• Aucun résultat trouvé

On some new fractional integral inequalities

N/A
N/A
Protected

Academic year: 2021

Partager "On some new fractional integral inequalities"

Copied!
12
0
0

Texte intégral

(1)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents JJ II J I Page1of 12 Go Back Full Screen Close

ON SOME NEW FRACTIONAL INTEGRAL

INEQUALITIES

SOUMIA BELARBI AND ZOUBIR DAHMANI Department of Mathematics

University of Mostaganem Algeria

EMail:soumia-math@hotmail.fr zzdahmani@yahoo.fr

Received: 23 May, 2009

Accepted: 24 June, 2009

Communicated by: G. Anastassiou

2000 AMS Sub. Class.: 26D10, 26A33.

Key words: Fractional integral inequalities, Riemann-Liouville fractional integral.

Abstract: In this paper, using the Riemann-Liouville fractional integral, we establish some new integral inequalities for the Chebyshev functional in the case of two syn-chronous functions.

(2)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents JJ II J I Page2of 12 Go Back Full Screen Close

Contents

1 Introduction 3

2 Description of Fractional Calculus 4

(3)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents JJ II J I Page3of 12 Go Back Full Screen Close

1.

Introduction

Let us consider the functional [1]:

(1.1) T (f, g) := 1 b − a Z b a f (x) g (x) dx − 1 b − a Z b a f (x) dx   1 b − a Z b a g (x) dx  ,

where f and g are two integrable functions which are synchronous on [a, b] i.e.

(f (x) − f (y))(g(x) − g(y)) ≥ 0, for any x, y ∈ [a, b] 

.

Many researchers have given considerable attention to (1.1) and a number of inequalities have appeared in the literature, see [3,4,5].

The main purpose of this paper is to establish some inequalities for the functional (1.1) using fractional integrals.

(4)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents JJ II J I Page4of 12 Go Back Full Screen Close

2.

Description of Fractional Calculus

We will give the necessary notation and basic definitions below. For more details, one can consult [2,6].

Definition 2.1. A real valued function f (t), t ≥ 0 is said to be in the space Cµ, µ ∈

R if there exists a real number p > µ such that f (t) = tpf1(t), where f1(t) ∈

C([0, ∞[).

Definition 2.2. A function f (t), t ≥ 0 is said to be in the space Cµn, n ∈ R, if f(n) ∈ C

µ.

Definition 2.3. The Riemann-Liouville fractional integral operator of order α ≥ 0,

for a function f ∈ Cµ, (µ ≥ −1) is defined as

Jαf (t) = 1 Γ(α) Z t 0 (t − τ )α−1f (τ )dτ ; α > 0, t > 0, (2.1) J0f (t) = f (t),

where Γ(α) :=R0∞e−uuα−1du.

For the convenience of establishing the results, we give the semigroup property: (2.2) JαJβf (t) = Jα+βf (t), α ≥ 0, β ≥ 0,

which implies the commutative property:

(2.3) JαJβf (t) = JβJαf (t).

From (2.1), when f (t) = tµwe get another expression that will be used later:

(2.4) Jαtµ= Γ(µ + 1) Γ(α + µ + 1)t

(5)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents JJ II J I Page5of 12 Go Back Full Screen Close

3.

Main Results

Theorem 3.1. Let f and g be two synchronous functions on [0, ∞[. Then for all

t > 0, α > 0, we have:

(3.1) Jα(f g)(t) ≥ Γ(α + 1) tα J

αf (t)Jαg(t).

Proof. Since the functions f and g are synchronous on [0, ∞[, then for all τ ≥ 0, ρ ≥

0, we have (3.2)  f (τ ) − f (ρ)  g(τ ) − g(ρ)  ≥ 0. Therefore (3.3) f (τ )g(τ ) + f (ρ)g(ρ) ≥ f (τ )g(ρ) + f (ρ)g(τ ).

Now, multiplying both sides of (3.3) by (t−τ )Γ(α)α−1, τ ∈ (0, t), we get

(3.4) (t − τ ) α−1 Γ(α) f (τ )g(τ ) + (t − τ )α−1 Γ(α) f (ρ)g(ρ) ≥ (t − τ ) α−1 Γ(α) f (τ )g(ρ) + (t − τ )α−1 Γ(α) f (ρ)g(τ ).

Then integrating (3.4) over (0, t), we obtain:

(3.5) 1 Γ(α) Z t 0 (t − τ )α−1f (τ )g(τ )dτ + 1 Γ(α) Z t 0 (t − τ )α−1f (ρ)g(ρ)dτ ≥ 1 Γ(α) Z t 0 (t − τ )α−1f (τ )g(ρ)dτ + 1 Γ(α) Z t 0 (t − τ )α−1f (ρ)g(τ )dτ.

