• Aucun résultat trouvé

Dijet Azimuthal Decorrelations in pp Collisions at √s=7  [square root of s=7] TeV

N/A
N/A
Protected

Academic year: 2021

Partager "Dijet Azimuthal Decorrelations in pp Collisions at √s=7  [square root of s=7] TeV"

Copied!
16
0
0

Texte intégral

(1)

Dijet Azimuthal Decorrelations in pp

Collisions at √s=7� [square root of s=7]�TeV

The MIT Faculty has made this article openly available.

Please share

how this access benefits you. Your story matters.

Citation

Khachatryan, V. et al. (CMS Collaboration) "Dijet Azimuthal

Decorrelations in pp Collisions at √s=7��TeV" Phys. Rev. Lett. 106,

122003 (2011) © 2011 CERN, for the CMS Collaboration

As Published

http://dx.doi.org/10.1103/PhysRevLett.106.122003

Publisher

American Physical Society

Version

Final published version

Citable link

http://hdl.handle.net/1721.1/65857

Terms of Use

Article is made available in accordance with the publisher's

policy and may be subject to US copyright law. Please refer to the

publisher's site for terms of use.

(2)

Dijet Azimuthal Decorrelations in pp Collisions at

p

ffiffiffi

s

¼ 7 TeV

V. Khachatryan et al.* (CMS Collaboration)

(Received 26 January 2011; published 22 March 2011)

Measurements of dijet azimuthal decorrelations in pp collisions at pffiffiffis¼ 7 TeV using the CMS detector at the CERN LHC are presented. The analysis is based on an inclusive dijet event sample corresponding to an integrated luminosity of 2:9 pb1. The results are compared to predictions from perturbative QCD calculations and various Monte Carlo event generators. The dijet azimuthal distribu-tions are found to be sensitive to initial-state gluon radiation.

DOI:10.1103/PhysRevLett.106.122003 PACS numbers: 13.85.Ni, 12.38.Bx, 12.38.Qk, 13.87.Ce

High-energy proton-proton collisions with high momen-tum transfer are described within the framework of quanmomen-tum chromodynamics (QCD) as pointlike scatterings between the proton constituents, collectively referred to as partons. The outgoing partons manifest themselves, through quark and gluon soft radiation and hadronization processes, as localized streams of particles, identified as jets. At Born level, dijets are produced with equal transverse momenta pT

with respect to the beam axis and back to back in the azimuthal angle (’dijet¼ j’jet1’jet2j ¼ ). Soft-gluon

emission will decorrelate the two highest pT (leading) jets

and cause small deviations from . Larger decorrelations from  occur in the case of hard multijet production. Three-jet topologies dominate the region of 2=3 < ’dijet< ,

whereas angles smaller than 2=3 are populated by four-jet events.

Dijet azimuthal decorrelations, i.e., the deviation of

’dijetfrom  for the two leading jets in hard-scattering

events, can be used to study QCD radiation effects over a wide range of jet multiplicities without the need to measure all the additional jets. Such studies are important because an accurate description of multiple-parton radiation is still lacking in perturbative QCD (pQCD). Experiments there-fore rely on Monte Carlo (MC) event generators to take these higher-order processes into account in searches for new physics and for a wide variety of precision measure-ments. The observable chosen to study the radiation effects is the differential dijet cross section in ’dijet, normalized

by the dijet cross section integrated over the entire ’dijet

phase space: ð1=dijetÞðddijet=d’dijetÞ. By normalizing

the ’dijetdistributions in this manner, many experimental

and theoretical uncertainties are significantly reduced. Measurements of dijet azimuthal decorrelations at the Tevatron have previously been reported by the D0

Collaboration [1]. In this Letter, we present the first measurements of dijet azimuthal decorrelations in pp collisions at pffiffiffis¼ 7 TeV at the CERN Large Hadron Collider (LHC).

The central feature of the Compact Muon Solenoid (CMS) apparatus is a superconducting solenoid, of 6 m internal diameter, providing an axial field of 3.8 T. Charged particle trajectories are measured by the silicon pixel and strip tracker, covering 0 < ’ < 2 in azimuth and jj < 2:5, where pseudorapidity  ¼  ln½tanð=2Þ and  is the polar angle relative to the counterclockwise proton beam direction with respect to the center of the detector. A lead-tungstate crystal electromagnetic calorimeter and a brass-scintillator hadronic calorimeter surround the track-ing volume. The calorimeter cells are grouped in projective towers of granularity   ’ ¼ 0:087  0:087 at central pseudorapidities. The granularity becomes coarser at for-ward pseudorapidities. A preshower detector made of silicon sensor planes and lead absorbers is installed in front of the electromagnetic calorimeter at 1:653 < jj < 2:6. Muons are measured in gas-ionization detectors embedded in the steel magnetic field return yoke. A detailed descrip-tion of the CMS detector can be found elsewhere [2].

CMS uses a two-tiered trigger system to select events on-line: level 1 and the high level trigger. In this analysis, events were selected by using two inclusive single-jet triggers that required a level-1 jet with pT> 20

(30) GeV and a high level trigger jet with pT> 30

(50) GeV. The jets at level 1 and the high level trigger are reconstructed by using energies measured by the elec-tromagnetic and hadronic calorimeters and are not cor-rected for the jet energy response of the calorimeters. The trigger efficiency for a given corrected pT threshold

of the leading jet (pTmax) was measured by using events

selected by a lower-threshold trigger. For the event selec-tion, pTmaxthresholds were chosen so that this efficiency

exceeded 99%. The corresponding off-line corrected pTmax

values are 80 (110) GeV for the low (high) threshold jet trigger.

Jets were reconstructed off-line by using the anti-kT

clustering algorithm with a distance parameter R ¼ 0:5 [3].

*Full author list given at the end of the article.

Published by American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article’s title, journal citation, and DOI.

(3)

The four-vectors of particles reconstructed by the CMS particle-flow algorithm were used as input to the jet-clustering algorithm. The particle-flow algorithm combines information from all CMS subdetectors to provide a com-plete list of long-lived particles in the event. Muons, elec-trons, photons, and charged and neutral hadrons are reconstructed individually. As a result, the residual correc-tions to the jet four-vectors, arising from the detector response, are relatively small (at the level of 5%–10% in the central region) [4]. A detailed description of the particle-flow algorithm can be found elsewhere [5,6].

Spurious jets from noise and noncollision backgrounds were eliminated by applying loose quality cuts on the jet properties [7]. Events were required to have a primary vertex reconstructed along the beam axis and within 24 cm of the detector center [8]. Further cuts were applied to reject inter-actions from the beam halo. Events were selected having two leading jets each with pT> 30 GeV and rapidity jyj < 1:1,

where y ¼12ln½ðE þ pzÞ=ðEpzÞ, with E being the total jet

energy and pzthe projection of the jet momentum along the

beam axis. Each event is put into one of five mutually exclusive regions, which are based on the pTmax in the

event. The five regions are 80 < pTmax< 110 GeV, 110 <

pTmax< 140 GeV, 140 < pTmax< 200 GeV, 200 <

pTmax< 300 GeV, and 300 GeV < p

Tmax. The data

corre-spond to an integrated luminosity of 0:3 pb1for the lowest pTmax region and 2:9 pb1 for the other pTmax regions.

The uncertainty on the integrated luminosity is estimated to be 11% [9]. After the application of all selection criteria, the numbers of events remaining in each of the five pTmax

regions, starting from the lowest, are 60 837, 160 388, 69 009, 14 383, and 2284.

The ’dijetdistributions are corrected for event

migra-tion effects due to the finite jet pTand position resolutions

of the detector. The distributions are sensitive to the jet pT

resolution because fluctuations in the jet response can cause low-energy jets to be misidentified as leading jets, and events can migrate between different pTmax regions.

The finite resolution in azimuthal angle causes event migration between ’dijet bins, while the resolution in

rapidity can move jets in and out of the central rapidity region (jyj < 1:1). The correction factors were determined by using two independent MC samples: PYTHIA 6.422 (PYTHIA6) [10] tune D6T [11], andHERWIGþþ 2.4.2 [12].

The pT, rapidity, and azimuthal angle of each generated jet

were smeared according to the measured resolutions [13]. The ratio of the two dijet azimuthal distributions (the generated distribution and the smeared one) deter-mined the unfolding correction factors for each pTmax

region, for a given MC sample. The average of the correc-tion factors for each pTmax region from the two MC

samples was used as the final unfolding correction applied to the data. The unfolding correction factors modify the measured ’dijetdistributions by less than 2% for 5=6 <

’dijet< . For ’dijet =2, the changes range from

11%, for the highest pTmax region, to 19%, for the

lowest.

The main sources of systematic uncertainty arise from uncertainties in the jet energy calibration, the jet pT

reso-lution, and the unfolding correction. The jet energy cali-bration uncertainties have been tabulated for the considered phase space in the variables of jet pT and 

[4]. Typical values are between 2.5% and 3.5%. The result-ing uncertainties on the normalized ’dijet distributions

range from 5% at ’dijet =2 to 1% at ’dijet . The

effect of the jet pT resolution uncertainty on the ’dijet

distributions was estimated by varying the jet pT

resolu-tions by 10% [13] and comparing the ’dijetunfolding

correction before and after the change. This yields a varia-tion on the normalized ’dijetdistributions ranging from

5% at ’dijet =2 to 1% at ’dijet . The

uncertain-ties on the unfolding correction factors were estimated by comparing the corrections from different event generators andPYTHIA6tunes that vary significantly in their modeling of the jet kinematic distributions and ’dijetdistributions.

The resulting uncertainty varies from 8% at ’dijet =2

to 1.5% at ’dijet . The systematic uncertainty from

using a parametrized model to simulate the finite jet pTand

position resolutions of the detector to determine the unfolding correction factors was estimated to be about 2.5% in all pTmax regions. The combined systematic

un-certainty, calculated as the quadratic sum of all systematic uncertainties, varies from 11% at ’dijet =2 to 3% at

’dijet .

The corrected differential ’dijetdistributions,

normal-ized to the integrated dijet cross section, are shown in Fig. 1 for the five pTmax regions. The distributions are

scaled by multiplicative factors for presentation purposes. Each data point is plotted at the abscissa value for which the predicted differential ’dijetdistribution has the same

value as the bin average obtained by using PYTHIA6 tune D6T, which provides a good description of the data [14].

