quitte´ et al., 2006c; Dauphas et al., 2007): during cooling of the mete orite and exsolution of kamacite, Ni goes from the Ni poor kamacite into the Ni rich taenite, so that kamacite is isotopically heavier than taenite. Here, in our short duration experiments, a strong enrichment in light isotopes is observed in the silicate reservoir (dNiS= 0.98 ± 0.05‰. amu!1 after 2 hours of heat treatment). This enrichment corresponds to a kinetic isotopic fractionation between metal and silicate (DNiM-S= 0.72 ± 0.06‰.amu!1), that has a clear diffusive origin (Figs. 1 3andTable 2).

The kinetic isotope fractionation of nickel (coupled with iron) has been studied during Fe Ni interdiffusion in the course of alloying these two metals at 1GPa and 1473 1673 K in a piston cylinder apparatus (Watson et al., 2016). In situ measurements performed by these authors show an even stronger enrichment in light isotopes near the interface between the two initial reservoirs (dNi = 12‰.amu!1), which is expected since local mea surements unravel the spatial redistribution of isotopes along the diffusion profile. From these profiles, the magni tude of the kinetic effect can be modeled and parameterized (e.g., Oeser et al., 2015). Such modeling cannot be per formed using our bulk measurements, however. In the pre sent study, the interpretation of the data thus relies on the comparison of our nickel data with iron isotopes.

4.3. Comparison with results obtained on iron isotopes Nickel and iron share similar chemical and crystal chemical properties. This assertion holds for metallic Ni and Fe as well as for their divalent cations. In this respect, we thus discuss our new results on Ni isotopes using insights from the larger body of literature available on iron isotopes.

Several experimental studies have been performed on metal silicate isotope fractionation of iron at equilibrium.

In general, authors agree on the absence, within uncer tainty, of iron fractionation between metal (solid or liquid) and silicate melt, at least at temperatures above 1523 1570 K, pressure from 1 bar to 7.7 GPa and oxygen fugac ity from IW+3 to IW 2 (IW = Iron (Fe) Wu¨stite (FeO) buffer) (Roskosz et al., 2006; Poitrasson et al., 2009; Hin et al., 2012). This has also been shown at higher pressures using an alternative spectroscopic approach to determine fractionation factors (Liu et al., 2017). These experimental studies are in good agreement with meteorite investigations leading to the conclusion of the absence Fe isotope frac

tionation at equilibrium between metal and silicate under planetary core formation conditions (Poitrasson et al., 2005; Chernonozhkin et al., 2016, 2017; Jordan et al., 2019). A recent study suggested, however, that the iron iso tope fractionation factor becomes significant if a large amount of Ni is alloyed to iron (Elardo & Shahar, 2017).

For low Ni contents of ca. 5%, compatible with planetary cores though, the metal silicate Fe isotope fractionation factor found in this study is not significantly different from 0‰. A more recent work from the same group investigated the effect of the abundance of the third potentially abun dant element in planetary cores besides Fe and Ni, silicon, in the metal (Elardo et al., 2019). Here also, four out the five experiments produced did not generated notable Fe iso tope fractionation between metal and silicate. The chemical composition dependence (e.g., the amount of Ti in the sili cate) of iron isotopes fractionation is also in debate for oli vine/silicate melt system in which no evidence of this dependence has been observed (Prissel et al., 2018).

In metal silicate systems with only iron as metal, the value of high temperature equilibrium fractionation (in amu!1) between metal and silicate (DFeM-S) is close to zero (i.e., 0.20 ± 0.15‰inRoskosz et al., 2006; 0.016 ± 0.021‰ inPoitrasson et al., 2009, and 0.005 ± 0.020‰inHin et al., 2012). Our experimental data on nickel isotopes are similar to these Fe results, revealing no isotope fractionation at equilibrium at high temperature (typically T > 1600 K).

Turning to the temperature dependence, experiments on Ni isotopes may also suggest a possible positive fractiona tion factor. Despite being too small to be confirmed exper imentally, this issue may be discussed on the basis of our theoretical calculations. Reduced partition function ratios (bfactors) of iron isotopes have already been determined (Fig. 4) for several minerals and amorphous silicates and also for metal (Alp et al., 2001; Tsunoda et al., 2002), oli vine (Dauphas et al., 2012), pyroxene (Jackson et al., 2009), silicate glasses under reduced conditions (Dauphas et al., 2014) and spinel group minerals (Roskosz et al., 2015). Thebfactor of iron metal was always found to be lower than those of silicates, be they crystalline or amor phous, and even at high pressure (Liu et al., 2017). More over, the temperature dependence is more pronounced for iron than for nickel. It also appears thatbfactors of vari ous silicates (olivine, pyroxene, basalt) are undistinguish able within uncertainty considering Fe or Ni isotopes (Fig. 4). This similarity is true only when iron exhibits a divalent state in silicates. This is another independent con firmation that Ni and Fe share common crystal chemical properties, including local vibrational properties control ling isotope fractionation. It allows also us to safely use our DFT calculation for Ni on crystalline olivine and pyroxene as reasonable proxies for the silicate melt of our experiments.

Regarding the isotope redistribution during diffusive processes involving metal and silicates, iron isotopes were first studied during diffusion between an iron doped silicate melt and a platinum metallic reservoir, using a similar experimental set up to that of the present study (Pt wire loop or Pt crucible), at 1500!C, various fO2and from 30 minutes to 24 hours (Roskosz et al., 2006). In that case,

Références

Documents relatifs

In this work, metal-silicate partitioning experiments were carried out in a LH-DAC to measure the partitioning coefficients of sulfur and platinum between liquid iron and silicate

the expression of iNOS and eNOS at mRNA and protein levels, data altogether supporting eNOS uncoupling owing to major ROS accumulation and consecutive endothelial dysfunction,

L’ADN total du VIH-2 a été quan- tifié dans différentes populations cellulaires triées à partir des cellules mononucléées du sang périphérique (CMNS) chez 14

Le travail effectué au cours de ma thèse a consisté à développer un modèle numérique 3D de la structure et de l'évolution thermique d'un segment de dorsale lente basé

Furthermore, we assessed the impact of the three garden land-use types on soil fauna and multiple soil functions, related to food production and soil quality. The management of

Ensuite, j’essaierai d’oublier ce maudit lundi où tu nous as quittés, pour me souvenir de toi bien vivante, et de tous ces moments forts que nous avons partagés. Je t’embrasse

II Applications 81 5 Theoretical treatment of electronic isotope shifts parameters 83 5.1 On the breakdown of the Dirac kinetic energy operator for estimating the normal mass

Figure 1: a) Hydroxyl concentration profiles measured by FTIR after the partial hydration of nominally water-poor (8 ppm) silica samples at 1000°C. b) Associated D relative