(6)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents JJ II J I Page6of 12 Go Back Full Screen Close Consequently, (3.6) Jα(f g)(t) + f (ρ) g (ρ) 1 Γ (α) Z t 0 (t − τ )α−1dτ ≥ g (ρ) Γ (α) Z t 0 (t − τ )α−1f (τ ) dτ + f (ρ) Γ (α) Z t 0 (t − τ )α−1g (τ ) dτ. So we have (3.7) Jα(f g)(t) + f (ρ) g (ρ) Jα(1) ≥ g (ρ) Jα(f )(t) + f (ρ) Jα(g)(t).

Multiplying both sides of (3.7) by (t−ρ)Γ(α)α−1, ρ ∈ (0, t), we obtain:

(3.8) (t − ρ) α−1 Γ (α) J α(f g)(t) + (t − ρ) α−1 Γ (α) f (ρ) g (ρ) J α(1) ≥ (t − ρ) α−1 Γ (α) g (ρ) J αf (t) + (t − ρ) α−1 Γ (α) f (ρ) J αg(t).

Now integrating (3.8) over (0, t), we get:

(3.9) Jα(f g)(t) Z t 0 (t − ρ)α−1 Γ(α) dρ + Jα(1) Γ(α) Z t 0 f (ρ)g(ρ)(t − ρ)α−1dρ ≥ J αf (t) Γ(α) Z t 0 (t − ρ)α−1g(ρ)dρ +J αg(t) Γ(α) Z t 0 (t − ρ)α−1f (ρ)dρ. Hence (3.10) Jα(f g)(t) ≥ Jα1(1)J α f (t)Jαg(t),

(7)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents JJ II J I Page7of 12 Go Back Full Screen Close

The second result is:

Theorem 3.2. Let f and g be two synchronous functions on [0, ∞[. Then for all

t > 0, α > 0, β > 0, we have: (3.11) t α Γ (α + 1)J β (f g)(t) + t β Γ (β + 1)J α (f g)(t) ≥ Jαf (t)Jβg(t) + Jβf (t)Jαg(t).

Proof. Using similar arguments as in the proof of Theorem3.1, we can write

(3.12) (t − ρ) β−1 Γ (β) J α(f g) (t) + Jα(1)(t − ρ) β−1 Γ (β) f (ρ) g (ρ) ≥ (t − ρ) β−1 Γ (β) g (ρ) J α f (t) + (t − ρ) β−1 Γ (β) f (ρ) J α g (t) .

By integrating (3.12) over (0, t) , we obtain

(3.13) Jα(f g)(t) Z t 0 (t − ρ)β−1 Γ (β) dρ + Jα(1) Γ (β) Z t 0 f (ρ) g (ρ) (t − ρ)β−1dρ ≥ J αf (t) Γ (β) Z t 0 (t − ρ)β−1g (ρ) dρ +J αg (t) Γ (β) Z t 0 (t − ρ)β−1f (ρ) dρ,

and this ends the proof.

Remark 1. The inequalities (3.1) and (3.11) are reversed if the functions are asyn-chronous on [0, ∞[ (i.e. (f (x) − f (y))(g(x) − g(y)) ≤ 0, for any x, y ∈ [0, ∞[).

(8)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents JJ II J I Page8of 12 Go Back Full Screen Close

The third result is:

Theorem 3.3. Let (fi)i=1,...,n be n positive increasing functions on [0, ∞[. Then for

any t > 0, α > 0, we have (3.14) Jα n Y i=1 fi ! (t) ≥ (Jα(1))1−n n Y i=1 Jαfi(t) .

Proof. We prove this theorem by induction.

Clearly, for n = 1, we have Jα(f1) (t) ≥ Jα(f1) (t) , for all t > 0, α > 0.

For n = 2, applying (3.1), we obtain:

Jα(f1f2) (t) ≥ (Jα(1)) −1

Jα(f1) (t) Jα(f2) (t) , for all t > 0, α > 0.

Now, suppose that (induction hypothesis)

(3.15) Jα n−1 Y i=1 fi ! (t) ≥ (Jα(1))2−n n−1 Y i=1 Jαfi(t) , t > 0, α > 0.

Since (fi)i=1,...,n are positive increasing functions, then

Qn−1

i=1 fi (t) is an

increas-ing function. Hence we can apply Theorem 3.1 to the functions Qn−1

i=1 fi = g, fn = f. We obtain: (3.16) Jα n Y i=1 fi ! (t) = Jα(f g) (t) ≥ (Jα(1))−1Jα n−1 Y i=1 fi ! (t) Jα(fn) (t) .

Taking into account the hypothesis (3.15), we obtain:

(3.17) Jα n Y i=1 fi ! (t) ≥ (Jα(1))−1((Jα(1))2−n n−1 Y i=1 Jαfi ! (t))Jα(fn) (t) ,

(9)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents JJ II J I Page9of 12 Go Back Full Screen Close We further have:

Theorem 3.4. Let f and g be two functions defined on [0, +∞[ , such that f is

increasing, g is differentiable and there exists a real number m := inft≥0g0(t) . Then

the inequality

(3.18) Jα(f g)(t) ≥ (Jα(1))−1Jαf (t)Jαg(t) − mt α + 1J

αf (t) + mJα(tf (t))

is valid for all t > 0, α > 0.