The ’dijet distributions are strongly peaked at  and

become steeper with increasing pTmax. The simulated

’dijet distributions from the PYTHIA6 (D6T and Z2 [15]

tunes), PYTHIA 8.135 (PYTHIA8) [16], HERWIGþþ, and MADGRAPH 4.4.32 [17] event generators are presented for comparison. TheMADGRAPHgenerator is based on leading-order matrix element multiparton final-state predictions, usingPYTHIA6for parton showering and hadronization, and

the Mangano method [18] to map the parton-level event into a parton shower history. The MADGRAPH predictions included tree-level processes of up to four partons. For

PYTHIA6, PYTHIA8, and MADGRAPH event generators the CTEQ6L [19] parton distribution functions (PDFs) were used; forHERWIGþþ, the MRST2001 PDFs [20].

Figure 2 shows the ratios of the measured ’dijet

distributions to the predictions of PYTHIA6, PYTHIA8,

HERWIGþþ, and MADGRAPH in the five pTmax regions. PRL106, 122003 (2011) P H Y S I C A L R E V I E W L E T T E R S 25 MARCH 2011

(4)

The combined systematic uncertainty on the experimental measurements is shown by the shaded band. The predic-tions fromPYTHIA6andHERWIGþþ describe the shape of

the data distributions well, while MADGRAPH (PYTHIA8) predicts less (more) azimuthal decorrelation than is observed in the data.

Figure 3 displays the ratios of the measured ’dijet

distributions to the next-to-leading-order (NLO) predic-tions of pQCD calculapredic-tions from the parton-level generator

NLOJETþþ [21] within the FASTNLOframework [22]. The

predictions include 2 ! 3 processes at NLO, normalized to dijetat NLO: 1 dijet       

NLOd’ddijetdijet

       NLO:

The predictions near ’dijet¼  have been excluded

be-cause of their sensitivity to higher-order corrections not included in the present calculations.

Uncertainties due to the renormalization (r) and

factorization (f) scales are evaluated by varying the

default choice of r¼ f¼ pTmax between pTmax=2

and 2pTmaxin the following six combinations:ð

r; fÞ ¼

ðpTmax=2; pTmax=2Þ, ð2pTmax; 2pTmaxÞ, ðpTmax; pTmax=2Þ,

ðpTmax; 2pTmaxÞ, ðpTmax=2; pTmaxÞ, and ð2pTmax; pTmaxÞ.

These scale variations modify the predictions of the nor-malized ’dijetdistributions by less than 50%. The PDFs

and the associated uncertainties were obtained from CTEQ6.6 [19]. The PDF uncertainties were derived by using the 22 CTEQ6.6 uncertainty eigenvectors and found to be 9% at ’dijet =2 and 2% at ’dijet< .

Following the proposal of the PDF4LHC working group [23], the impact of other global PDF fits [24–26] was investigated and found to be negligible in the context of this analysis.

Nonperturbative corrections due to hadronization and multiple-parton interactions were applied to the pQCD pre-dictions. The correction factors were determined from the

PYTHIA6andHERWIGþþ simulations and modify the

predic-tions from þ4% (’dijet ) to 13% (’dijet =2). The uncertainty due to the nonperturbative corrections is estimated to be 6% at ’dijet =2 and 2% at

’dijet . The effects due to the scale variations, as well

as the uncertainties due to PDFs and nonperturbative corrections, are also shown in Fig.3. The NLO predictions provide a good description of the shape of the data

0.5 1 1.5 2 0.5 1 1.5 2 CMSCMSCMSCMSCMS T > 300 GeV max p 0.5 1 1.5 2 0.5 1 1.5 2 200 < pTmax < 300 GeV 0.5 1 1.5 2 0.5 1 1.5 2 140 < pTmax < 200 GeV 0.5 1 1.5 2 0.5 1 1.5 2 < 140 GeV T max 110 < p 0.5 1 1.5 2 0.5 1 1.5 2 80 < pTmax < 110 GeV PYTHIA6 D6T PYTHIA6 Z2 PYTHIA8 HERWIG++ MADGRAPH Systematic Uncert. = 7 TeV |y| < 1.1 s -1 L = 2.9 pb /2 π 2π/3 5π/6 π [ rad ] dijet ϕ ∆ dijet ϕ∆ d dijet σ d dijet σ 1 MC DATA

FIG. 2 (color online). Ratios of measured normalized ’dijet distributions to PYTHIA6,PYTHIA8,HERWIGþþ, andMADGRAPH predictions in several pTmaxregions. The shaded bands indicate the total systematic uncertainty.

[ rad ] dijet ϕ ∆ ] -1 [ rad dijet ϕ∆ d dijet σ d dijet σ 1 -2 10 -1 10 1 10 2 10 3 10 4 10 5 10 > 300 GeV (×104) T max p ) 3 10 × < 300 GeV ( T max 200 < p ) 2 10 × < 200 GeV ( T max 140 < p 10) × < 140 GeV ( T max 110 < p < 110 GeV T max 80 < p PYTHIA6 D6T PYTHIA6 Z2 PYTHIA8 HERWIG++ MADGRAPH -1 L = 2.9 pb = 7 TeV s |y| < 1.1 CMS /2 π 2π/3 5π/6 π

FIG. 1 (color online). Normalized ’dijetdistributions in sev-eral pTmaxregions, scaled by the multiplicative factors given in the figure for easier presentation. The curves represent predic-tions fromPYTHIA6,PYTHIA8,HERWIGþþ, andMADGRAPH. The error bars on the data points include statistical and systematic uncertainties.

(5)

distributions over much of the ’dijet range. Compared to

the data, the reduced decorrelation in the theoretical predic-tion and the increased sensitivity to the r and f scale

variations for ’dijet< 2=3 shown in Fig.3are attributed

to the fact that the pQCD prediction in this region is effec-tively available only at leading order, since the contribution from tree-level four-parton final states dominates.

The sensitivity of the ’dijetdistributions to initial-state

parton shower radiation (ISR) is investigated by varying the input parameter kISR [PARP(67)] inPYTHIA6 tune D6T.

The product of kISR and the square of the hard-scattering

scale gives the maximum allowed parton virtuality (i.e., the maximum allowed pT) in the initial-state shower. Previous

studies have shown that kISR is the only parameter in

PYTHIA6that has significant impact on the ’dijet distribu-tions [27]. The default value of kISRinPYTHIA6tune D6T is

2.5, determined from the D0 dijet azimuthal decorrelation results [1]. Figure4shows comparisons of the measured ’dijetdistributions toPYTHIA6 distributions with various

kISR values. The effects are more pronounced for smaller

’dijet angles, where multigluon radiation dominates.

Varying kISR by 0:5 about its default value yields a

change of about 30% on the PYTHIA6 prediction for

’dijet =2, suggesting that our results could be used

to tune parameters in the MC event generators that control radiative effects in the initial state. In PYTHIA6tune D6T, the maximum pTallowed in the final-state radiation parton

shower is controlled through the parameter PARP(71). We varied the value of this parameter from 2.5 to 8 (the default value is 4.0) and observed less than10% changes in the ’dijetdistributions in all pT regions.

In summary, we have measured dijet azimuthal decorre-lations in different leading-jet pT regions from pp

colli-sions atpffiffiffis¼ 7 TeV. ThePYTHIA6andHERWIGþþ event

generators are found to best describe the shape of the measured distributions over the entire range of ’dijet.

The predictions from NLO pQCD are in reasonable agree-ment with the measured distributions, except at small

’dijetwhere multiparton radiation effects dominate. The

’dijetdistributions are found to be sensitive to initial-state

gluon radiation.

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC

1 2 3 1 2 3 CMS NLO QCD Predictions CTEQ 6.6

max T = p f µ = r µ > 300 GeV T max p 1 2 3 1 2 3 T < 300 GeV max 200 < p 1 2 3 1 2 3 T < 200 GeV max 140 < p 1 2 3 1 2 3 T < 140 GeV max 110 < p 1 2 3 1 2 3 T < 110 GeV max 80 < p Scale Dependence f µ , r µ PDF Uncertainty Non-Pert. Uncertainty = 7 TeV |y| < 1.1 s -1 L = 2.9 pb /2 π 2π/3 5π/6 π [ rad ] dijet ϕ ∆ dijet ϕ∆ d dijet σ d dijet σ 1 THEORY DATA

FIG. 3 (color online). Ratios of measured normalized ’dijet distributions to NLO pQCD predictions with nonperturbative corrections in several pTmaxregions. The error bars on the data points include statistical and systematic uncertainties. The ef-fects on the NLO pQCD predictions due to r and f scale variations and PDF uncertainties, as well as the uncertainties from the nonperturbative corrections, are shown.

1 2 3 1 2 3 CMS T > 300 GeV max p 1 2 3 1 2 3 T < 300 GeV max 200 < p 1 2 3 1 2 3 T < 200 GeV max 140 < p 1 2 3 1 2 3 T < 140 GeV max 110 < p 1 2 3 1 2 3 T < 110 GeV max 80 < p =1.0 ISR k =2.0 ISR k =2.5 ISR k =3.0 ISR k =4.0 ISR k Systematic Uncert. = 7 TeV |y| < 1.1 s -1 L = 2.9 pb /2 π 2π/3 5π/6 π [ rad ] dijet ϕ ∆ dijet ϕ∆ d dijet σ d dijet σ 1 PYTHIA6 DATA

FIG. 4 (color online). Ratios of measured normalized ’dijet distributions toPYTHIA6tune D6T with various values of kISRin several pTmax regions. The shaded bands indicate the total systematic uncertainty.

(6)

machine. We thank the technical and administrative staff at CERN and other CMS institutes and acknowledge support from FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF and WCU (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTD (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA).

[1] V. M. Abazov et al. (D0 Collaboration),Phys. Rev. Lett. 94, 221801 (2005).

[2] S. Chatrchyan et al. (CMS Collaboration), JINST 3, S08004 (2008).

[3] M. Cacciari, G. P. Salam, and G. Soyez,J. High Energy Phys. 04 (2008) 063.

[4] CMS Collaboration, Report No. CMS-PAS-JME-10-010, 2010.

[5] CMS Collaboration, Report No. CMS-PAS-PFT-09-001, 2009.

[6] CMS Collaboration, Report No. CMS-PAS-PFT-10-001, 2010.

[7] CMS Collaboration, Report No. CMS-PAS-JME-09-008, 2009.

[8] CMS Collaboration, Report No. CMS-PAS-TRK-10-005, 2010.

[9] CMS Collaboration, Report No. CMS-PAS-EWK-10-004, 2010.

[10] T. Sjo¨strand, S. Mrenna, and P. Skands,J. High Energy Phys. 05 (2006) 026.

[11] R. Field,arXiv:1010.3558.

[12] M. Bahr et al.,Eur. Phys. J. C58, 639 (2008).

[13] CMS Collaboration, Report No. CMS-PAS-JME-10-003, 2010.

[14] G. D. Lafferty and T. R. Wyatt,Nucl. Instrum. Methods Phys. Res., Sect. A355, 541 (1995).

[15] ThePYTHIA6Z2 tune is identical to the Z1 tune described in Ref. [11] except that Z2 uses the CTEQ6L PDF while Z1 uses CTEQ5L.

[16] T. Sjo¨strand, S. Mrenna, and P. Skands, Comput. Phys. Commun.178, 852 (2008).

[17] J. Alwall et al.,J. High Energy Phys. 09 (2007) 028. [18] S. Ho¨che et al.,arXiv:hep-ph/0602031.

[19] W. K. Tung et al.,J. High Energy Phys. 02 (2007) 053. [20] A. D. Martin, R. G. Roberts, W. J. Stirling, and R. S.

Thorne,Eur. Phys. J. C23, 73 (2002). [21] Z. Nagy,Phys. Rev. Lett.88, 122003 (2002).

[22] T. Kluge, K. Rabbertz, and M. Wobisch, arXiv:hep-ph/ 0609285.

[23] S. Alekhin et al. (PDF4LHC Working Group),

arXiv:1101.0536.

[24] A. D. Martin, W. J. Stirling, R. S. Thorne, and G. Watt, Eur. Phys. J. C63, 189 (2009).

[25] R. D. Ball et al.,Nucl. Phys.B838, 136 (2010). [26] H.-L. Lai et al.,Phys. Rev. D82, 074024 (2010). [27] M. G. Albrow et al.,arXiv:hep-ph/0610012.

V. Khachatryan,1A. M. Sirunyan,1A. Tumasyan,1W. Adam,2T. Bergauer,2M. Dragicevic,2J. Ero¨,2C. Fabjan,2 M. Friedl,2R. Fru¨hwirth,2V. M. Ghete,2J. Hammer,2,bS. Ha¨nsel,2C. Hartl,2M. Hoch,2N. Ho¨rmann,2J. Hrubec,2

M. Jeitler,2G. Kasieczka,2W. Kiesenhofer,2M. Krammer,2D. Liko,2I. Mikulec,2M. Pernicka,2H. Rohringer,2 R. Scho¨fbeck,2J. Strauss,2A. Taurok,2F. Teischinger,2P. Wagner,2W. Waltenberger,2G. Walzel,2E. Widl,2 C.-E. Wulz,2V. Mossolov,3N. Shumeiko,3J. Suarez Gonzalez,3L. Benucci,4K. Cerny,4E. A. De Wolf,4X. Janssen,4

T. Maes,4L. Mucibello,4S. Ochesanu,4B. Roland,4R. Rougny,4M. Selvaggi,4H. Van Haevermaet,4 P. Van Mechelen,4N. Van Remortel,4S. Beauceron,5F. Blekman,5S. Blyweert,5J. D’Hondt,5O. Devroede,5 R. Gonzalez Suarez,5A. Kalogeropoulos,5J. Maes,5M. Maes,5S. Tavernier,5W. Van Doninck,5P. Van Mulders,5 G. P. Van Onsem,5I. Villella,5O. Charaf,6B. Clerbaux,6G. De Lentdecker,6V. Dero,6A. P. R. Gay,6G. H. Hammad,6

T. Hreus,6P. E. Marage,6L. Thomas,6C. Vander Velde,6P. Vanlaer,6J. Wickens,6V. Adler,7S. Costantini,7 M. Grunewald,7B. Klein,7A. Marinov,7J. Mccartin,7D. Ryckbosch,7F. Thyssen,7M. Tytgat,7L. Vanelderen,7

P. Verwilligen,7S. Walsh,7N. Zaganidis,7S. Basegmez,8G. Bruno,8J. Caudron,8L. Ceard,8 J. De Favereau De Jeneret,8C. Delaere,8P. Demin,8D. Favart,8A. Giammanco,8G. Gre´goire,8J. Hollar,8 V. Lemaitre,8J. Liao,8O. Militaru,8S. Ovyn,8D. Pagano,8A. Pin,8K. Piotrzkowski,8N. Schul,8N. Beliy,9 T. Caebergs,9E. Daubie,9G. A. Alves,10D. De Jesus Damiao,10M. E. Pol,10M. H. G. Souza,10W. Carvalho,11

E. M. Da Costa,11C. De Oliveira Martins,11S. Fonseca De Souza,11L. Mundim,11H. Nogima,11V. Oguri,11 W. L. Prado Da Silva,11A. Santoro,11S. M. Silva Do Amaral,11A. Sznajder,11F. A. Dias,12M. A. F. Dias,12

T. R. Fernandez Perez Tomei,12E. M. Gregores,12,cF. Marinho,12S. F. Novaes,12Sandra S. Padula,12 N. Darmenov,13,bL. Dimitrov,13V. Genchev,13,bP. Iaydjiev,13,bS. Piperov,13M. Rodozov,13S. Stoykova,13 PRL106, 122003 (2011) P H Y S I C A L R E V I E W L E T T E R S 25 MARCH 2011

(7)

G. Sultanov,13V. Tcholakov,13R. Trayanov,13I. Vankov,13M. Dyulendarova,14R. Hadjiiska,14V. Kozhuharov,14 L. Litov,14E. Marinova,14M. Mateev,14B. Pavlov,14P. Petkov,14J. G. Bian,15G. M. Chen,15H. S. Chen,15 C. H. Jiang,15D. Liang,15S. Liang,15J. Wang,15J. Wang,15X. Wang,15Z. Wang,15M. Xu,15M. Yang,15J. Zang,15 Z. Zhang,15Y. Ban,16S. Guo,16Y. Guo,16W. Li,16Y. Mao,16S. J. Qian,16H. Teng,16L. Zhang,16B. Zhu,16W. Zou,16 A. Cabrera,17B. Gomez Moreno,17A. A. Ocampo Rios,17A. F. Osorio Oliveros,17J. C. Sanabria,17N. Godinovic,18

D. Lelas,18K. Lelas,18R. Plestina,18,dD. Polic,18I. Puljak,18Z. Antunovic,19M. Dzelalija,19V. Brigljevic,20 S. Duric,20K. Kadija,20S. Morovic,20A. Attikis,21M. Galanti,21J. Mousa,21C. Nicolaou,21F. Ptochos,21 P. A. Razis,21H. Rykaczewski,21Y. Assran,22,eM. A. Mahmoud,22,fA. Hektor,23M. Kadastik,23K. Kannike,23 M. Mu¨ntel,23M. Raidal,23L. Rebane,23V. Azzolini,24P. Eerola,24S. Czellar,25J. Ha¨rko¨nen,25A. Heikkinen,25 V. Karima¨ki,25R. Kinnunen,25J. Klem,25M. J. Kortelainen,25T. Lampe´n,25K. Lassila-Perini,25S. Lehti,25

T. Linde´n,25P. Luukka,25T. Ma¨enpa¨a¨,25E. Tuominen,25J. Tuominiemi,25E. Tuovinen,25D. Ungaro,25 L. Wendland,25K. Banzuzi,26A. Korpela,26T. Tuuva,26D. Sillou,27M. Besancon,28S. Choudhury,28M. Dejardin,28

D. Denegri,28B. Fabbro,28J. L. Faure,28F. Ferri,28S. Ganjour,28F. X. Gentit,28A. Givernaud,28P. Gras,28 G. Hamel de Monchenault,28P. Jarry,28E. Locci,28J. Malcles,28M. Marionneau,28L. Millischer,28J. Rander,28 A. Rosowsky,28I. Shreyber,28M. Titov,28P. Verrecchia,28S. Baffioni,29F. Beaudette,29L. Bianchini,29M. Bluj,29,g C. Broutin,29P. Busson,29C. Charlot,29T. Dahms,29L. Dobrzynski,29R. Granier de Cassagnac,29M. Haguenauer,29

P. Mine´,29C. Mironov,29C. Ochando,29P. Paganini,29D. Sabes,29R. Salerno,29Y. Sirois,29C. Thiebaux,29 B. Wyslouch,29,hA. Zabi,29J.-L. Agram,30,iJ. Andrea,30A. Besson,30D. Bloch,30D. Bodin,30J.-M. Brom,30 M. Cardaci,30E. C. Chabert,30C. Collard,30E. Conte,30,iF. Drouhin,30,iC. Ferro,30J.-C. Fontaine,30,iD. Gele´,30

U. Goerlach,30S. Greder,30P. Juillot,30M. Karim,30,iA.-C. Le Bihan,30Y. Mikami,30P. Van Hove,30F. Fassi,31 D. Mercier,31C. Baty,32N. Beaupere,32M. Bedjidian,32O. Bondu,32G. Boudoul,32D. Boumediene,32H. Brun,32 N. Chanon,32R. Chierici,32D. Contardo,32P. Depasse,32H. El Mamouni,32A. Falkiewicz,32J. Fay,32S. Gascon,32 B. Ille,32T. Kurca,32T. Le Grand,32M. Lethuillier,32L. Mirabito,32S. Perries,32V. Sordini,32S. Tosi,32Y. Tschudi,32 P. Verdier,32H. Xiao,32L. Megrelidze,33V. Roinishvili,33D. Lomidze,34G. Anagnostou,35M. Edelhoff,35L. Feld,35 N. Heracleous,35O. Hindrichs,35R. Jussen,35K. Klein,35J. Merz,35N. Mohr,35A. Ostapchuk,35A. Perieanu,35