Proof. We consider the function h (t) := g (t) − mt. It is clear that h is differentiable

and it is increasing on [0, +∞[. Then using Theorem3.1, we can write:

Jα(g − mt) f (t) (3.19) ≥ (Jα(1))−1Jαf (t)  Jαg(t) − mJα(t)  ≥ (Jα(1))−1 Jαf (t)Jαg(t) − m (J α(1))−1tα+1 Γ (α + 2) J αf (t) ≥ (Jα(1))−1 Jαf (t)Jαg(t) − mΓ (α + 1) t Γ (α + 2) J αf (t) ≥ (Jα(1))−1 Jαf (t)Jαg(t) − mt α + 1J αf (t). Hence (3.20) Jα(f g)(t) ≥ (Jα(1))−1Jαf (t)Jαg(t) − mt α + 1J αf (t) + mJα(tf (t)) , t > 0, α > 0.

(10)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents JJ II J I Page10of 12 Go Back Full Screen Close Corollary 3.5. Let f and g be two functions defined on [0, +∞[.

(A) Suppose that f is decreasing, g is differentiable and there exists a real number M := supt≥0g0(t). Then for all t > 0, α > 0, we have:

(3.21) Jα(f g)(t) ≥ (Jα(1))−1Jαf (t)Jαg(t)− M t α + 1J

αf (t)+M Jα(tf (t)) .

(B) Suppose that f and g are differentiable and there exist m1 := inft≥0f0(x) ,

m2 := inft≥0g0(t). Then we have

(3.22) Jα(f g)(t) − m1Jαtg(t) − m2Jαtf (t) + m1m2Jαt2 ≥ (Jα(1))−1 Jαf (t)Jαg(t) − m1JαtJαg(t) − m2JαtJαf (t) + m1m2(Jαt)2  . (C) Suppose that f and g are differentiable and there exist M1 := supt≥0f0(t) ,

M2 := supt≥0g0(t) . Then the inequality

(3.23) Jα(f g)(t) − M1Jαtg(t) − M2Jαtf (t) + M1M2Jαt2 ≥ (Jα(1))−1 Jαf (t)Jαg(t) − M1JαtJαg(t) − M2JαtJαf (t) + M1M2(Jαt)2  . is valid. Proof.

(11)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents JJ II J I Page11of 12 Go Back Full Screen Close

(B): Apply Theorem3.1to the functions F and G, where: F (t) := f (t)−m1t, G(t) :=

g(t) − m2t.

To prove (C), we apply Theorem3.1to the functions

(12)

Fractional Integral Inequalities Soumia Belarbi and

Zoubir Dahmani vol. 10, iss. 3, art. 86, 2009

Title Page Contents JJ II J I Page12of 12 Go Back Full Screen Close

References

[1] P.L. CHEBYSHEV, Sur les expressions approximatives des integrales definies par les autres prises entre les mêmes limites, Proc. Math. Soc. Charkov, 2 (1882), 93–98.

[2] R. GORENFLOANDF. MAINARDI, Fractional Calculus: Integral and

Differ-ential Equations of Fractional Order, Springer Verlag, Wien (1997), 223–276.

[3] S.M. MALAMUD, Some complements to the Jenson and Chebyshev inequali-ties and a problem of W. Walter, Proc. Amer. Math. Soc., 129(9) (2001), 2671– 2678.

[4] S. MARINKOVIC, P. RAJKOVIC ANDM. STANKOVIC, The inequalities for

some types q-integrals, Comput. Math. Appl., 56 (2008), 2490–2498.

[5] B.G. PACHPATTE, A note on Chebyshev-Grüss type inequalities for differen-tial functions, Tamsui Oxford Journal of Mathematical Sciences, 22(1) (2006), 29–36.

[6] I. PODLUBNI, Fractional Differential Equations, Academic Press, San Diego, 1999.

Références

Documents relatifs

Elle est également incluse en grande quantité dans la matrice osseuse (Schinke et al. Il se peut donc que l’uranium transporté soit lié à cette protéine dans le sang.. Figure

IW U i,t = f (deterrence i,t , policy i , production i,t , social i,t , weather i,t , N i,t , C) (2.3) Where i represents a municipality in which irrigators used water for produc-

D’autre part, je démontre ce que l’organisation industrielle peut apporter au champ de l’économie de la culture, non seulement dans le cadre de l’analyse des politiques

Mertens et al., “Gate-all-around MOSFETs based on vertically stacked horizontal Si nanowires in a replacement metal gate process on bulk Si substrates,” in 2016

In conclusion, the goal of this PhD dissertation is to bring together an analysis of employment responses to cash transfer programs in South Africa to draw lessons about the

The comparison of ratios between europium 2+ and 3+ species in salts of di fferent origins by means of core level photoemission and X-ray absorption matches the di fferences observed

Simulations showed that the eMAL algorithm applied to a light, small and low power antenna like the Middle Alva can provide a positioning error lower than 0.6 m for 90% of estimates

Due to high pressure technology and for a maximum reproducibility of cleaning step, we have chosen to develop an automatic way using supercritical carbon dioxide circulation alone or