F. Raupach,35J. Sammet,35S. Schael,35D. Sprenger,35H. Weber,35M. Weber,35B. Wittmer,35M. Ata,36 W. Bender,36M. Erdmann,36J. Frangenheim,36T. Hebbeker,36A. Hinzmann,36K. Hoepfner,36C. Hof,36 T. Klimkovich,36D. Klingebiel,36P. Kreuzer,36D. Lanske,36,aC. Magass,36G. Masetti,36M. Merschmeyer,36

A. Meyer,36P. Papacz,36H. Pieta,36H. Reithler,36S. A. Schmitz,36L. Sonnenschein,36J. Steggemann,36 D. Teyssier,36M. Bontenackels,37M. Davids,37M. Duda,37G. Flu¨gge,37H. Geenen,37M. Giffels,37 W. Haj Ahmad,37D. Heydhausen,37T. Kress,37Y. Kuessel,37A. Linn,37A. Nowack,37L. Perchalla,37O. Pooth,37

J. Rennefeld,37P. Sauerland,37A. Stahl,37M. Thomas,37D. Tornier,37M. H. Zoeller,37M. Aldaya Martin,38 W. Behrenhoff,38U. Behrens,38M. Bergholz,38,jK. Borras,38A. Cakir,38A. Campbell,38E. Castro,38 D. Dammann,38G. Eckerlin,38D. Eckstein,38A. Flossdorf,38G. Flucke,38A. Geiser,38I. Glushkov,38J. Hauk,38

H. Jung,38M. Kasemann,38I. Katkov,38P. Katsas,38C. Kleinwort,38H. Kluge,38A. Knutsson,38D. Kru¨cker,38 E. Kuznetsova,38W. Lange,38W. Lohmann,38,jR. Mankel,38M. Marienfeld,38I.-A. Melzer-Pellmann,38 A. B. Meyer,38J. Mnich,38A. Mussgiller,38J. Olzem,38A. Parenti,38A. Raspereza,38A. Raval,38R. Schmidt,38,j

T. Schoerner-Sadenius,38N. Sen,38M. Stein,38J. Tomaszewska,38D. Volyanskyy,38R. Walsh,38C. Wissing,38 C. Autermann,39S. Bobrovskyi,39J. Draeger,39H. Enderle,39U. Gebbert,39K. Kaschube,39G. Kaussen,39 R. Klanner,39J. Lange,39B. Mura,39S. Naumann-Emme,39F. Nowak,39N. Pietsch,39C. Sander,39H. Schettler,39

P. Schleper,39M. Schro¨der,39T. Schum,39J. Schwandt,39A. K. Srivastava,39H. Stadie,39G. Steinbru¨ck,39 J. Thomsen,39R. Wolf,39C. Barth,40J. Bauer,40V. Buege,40T. Chwalek,40W. De Boer,40A. Dierlamm,40 G. Dirkes,40M. Feindt,40J. Gruschke,40C. Hackstein,40F. Hartmann,40S. M. Heindl,40M. Heinrich,40H. Held,40

K. H. Hoffmann,40S. Honc,40T. Kuhr,40D. Martschei,40S. Mueller,40Th. Mu¨ller,40M. Niegel,40O. Oberst,40 A. Oehler,40J. Ott,40T. Peiffer,40D. Piparo,40G. Quast,40K. Rabbertz,40F. Ratnikov,40M. Renz,40C. Saout,40 A. Scheurer,40P. Schieferdecker,40F.-P. Schilling,40G. Schott,40H. J. Simonis,40F. M. Stober,40D. Troendle,40 J. Wagner-Kuhr,40M. Zeise,40V. Zhukov,40,kE. B. Ziebarth,40G. Daskalakis,41T. Geralis,41S. Kesisoglou,41

A. Kyriakis,41D. Loukas,41I. Manolakos,41A. Markou,41C. Markou,41C. Mavrommatis,41E. Ntomari,41 E. Petrakou,41L. Gouskos,42T. J. Mertzimekis,42A. Panagiotou,42I. Evangelou,43C. Foudas,43P. Kokkas,43

N. Manthos,43I. Papadopoulos,43V. Patras,43F. A. Triantis,43A. Aranyi,44G. Bencze,44L. Boldizsar,44 G. Debreczeni,44C. Hajdu,44,bD. Horvath,44,lA. Kapusi,44K. Krajczar,44,mA. Laszlo,44F. Sikler,44 PRL106, 122003 (2011) P H Y S I C A L R E V I E W L E T T E R S 25 MARCH 2011

(8)

G. Vesztergombi,44,mN. Beni,45J. Molnar,45J. Palinkas,45Z. Szillasi,45V. Veszpremi,45P. Raics,46Z. L. Trocsanyi,46 B. Ujvari,46S. Bansal,47S. B. Beri,47V. Bhatnagar,47N. Dhingra,47R. Gupta,47M. Jindal,47M. Kaur,47J. M. Kohli,47

M. Z. Mehta,47N. Nishu,47L. K. Saini,47A. Sharma,47A. P. Singh,47J. B. Singh,47S. P. Singh,47S. Ahuja,48 S. Bhattacharya,48B. C. Choudhary,48P. Gupta,48S. Jain,48S. Jain,48A. Kumar,48R. K. Shivpuri,48 R. K. Choudhury,49D. Dutta,49S. Kailas,49S. K. Kataria,49A. K. Mohanty,49,bL. M. Pant,49P. Shukla,49T. Aziz,50

M. Guchait,50,nA. Gurtu,50M. Maity,50,oD. Majumder,50G. Majumder,50K. Mazumdar,50G. B. Mohanty,50 A. Saha,50K. Sudhakar,50N. Wickramage,50S. Banerjee,51S. Dugad,51N. K. Mondal,51H. Arfaei,52 H. Bakhshiansohi,52S. M. Etesami,52A. Fahim,52M. Hashemi,52A. Jafari,52M. Khakzad,52A. Mohammadi,52

M. Mohammadi Najafabadi,52S. Paktinat Mehdiabadi,52B. Safarzadeh,52M. Zeinali,52M. Abbrescia,53a,53b L. Barbone,53a,53bC. Calabria,53a,53bA. Colaleo,53aD. Creanza,53a,53cN. De Filippis,53a,53cM. De Palma,53a,53b

A. Dimitrov,53aL. Fiore,53aG. Iaselli,53a,53cL. Lusito,53a,53b,bG. Maggi,53a,53cM. Maggi,53aN. Manna,53a,53b B. Marangelli,53a,53bS. My,53a,53cS. Nuzzo,53a,53bN. Pacifico,53a,53bG. A. Pierro,53aA. Pompili,53a,53b G. Pugliese,53a,53cF. Romano,53a,53cG. Roselli,53a,53bG. Selvaggi,53a,53bL. Silvestris,53aR. Trentadue,53a S. Tupputi,53a,53bG. Zito,53aG. Abbiendi,54aA. C. Benvenuti,54aD. Bonacorsi,54aS. Braibant-Giacomelli,54a,54b

L. Brigliadori,54aP. Capiluppi,54a,54bA. Castro,54a,54bF. R. Cavallo,54aM. Cuffiani,54a,54bG. M. Dallavalle,54a F. Fabbri,54aA. Fanfani,54a,54bD. Fasanella,54aP. Giacomelli,54aM. Giunta,54aS. Marcellini,54a M. Meneghelli,54a,54bA. Montanari,54aF. L. Navarria,54a,54bF. Odorici,54aA. Perrotta,54aF. Primavera,54a A. M. Rossi,54a,54bT. Rovelli,54a,54bG. Siroli,54a,54bR. Travaglini,54a,54bS. Albergo,55a,55bG. Cappello,55a,55b M. Chiorboli,55a,55b,bS. Costa,55a,55bA. Tricomi,55a,55bC. Tuve,55aG. Barbagli,56aV. Ciulli,56a,56bC. Civinini,56a R. D’Alessandro,56a,56bE. Focardi,56a,56bS. Frosali,56a,56bE. Gallo,56aC. Genta,56aS. Gonzi,56a,56bP. Lenzi,56a,56b M. Meschini,56aS. Paoletti,56aG. Sguazzoni,56aA. Tropiano,56a,bL. Benussi,57S. Bianco,57S. Colafranceschi,57,p

F. Fabbri,57D. Piccolo,57P. Fabbricatore,58R. Musenich,58A. Benaglia,59a,59bF. De Guio,59a,59b,b L. Di Matteo,59a,59bA. Ghezzi,59a,59b,bM. Malberti,59a,59bS. Malvezzi,59aA. Martelli,59a,59bA. Massironi,59a,59b

D. Menasce,59aL. Moroni,59aM. Paganoni,59a,59bD. Pedrini,59aS. Ragazzi,59a,59bN. Redaelli,59aS. Sala,59a T. Tabarelli de Fatis,59a,59bV. Tancini,59a,59bS. Buontempo,60aC. A. Carrillo Montoya,60aA. Cimmino,60a,60b

A. De Cosa,60a,60bM. De Gruttola,60a,60bF. Fabozzi,60a,qA. O. M. Iorio,60aL. Lista,60aM. Merola,60a,60b P. Noli,60a,60bP. Paolucci,60aP. Azzi,61aN. Bacchetta,61aP. Bellan,61a,61bD. Bisello,61a,61bA. Branca,61a R. Carlin,61a,61bP. Checchia,61aM. De Mattia,61a,61bT. Dorigo,61aF. Gasparini,61a,61bU. Gasparini,61a,61b P. Giubilato,61a,61bF. Gonella,61aA. Gresele,61a,61cS. Lacaprara,61a,rrI. Lazzizzera,61a,61cM. Margoni,61a,61b M. Mazzucato,61aA. T. Meneguzzo,61a,61bM. Nespolo,61a,bL. Perrozzi,61a,bN. Pozzobon,61a,61bP. Ronchese,61a,61b

F. Simonetto,61a,61bE. Torassa,61aM. Tosi,61a,61bA. Triossi,61aS. Vanini,61a,61bP. Zotto,61a,61bG. Zumerle,61a,61b P. Baesso,62a,62bU. Berzano,62aC. Riccardi,62a,62bP. Torre,62a,62bP. Vitulo,62a,62bC. Viviani,62a,62bM. Biasini,63a,63b

G. M. Bilei,63aB. Caponeri,63a,63bL. Fano`,63a,63bP. Lariccia,63a,63bA. Lucaroni,63a,63b,bG. Mantovani,63a,63b M. Menichelli,63aA. Nappi,63a,63bA. Santocchia,63a,63bL. Servoli,63aS. Taroni,63a,63bM. Valdata,63a,63b R. Volpe,63a,63b,bP. Azzurri,64a,64cG. Bagliesi,64aJ. Bernardini,64a,64bT. Boccali,64a,bG. Broccolo,64a,64c R. Castaldi,64aR. T. D’Agnolo,64a,64cR. Dell’Orso,64aF. Fiori,64a,64bL. Foa`,64a,64cA. Giassi,64aA. Kraan,64a F. Ligabue,64a,64cT. Lomtadze,64aL. Martini,64a,rA. Messineo,64a,64bF. Palla,64aF. Palmonari,64aS. Sarkar,64a,64c

G. Segneri,64aA. T. Serban,64aP. Spagnolo,64aR. Tenchini,64aG. Tonelli,64a,64b,bA. Venturi,64a,bP. G. Verdini,64a L. Barone,65a,65bF. Cavallari,65aD. Del Re,65a,65bE. Di Marco,65a,65bM. Diemoz,65aD. Franci,65a,65bM. Grassi,65a

E. Longo,65a,65bG. Organtini,65a,65bA. Palma,65a,65bF. Pandolfi,65a,65b,bR. Paramatti,65aS. Rahatlou,65a,65b N. Amapane,66a,66bR. Arcidiacono,66a,66cS. Argiro,66a,66bM. Arneodo,66a,66cC. Biino,66aC. Botta,66a,66b,b

N. Cartiglia,66aR. Castello,66a,66bM. Costa,66a,66bN. Demaria,66aA. Graziano,66a,66b,bC. Mariotti,66a M. Marone,66a,66bS. Maselli,66aE. Migliore,66a,66bG. Mila,66a,66bV. Monaco,66a,66bM. Musich,66a,66b M. M. Obertino,66a,66cN. Pastrone,66aM. Pelliccioni,66a,66b,bA. Romero,66a,66bM. Ruspa,66a,66cR. Sacchi,66a,66b

V. Sola,66a,66bA. Solano,66a,66bA. Staiano,66aD. Trocino,66a,66bA. Vilela Pereira,66a,66b,bS. Belforte,67a F. Cossutti,67aG. Della Ricca,67a,67bB. Gobbo,67aD. Montanino,67a,67bA. Penzo,67aS. G. Heo,68S. Chang,69 J. Chung,69D. H. Kim,69G. N. Kim,69J. E. Kim,69D. J. Kong,69H. Park,69D. Son,69D. C. Son,69Zero Kim,70 J. Y. Kim,70S. Song,70S. Choi,71B. Hong,71M. Jo,71H. Kim,71J. H. Kim,71T. J. Kim,71K. S. Lee,71D. H. Moon,71 S. K. Park,71H. B. Rhee,71E. Seo,71S. Shin,71K. S. Sim,71M. Choi,72S. Kang,72H. Kim,72C. Park,72I. C. Park,72

S. Park,72G. Ryu,72Y. Choi,73Y. K. Choi,73J. Goh,73J. Lee,73S. Lee,73H. Seo,73I. Yu,73M. J. Bilinskas,74 I. Grigelionis,74M. Janulis,74D. Martisiute,74P. Petrov,74T. Sabonis,74H. Castilla Valdez,75E. De La Cruz Burelo,75 PRL106, 122003 (2011) P H Y S I C A L R E V I E W L E T T E R S 25 MARCH 2011

(9)

R. Lopez-Fernandez,75A. Sa´nchez Herna´ndez,75L. M. Villasenor-Cendejas,75S. Carrillo Moreno,76 F. Vazquez Valencia,76H. A. Salazar Ibarguen,77E. Casimiro Linares,78A. Morelos Pineda,78M. A. Reyes-Santos,78

P. Allfrey,79D. Krofcheck,79P. H. Butler,80R. Doesburg,80H. Silverwood,80M. Ahmad,81I. Ahmed,81 M. I. Asghar,81H. R. Hoorani,81W. A. Khan,81T. Khurshid,81S. Qazi,81M. Cwiok,82W. Dominik,82K. Doroba,82

A. Kalinowski,82M. Konecki,82J. Krolikowski,82T. Frueboes,83R. Gokieli,83M. Go´rski,83M. Kazana,83 K. Nawrocki,83K. Romanowska-Rybinska,83M. Szleper,83G. Wrochna,83P. Zalewski,83N. Almeida,84A. David,84

P. Faccioli,84P. G. Ferreira Parracho,84M. Gallinaro,84P. Martins,84P. Musella,84A. Nayak,84P. Q. Ribeiro,84 J. Seixas,84P. Silva,84J. Varela,84H. K. Wo¨hri,84I. Belotelov,85P. Bunin,85M. Finger,85M. Finger, Jr.,85 I. Golutvin,85A. Kamenev,85V. Karjavin,85G. Kozlov,85A. Lanev,85P. Moisenz,85V. Palichik,85V. Perelygin,85

S. Shmatov,85V. Smirnov,85A. Volodko,85A. Zarubin,85N. Bondar,86V. Golovtsov,86Y. Ivanov,86V. Kim,86 P. Levchenko,86V. Murzin,86V. Oreshkin,86I. Smirnov,86V. Sulimov,86L. Uvarov,86S. Vavilov,86A. Vorobyev,86

Yu. Andreev,87S. Gninenko,87N. Golubev,87M. Kirsanov,87N. Krasnikov,87V. Matveev,87A. Pashenkov,87 A. Toropin,87S. Troitsky,87V. Epshteyn,88V. Gavrilov,88V. Kaftanov,88,aM. Kossov,88,bA. Krokhotin,88 N. Lychkovskaya,88G. Safronov,88S. Semenov,88V. Stolin,88E. Vlasov,88A. Zhokin,88E. Boos,89M. Dubinin,89,s

L. Dudko,89A. Ershov,89A. Gribushin,89O. Kodolova,89I. Lokhtin,89S. Obraztsov,89S. Petrushanko,89 L. Sarycheva,89V. Savrin,89A. Snigirev,89V. Andreev,90M. Azarkin,90I. Dremin,90M. Kirakosyan,90 S. V. Rusakov,90A. Vinogradov,90I. Azhgirey,91S. Bitioukov,91V. Grishin,91,bV. Kachanov,91D. Konstantinov,91

A. Korablev,91V. Krychkine,91V. Petrov,91R. Ryutin,91S. Slabospitsky,91A. Sobol,91L. Tourtchanovitch,91 S. Troshin,91N. Tyurin,91A. Uzunian,91A. Volkov,91P. Adzic,92,tM. Djordjevic,92D. Krpic,92,tJ. Milosevic,92

M. Aguilar-Benitez,93J. Alcaraz Maestre,93P. Arce,93C. Battilana,93E. Calvo,93M. Cepeda,93M. Cerrada,93 N. Colino,93B. De La Cruz,93C. Diez Pardos,93D. Domı´nguez Va´zquez,93C. Fernandez Bedoya,93 J. P. Ferna´ndez Ramos,93A. Ferrando,93J. Flix,93M. C. Fouz,93P. Garcia-Abia,93O. Gonzalez Lopez,93 S. Goy Lopez,93J. M. Hernandez,93M. I. Josa,93G. Merino,93J. Puerta Pelayo,93I. Redondo,93L. Romero,93

J. Santaolalla,93C. Willmott,93C. Albajar,94G. Codispoti,94J. F. de Troco´niz,94J. Cuevas,95

J. Fernandez Menendez,95S. Folgueras,95I. Gonzalez Caballero,95L. Lloret Iglesias,95J. M. Vizan Garcia,95 J. A. Brochero Cifuentes,96I. J. Cabrillo,96A. Calderon,96M. Chamizo Llatas,96S. H. Chuang,96 J. Duarte Campderros,96M. Felcini,96,uM. Fernandez,96G. Gomez,96J. Gonzalez Sanchez,96C. Jorda,96

P. Lobelle Pardo,96A. Lopez Virto,96J. Marco,96R. Marco,96C. Martinez Rivero,96F. Matorras,96 F. J. Munoz Sanchez,96J. Piedra Gomez,96,vT. Rodrigo,96A. Ruiz Jimeno,96L. Scodellaro,96M. Sobron Sanudo,96 I. Vila,96R. Vilar Cortabitarte,96D. Abbaneo,97E. Auffray,97G. Auzinger,97P. Baillon,97A. H. Ball,97D. Barney,97

A. J. Bell,97,wD. Benedetti,97C. Bernet,97,dW. Bialas,97P. Bloch,97A. Bocci,97S. Bolognesi,97H. Breuker,97 G. Brona,97K. Bunkowski,97T. Camporesi,97E. Cano,97G. Cerminara,97T. Christiansen,97J. A. Coarasa Perez,97

B. Cure´,97D. D’Enterria,97A. De Roeck,97S. Di Guida,97F. Duarte Ramos,97A. Elliott-Peisert,97B. Frisch,97 W. Funk,97A. Gaddi,97S. Gennai,97G. Georgiou,97H. Gerwig,97D. Gigi,97K. Gill,97D. Giordano,97F. Glege,97 R. Gomez-Reino Garrido,97M. Gouzevitch,97P. Govoni,97S. Gowdy,97L. Guiducci,97M. Hansen,97J. Harvey,97 J. Hegeman,97B. Hegner,97C. Henderson,97G. Hesketh,97H. F. Hoffmann,97A. Honma,97V. Innocente,97P. Janot,97 K. Kaadze,97E. Karavakis,97P. Lecoq,97C. Lourenc¸o,97A. Macpherson,97T. Ma¨ki,97L. Malgeri,97M. Mannelli,97

L. Masetti,97F. Meijers,97S. Mersi,97E. Meschi,97R. Moser,97M. U. Mozer,97M. Mulders,97E. Nesvold,97,b M. Nguyen,97T. Orimoto,97L. Orsini,97E. Perez,97A. Petrilli,97A. Pfeiffer,97M. Pierini,97M. Pimia¨,97G. Polese,97 A. Racz,97J. Rodrigues Antunes,97G. Rolandi,97,xT. Rommerskirchen,97C. Rovelli,97,yM. Rovere,97H. Sakulin,97

C. Scha¨fer,97C. Schwick,97I. Segoni,97A. Sharma,97P. Siegrist,97M. Simon,97P. Sphicas,97,zD. Spiga,97 M. Spiropulu,97,sF. Sto¨ckli,97M. Stoye,97P. Tropea,97A. Tsirou,97A. Tsyganov,97G. I. Veres,97,mP. Vichoudis,97

M. Voutilainen,97W. D. Zeuner,97W. Bertl,98K. Deiters,98W. Erdmann,98K. Gabathuler,98R. Horisberger,98 Q. Ingram,98H. C. Kaestli,98S. Ko¨nig,98D. Kotlinski,98U. Langenegger,98F. Meier,98D. Renker,98T. Rohe,98

J. Sibille,98,aaA. Starodumov,98,bbP. Bortignon,99L. Caminada,99,ccZ. Chen,99S. Cittolin,99G. Dissertori,99 M. Dittmar,99J. Eugster,99K. Freudenreich,99C. Grab,99A. Herve´,99W. Hintz,99P. Lecomte,99W. Lustermann,99

C. Marchica,99,ccP. Martinez Ruiz del Arbol,99P. Meridiani,99P. Milenovic,99,ddF. Moortgat,99P. Nef,99 F. Nessi-Tedaldi,99L. Pape,99F. Pauss,99T. Punz,99A. Rizzi,99F. J. Ronga,99M. Rossini,99L. Sala,99 A. K. Sanchez,99M.-C. Sawley,99B. Stieger,99L. Tauscher,99,aA. Thea,99K. Theofilatos,99D. Treille,99 C. Urscheler,99R. Wallny,99M. Weber,99L. Wehrli,99J. Weng,99E. Aguilo´,100C. Amsler,100V. Chiochia,100

S. De Visscher,100C. Favaro,100M. Ivova Rikova,100B. Millan Mejias,100C. Regenfus,100P. Robmann,100 PRL106, 122003 (2011) P H Y S I C A L R E V I E W L E T T E R S 25 MARCH 2011

(10)

A. Schmidt,100H. Snoek,100Y. H. Chang,101K. H. Chen,101W. T. Chen,101S. Dutta,101A. Go,101C. M. Kuo,101 S. W. Li,101W. Lin,101M. H. Liu,101Z. K. Liu,101Y. J. Lu,101D. Mekterovic,101J. H. Wu,101S. S. Yu,101 P. Bartalini,102P. Chang,102Y. H. Chang,102Y. W. Chang,102Y. Chao,102K. F. Chen,102W.-S. Hou,102Y. Hsiung,102 K. Y. Kao,102Y. J. Lei,102R.-S. Lu,102J. G. Shiu,102Y. M. Tzeng,102M. Wang,102A. Adiguzel,103M. N. Bakirci,103,ee S. Cerci,103,ffC. Dozen,103I. Dumanoglu,103E. Eskut,103S. Girgis,103G. Gokbulut,103Y. Guler,103E. Gurpinar,103

I. Hos,103E. E. Kangal,103T. Karaman,103A. Kayis Topaksu,103A. Nart,103G. Onengut,103K. Ozdemir,103 S. Ozturk,103A. Polatoz,103K. Sogut,103,ggB. Tali,103H. Topakli,103,eeD. Uzun,103L. N. Vergili,103M. Vergili,103

C. Zorbilmez,103I. V. Akin,104T. Aliev,104S. Bilmis,104M. Deniz,104H. Gamsizkan,104A. M. Guler,104 K. Ocalan,104A. Ozpineci,104M. Serin,104R. Sever,104U. E. Surat,104E. Yildirim,104M. Zeyrek,104 M. Deliomeroglu,105D. Demir,105,hhE. Gu¨lmez,105A. Halu,105B. Isildak,105M. Kaya,105,iiO. Kaya,105,ii S. Ozkorucuklu,105,jjN. Sonmez,105,kkL. Levchuk,106P. Bell,107F. Bostock,107J. J. Brooke,107T. L. Cheng,107

E. Clement,107D. Cussans,107R. Frazier,107J. Goldstein,107M. Grimes,107M. Hansen,107D. Hartley,107 G. P. Heath,107H. F. Heath,107B. Huckvale,107J. Jackson,107L. Kreczko,107S. Metson,107D. M. Newbold,107,ll K. Nirunpong,107A. Poll,107S. Senkin,107V. J. Smith,107S. Ward,107L. Basso,108K. W. Bell,108A. Belyaev,108 C. Brew,108R. M. Brown,108B. Camanzi,108D. J. A. Cockerill,108J. A. Coughlan,108K. Harder,108S. Harper,108

B. W. Kennedy,108E. Olaiya,108D. Petyt,108B. C. Radburn-Smith,108C. H. Shepherd-Themistocleous,108 I. R. Tomalin,108W. J. Womersley,108S. D. Worm,108R. Bainbridge,109G. Ball,109J. Ballin,109R. Beuselinck,109

O. Buchmuller,109D. Colling,109N. Cripps,109M. Cutajar,109G. Davies,109M. Della Negra,109J. Fulcher,109 D. Futyan,109A. Guneratne Bryer,109G. Hall,109Z. Hatherell,109J. Hays,109G. Iles,109G. Karapostoli,109 L. Lyons,109A.-M. Magnan,109J. Marrouche,109R. Nandi,109J. Nash,109A. Nikitenko,109,bbA. Papageorgiou,109

M. Pesaresi,109K. Petridis,109M. Pioppi,109,mmD. M. Raymond,109N. Rompotis,109A. Rose,109M. J. Ryan,109 C. Seez,109P. Sharp,109A. Sparrow,109A. Tapper,109S. Tourneur,109M. Vazquez Acosta,109T. Virdee,109 S. Wakefield,109D. Wardrope,109T. Whyntie,109M. Barrett,110M. Chadwick,110J. E. Cole,110P. R. Hobson,110 A. Khan,110P. Kyberd,110D. Leslie,110W. Martin,110I. D. Reid,110L. Teodorescu,110K. Hatakeyama,111T. Bose,112 E. Carrera Jarrin,112A. Clough,112C. Fantasia,112A. Heister,112J. St. John,112P. Lawson,112D. Lazic,112J. Rohlf,112

D. Sperka,112L. Sulak,112A. Avetisyan,113S. Bhattacharya,113J. P. Chou,113D. Cutts,113A. Ferapontov,113 U. Heintz,113S. Jabeen,113G. Kukartsev,113G. Landsberg,113M. Narain,113D. Nguyen,113M. Segala,113T. Speer,113 K. V. Tsang,113M. A. Borgia,114R. Breedon,114M. Calderon De La Barca Sanchez,114D. Cebra,114S. Chauhan,114

M. Chertok,114J. Conway,114P. T. Cox,114J. Dolen,114R. Erbacher,114E. Friis,114W. Ko,114A. Kopecky,114 R. Lander,114H. Liu,114S. Maruyama,114T. Miceli,114M. Nikolic,114D. Pellett,114J. Robles,114S. Salur,114 T. Schwarz,114M. Searle,114J. Smith,114M. Squires,114M. Tripathi,114R. Vasquez Sierra,114C. Veelken,114 V. Andreev,115K. Arisaka,115D. Cline,115R. Cousins,115A. Deisher,115J. Duris,115S. Erhan,115C. Farrell,115 J. Hauser,115M. Ignatenko,115C. Jarvis,115C. Plager,115G. Rakness,115P. Schlein,115,aJ. Tucker,115V. Valuev,115

J. Babb,116R. Clare,116J. Ellison,116J. W. Gary,116F. Giordano,116G. Hanson,116G. Y. Jeng,116S. C. Kao,116 F. Liu,116H. Liu,116A. Luthra,116H. Nguyen,116G. Pasztor,116,nnA. Satpathy,116B. C. Shen,116,aR. Stringer,116 J. Sturdy,116S. Sumowidagdo,116R. Wilken,116S. Wimpenny,116W. Andrews,117J. G. Branson,117G. B. Cerati,117

E. Dusinberre,117D. Evans,117F. Golf,117A. Holzner,117R. Kelley,117M. Lebourgeois,117J. Letts,117 B. Mangano,117J. Muelmenstaedt,117S. Padhi,117C. Palmer,117G. Petrucciani,117H. Pi,117M. Pieri,117 R. Ranieri,117M. Sani,117V. Sharma,117,bS. Simon,117Y. Tu,117A. Vartak,117F. Wu¨rthwein,117A. Yagil,117 D. Barge,118R. Bellan,118C. Campagnari,118M. D’Alfonso,118T. Danielson,118K. Flowers,118P. Geffert,118 J. Incandela,118C. Justus,118P. Kalavase,118S. A. Koay,118D. Kovalskyi,118V. Krutelyov,118S. Lowette,118 N. Mccoll,118V. Pavlunin,118F. Rebassoo,118J. Ribnik,118J. Richman,118R. Rossin,118D. Stuart,118W. To,118 J. R. Vlimant,118A. Bornheim,119J. Bunn,119Y. Chen,119M. Gataullin,119D. Kcira,119V. Litvine,119Y. Ma,119 A. Mott,119H. B. Newman,119C. Rogan,119V. Timciuc,119P. Traczyk,119J. Veverka,119R. Wilkinson,119Y. Yang,119

R. Y. Zhu,119B. Akgun,120R. Carroll,120T. Ferguson,120Y. Iiyama,120D. W. Jang,120S. Y. Jun,120Y. F. Liu,120 M. Paulini,120J. Russ,120N. Terentyev,120H. Vogel,120I. Vorobiev,120J. P. Cumalat,121M. E. Dinardo,121 B. R. Drell,121C. J. Edelmaier,121W. T. Ford,121A. Gaz,121B. Heyburn,121E. Luiggi Lopez,121U. Nauenberg,121

J. G. Smith,121K. Stenson,121K. A. Ulmer,121S. R. Wagner,121S. L. Zang,121L. Agostino,122J. Alexander,122 A. Chatterjee,122S. Das,122N. Eggert,122L. J. Fields,122L. K. Gibbons,122B. Heltsley,122W. Hopkins,122 A. Khukhunaishvili,122B. Kreis,122V. Kuznetsov,122G. Nicolas Kaufman,122J. R. Patterson,122D. Puigh,122 D. Riley,122A. Ryd,122X. Shi,122W. Sun,122W. D. Teo,122J. Thom,122J. Thompson,122J. Vaughan,122Y. Weng,122 PRL106, 122003 (2011) P H Y S I C A L R E V I E W L E T T E R S 25 MARCH 2011

(11)

L. Winstrom,122P. Wittich,122A. Biselli,123G. Cirino,123D. Winn,123S. Abdullin,124M. Albrow,124J. Anderson,124 G. Apollinari,124M. Atac,124J. A. Bakken,124S. Banerjee,124L. A. T. Bauerdick,124A. Beretvas,124J. Berryhill,124 P. C. Bhat,124I. Bloch,124F. Borcherding,124K. Burkett,124J. N. Butler,124V. Chetluru,124H. W. K. Cheung,124 F. Chlebana,124S. Cihangir,124M. Demarteau,124D. P. Eartly,124V. D. Elvira,124S. Esen,124I. Fisk,124J. Freeman,124 Y. Gao,124E. Gottschalk,124D. Green,124K. Gunthoti,124O. Gutsche,124A. Hahn,124J. Hanlon,124R. M. Harris,124

J. Hirschauer,124B. Hooberman,124E. James,124H. Jensen,124M. Johnson,124U. Joshi,124R. Khatiwada,124 B. Kilminster,124B. Klima,124K. Kousouris,124S. Kunori,124S. Kwan,124C. Leonidopoulos,124P. Limon,124 R. Lipton,124J. Lykken,124K. Maeshima,124J. M. Marraffino,124D. Mason,124P. McBride,124T. McCauley,124 T. Miao,124K. Mishra,124S. Mrenna,124Y. Musienko,124,ooC. Newman-Holmes,124V. O’Dell,124S. Popescu,124,pp R. Pordes,124O. Prokofyev,124N. Saoulidou,124E. Sexton-Kennedy,124S. Sharma,124A. Soha,124W. J. Spalding,124

L. Spiegel,124P. Tan,124L. Taylor,124S. Tkaczyk,124L. Uplegger,124E. W. Vaandering,124R. Vidal,124 J. Whitmore,124W. Wu,124F. Yang,124F. Yumiceva,124J. C. Yun,124D. Acosta,125P. Avery,125D. Bourilkov,125

M. Chen,125G. P. Di Giovanni,125D. Dobur,125A. Drozdetskiy,125R. D. Field,125M. Fisher,125Y. Fu,125 I. K. Furic,125J. Gartner,125S. Goldberg,125B. Kim,125S. Klimenko,125J. Konigsberg,125A. Korytov,125 A. Kropivnitskaya,125T. Kypreos,125K. Matchev,125G. Mitselmakher,125L. Muniz,125Y. Pakhotin,125 C. Prescott,125R. Remington,125M. Schmitt,125B. Scurlock,125P. Sellers,125N. Skhirtladze,125D. Wang,125 J. Yelton,125M. Zakaria,125C. Ceron,126V. Gaultney,126L. Kramer,126L. M. Lebolo,126S. Linn,126P. Markowitz,126

G. Martinez,126J. L. Rodriguez,126T. Adams,127A. Askew,127D. Bandurin,127J. Bochenek,127J. Chen,127 B. Diamond,127S. V. Gleyzer,127J. Haas,127S. Hagopian,127V. Hagopian,127M. Jenkins,127K. F. Johnson,127

H. Prosper,127L. Quertenmont,127S. Sekmen,127V. Veeraraghavan,127M. M. Baarmand,128B. Dorney,128 S. Guragain,128M. Hohlmann,128H. Kalakhety,128R. Ralich,128I. Vodopiyanov,128M. R. Adams,129 I. M. Anghel,129L. Apanasevich,129Y. Bai,129V. E. Bazterra,129R. R. Betts,129J. Callner,129R. Cavanaugh,129 C. Dragoiu,129E. J. Garcia-Solis,129L. Gauthier,129C. E. Gerber,129D. J. Hofman,129S. Khalatyan,129F. Lacroix,129

M. Malek,129C. O’Brien,129C. Silvestre,129A. Smoron,129D. Strom,129N. Varelas,129U. Akgun,130 E. A. Albayrak,130B. Bilki,130K. Cankocak,130,qqW. Clarida,130F. Duru,130C. K. Lae,130E. McCliment,130

J.-P. Merlo,130H. Mermerkaya,130A. Mestvirishvili,130A. Moeller,130J. Nachtman,130C. R. Newsom,130 E. Norbeck,130J. Olson,130Y. Onel,130F. Ozok,130S. Sen,130J. Wetzel,130T. Yetkin,130K. Yi,130B. A. Barnett,131 B. Blumenfeld,131A. Bonato,131C. Eskew,131D. Fehling,131G. Giurgiu,131A. V. Gritsan,131Z. J. Guo,131G. Hu,131

P. Maksimovic,131S. Rappoccio,131M. Swartz,131N. V. Tran,131A. Whitbeck,131P. Baringer,132A. Bean,132 G. Benelli,132O. Grachov,132M. Murray,132D. Noonan,132V. Radicci,132S. Sanders,132J. S. Wood,132 V. Zhukova,132T. Bolton,133I. Chakaberia,133A. Ivanov,133M. Makouski,133Y. Maravin,133S. Shrestha,133 I. Svintradze,133Z. Wan,133J. Gronberg,134D. Lange,134D. Wright,134A. Baden,135M. Boutemeur,135S. C. Eno,135

D. Ferencek,135J. A. Gomez,135N. J. Hadley,135R. G. Kellogg,135M. Kirn,135Y. Lu,135A. C. Mignerey,135 K. Rossato,135P. Rumerio,135F. Santanastasio,135A. Skuja,135J. Temple,135M. B. Tonjes,135S. C. Tonwar,135 E. Twedt,135B. Alver,136G. Bauer,136J. Bendavid,136W. Busza,136E. Butz,136I. A. Cali,136M. Chan,136V. Dutta,136

P. Everaerts,136G. Gomez Ceballos,136M. Goncharov,136K. A. Hahn,136P. Harris,136Y. Kim,136M. Klute,136 Y.-J. Lee,136W. Li,136C. Loizides,136P. D. Luckey,136T. Ma,136S. Nahn,136C. Paus,136D. Ralph,136C. Roland,136

G. Roland,136M. Rudolph,136G. S. F. Stephans,136K. Sumorok,136K. Sung,136E. A. Wenger,136S. Xie,136 M. Yang,136Y. Yilmaz,136A. S. Yoon,136M. Zanetti,136P. Cole,137S. I. Cooper,137P. Cushman,137B. Dahmes,137

A. De Benedetti,137P. R. Dudero,137G. Franzoni,137J. Haupt,137K. Klapoetke,137Y. Kubota,137J. Mans,137 V. Rekovic,137R. Rusack,137M. Sasseville,137A. Singovsky,137L. M. Cremaldi,138R. Godang,138R. Kroeger,138 L. Perera,138R. Rahmat,138D. A. Sanders,138D. Summers,138K. Bloom,139S. Bose,139J. Butt,139D. R. Claes,139

A. Dominguez,139M. Eads,139J. Keller,139T. Kelly,139I. Kravchenko,139J. Lazo-Flores,139C. Lundstedt,139 H. Malbouisson,139S. Malik,139G. R. Snow,139U. Baur,140A. Godshalk,140I. Iashvili,140S. Jain,140 A. Kharchilava,140A. Kumar,140S. P. Shipkowski,140K. Smith,140G. Alverson,141E. Barberis,141D. Baumgartel,141

O. Boeriu,141M. Chasco,141S. Reucroft,141J. Swain,141D. Wood,141J. Zhang,141A. Anastassov,142A. Kubik,142 N. Odell,142R. A. Ofierzynski,142B. Pollack,142A. Pozdnyakov,142M. Schmitt,142S. Stoynev,142M. Velasco,142 S. Won,142L. Antonelli,143D. Berry,143M. Hildreth,143C. Jessop,143D. J. Karmgard,143J. Kolb,143T. Kolberg,143 K. Lannon,143W. Luo,143S. Lynch,143N. Marinelli,143D. M. Morse,143T. Pearson,143R. Ruchti,143J. Slaunwhite,143

N. Valls,143J. Warchol,143M. Wayne,143J. Ziegler,143B. Bylsma,144L. S. Durkin,144J. Gu,144C. Hill,144 P. Killewald,144K. Kotov,144T. Y. Ling,144M. Rodenburg,144G. Williams,144N. Adam,145E. Berry,145P. Elmer,145 PRL106, 122003 (2011) P H Y S I C A L R E V I E W L E T T E R S 25 MARCH 2011

(12)

D. Gerbaudo,145V. Halyo,145P. Hebda,145A. Hunt,145J. Jones,145E. Laird,145D. Lopes Pegna,145D. Marlow,145 T. Medvedeva,145M. Mooney,145J. Olsen,145P. Piroue´,145X. Quan,145H. Saka,145D. Stickland,145C. Tully,145

J. S. Werner,145A. Zuranski,145J. G. Acosta,146X. T. Huang,146A. Lopez,146H. Mendez,146S. Oliveros,146 J. E. Ramirez Vargas,146A. Zatserklyaniy,146E. Alagoz,147V. E. Barnes,147G. Bolla,147L. Borrello,147 D. Bortoletto,147A. Everett,147A. F. Garfinkel,147Z. Gecse,147L. Gutay,147Z. Hu,147M. Jones,147O. Koybasi,147

A. T. Laasanen,147N. Leonardo,147C. Liu,147V. Maroussov,147P. Merkel,147D. H. Miller,147N. Neumeister,147 I. Shipsey,147D. Silvers,147A. Svyatkovskiy,147H. D. Yoo,147J. Zablocki,147Y. Zheng,147P. Jindal,148 N. Parashar,148C. Boulahouache,149V. Cuplov,149K. M. Ecklund,149F. J. M. Geurts,149J. H. Liu,149B. P. Padley,149

R. Redjimi,149J. Roberts,149J. Zabel,149B. Betchart,150A. Bodek,150Y. S. Chung,150R. Covarelli,150 P. de Barbaro,150R. Demina,150Y. Eshaq,150H. Flacher,150A. Garcia-Bellido,150P. Goldenzweig,150Y. Gotra,150 J. Han,150A. Harel,150D. C. Miner,150D. Orbaker,150G. Petrillo,150D. Vishnevskiy,150M. Zielinski,150A. Bhatti,151 R. Ciesielski,151L. Demortier,151K. Goulianos,151G. Lungu,151C. Mesropian,151M. Yan,151O. Atramentov,152

A. Barker,152D. Duggan,152Y. Gershtein,152R. Gray,152E. Halkiadakis,152D. Hidas,152D. Hits,152A. Lath,152 S. Panwalkar,152R. Patel,152A. Richards,152K. Rose,152S. Schnetzer,152S. Somalwar,152R. Stone,152S. Thomas,152

G. Cerizza,153M. Hollingsworth,153S. Spanier,153Z. C. Yang,153A. York,153J. Asaadi,154R. Eusebi,154 J. Gilmore,154A. Gurrola,154T. Kamon,154V. Khotilovich,154R. Montalvo,154C. N. Nguyen,154I. Osipenkov,154

J. Pivarski,154A. Safonov,154S. Sengupta,154A. Tatarinov,154D. Toback,154M. Weinberger,154N. Akchurin,155 C. Bardak,155J. Damgov,155C. Jeong,155K. Kovitanggoon,155S. W. Lee,155P. Mane,155Y. Roh,155A. Sill,155

I. Volobouev,155R. Wigmans,155E. Yazgan,155E. Appelt,156E. Brownson,156D. Engh,156C. Florez,156 W. Gabella,156W. Johns,156P. Kurt,156C. Maguire,156A. Melo,156P. Sheldon,156J. Velkovska,156M. W. Arenton,157 M. Balazs,157S. Boutle,157M. Buehler,157S. Conetti,157B. Cox,157B. Francis,157R. Hirosky,157A. Ledovskoy,157 C. Lin,157C. Neu,157R. Yohay,157S. Gollapinni,158R. Harr,158P. E. Karchin,158P. Lamichhane,158M. Mattson,158 C. Milste`ne,158A. Sakharov,158M. Anderson,159M. Bachtis,159J. N. Bellinger,159D. Carlsmith,159S. Dasu,159

J. Efron,159L. Gray,159K. S. Grogg,159M. Grothe,159R. Hall-Wilton,159,bM. Herndon,159P. Klabbers,159 J. Klukas,159A. Lanaro,159C. Lazaridis,159J. Leonard,159R. Loveless,159A. Mohapatra,159D. Reeder,159I. Ross,159

A. Savin,159W. H. Smith,159J. Swanson,159and M. Weinberg159 (CMS Collaboration)

1Yerevan Physics Institute, Yerevan, Armenia 2Institut fu¨r Hochenergiephysik der OeAW, Wien, Austria

3National Centre for Particle and High Energy Physics, Minsk, Republic of Belarus 4Universiteit Antwerpen, Antwerpen, Belgium

5Vrije Universiteit Brussel, Brussel, Belgium 6Universite´ Libre de Bruxelles, Bruxelles, Belgium

7Ghent University, Ghent, Belgium

8Universite´ Catholique de Louvain, Louvain-la-Neuve, Belgium 9Universite´ de Mons, Mons, Belgium

10Centro Brasileiro de Pesquisas Fisicas, Rio de Janeiro, Brazil 11Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil 12

Instituto de Fisica Teorica, Universidade Estadual Paulista, Sao Paulo, Brazil 13Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

14University of Sofia, Sofia, Bulgaria 15Institute of High Energy Physics, Beijing, China

16State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China 17Universidad de Los Andes, Bogota, Colombia

18Technical University of Split, Split, Croatia 19

University of Split, Split, Croatia 20Institute Rudjer Boskovic, Zagreb, Croatia

21University of Cyprus, Nicosia, Cyprus

22Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian Network of High Energy Physics, Cairo, Egypt

23National Institute of Chemical Physics and Biophysics, Tallinn, Estonia 24Department of Physics, University of Helsinki, Helsinki, Finland

25Helsinki Institute of Physics, Helsinki, Finland

(13)

26Lappeenranta University of Technology, Lappeenranta, Finland

27Laboratoire d’Annecy-le-Vieux de Physique des Particules, IN2P3-CNRS, Annecy-le-Vieux, France 28DSM/IRFU, CEA/Saclay, Gif-sur-Yvette, France

29Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France

30Institut Pluridisciplinaire Hubert Curien, Universite´ de Strasbourg, Universite´ de Haute Alsace Mulhouse, CNRS/IN2P3, Strasbourg, France

31Centre de Calcul de l’Institut National de Physique Nucleaire et de Physique des Particules (IN2P3), Villeurbanne, France 32Universite´ de Lyon, Universite´ Claude Bernard Lyon 1, CNRS-IN2P3, Institut de Physique Nucle´aire de Lyon, Villeurbanne, France

33

E. Andronikashvili Institute of Physics, Academy of Science, Tbilisi, Georgia 34Institute of High Energy Physics and Informatization, Tbilisi State University, Tbilisi, Georgia

35RWTH Aachen University, I. Physikalisches Institut, Aachen, Germany 36RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany 37RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany

38Deutsches Elektronen-Synchrotron, Hamburg, Germany 39University of Hamburg, Hamburg, Germany 40Institut fu¨r Experimentelle Kernphysik, Karlsruhe, Germany 41Institute of Nuclear Physics ‘‘Demokritos,’’ Aghia Paraskevi, Greece

42University of Athens, Athens, Greece 43University of Ioa´nnina, Ioa´nnina, Greece

44KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary 45Institute of Nuclear Research ATOMKI, Debrecen, Hungary

46University of Debrecen, Debrecen, Hungary 47Panjab University, Chandigarh, India

48University of Delhi, Delhi, India 49

Bhabha Atomic Research Centre, Mumbai, India 50Tata Institute of Fundamental Research - EHEP, Mumbai, India 51Tata Institute of Fundamental Research - HECR, Mumbai, India 52Institute for Research and Fundamental Sciences (IPM), Tehran, Iran

53aINFN Sezione di Bari, Bari, Italy 53bUniversita` di Bari, Bari, Italy 53cPolitecnico di Bari, Bari, Italy 54aINFN Sezione di Bologna, Bologna, Italy

54bUniversita` di Bologna, Bologna, Italy 55aINFN Sezione di Catania, Catania, Italy

55bUniversita` di Catania, Catania, Italy 56aINFN Sezione di Firenze, Firenze, Italy

56bUniversita` di Firenze, Firenze, Italy

57INFN Laboratori Nazionali di Frascati, Frascati, Italy 58INFN Sezione di Genova, Genova, Italy 59aINFN Sezione di Milano-Biccoca, Milano, Italy

59bUniversita` di Milano-Bicocca, Milano, Italy 60aINFN Sezione di Napoli, Napoli, Italy 60bUniversita` di Napoli ‘‘Federico II,’’ Napoli, Italy

61aINFN Sezione di Padova, Padova, Italy 61bUniversita` di Trento (Trento), Padova, Italy 61cUniversita` di Trento (Trento), Padova, Italy

62aINFN Sezione di Pavia, Pavia, Italy 62b

Universita` di Pavia, Pavia, Italy 63aINFN Sezione di Perugia, Perugia, Italy

63bUniversita` di Perugia, Perugia, Italy 64aINFN Sezione di Pisa, Pisa, Italy

64bUniversita` di Pisa, Pisa, Italy 64cScuola Normale Superiore di Pisa, Pisa, Italy

65aINFN Sezione di Roma, Roma, Italy 65bUniversita` di Roma ‘‘La Sapienza,’’ Roma, Italy

66aINFN Sezione di Torino, Torino, Italy 66b

Universita` di Torino, Torino, Italy

66cUniversita` del Piemonte Orientale (Novara), Torino, Italy 67aINFN Sezione di Trieste, Trieste, Italy

67bUniversita` di Trieste, Trieste, Italy 68Kangwon National University, Chunchon, Korea

(14)

69Kyungpook National University, Daegu, Korea

70Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea 71Korea University, Seoul, Korea

72University of Seoul, Seoul, Korea 73Sungkyunkwan University, Suwon, Korea

74Vilnius University, Vilnius, Lithuania

75Centro de Investigacion y de Estudios Avanzados del IPN, Mexico City, Mexico 76Universidad Iberoamericana, Mexico City, Mexico

77

Benemerita Universidad Autonoma de Puebla, Puebla, Mexico 78Universidad Auto´noma de San Luis Potosı´, San Luis Potosı´, Mexico

79University of Auckland, Auckland, New Zealand 80University of Canterbury, Christchurch, New Zealand

81National Centre for Physics, Quaid-I-Azam University, Islamabad, Pakistan 82Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw, Poland

83Soltan Institute for Nuclear Studies, Warsaw, Poland

84Laborato´rio de Instrumentac¸a˜o e Fı´sica Experimental de Partı´culas, Lisboa, Portugal 85Joint Institute for Nuclear Research, Dubna, Russia

86Petersburg Nuclear Physics Institute, Gatchina (St. Petersburg), Russia 87Institute for Nuclear Research, Moscow, Russia

88Institute for Theoretical and Experimental Physics, Moscow, Russia 89Moscow State University, Moscow, Russia

90P. N. Lebedev Physical Institute, Moscow, Russia

91State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 92University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia

93

Centro de Investigaciones Energe´ticas Medioambientales y Tecnolo´gicas (CIEMAT), Madrid, Spain 94Universidad Auto´noma de Madrid, Madrid, Spain

95Universidad de Oviedo, Oviedo, Spain

96Instituto de Fı´sica de Cantabria (IFCA), CSIC-Universidad de Cantabria, Santander, Spain 97CERN, European Organization for Nuclear Research, Geneva, Switzerland

98Paul Scherrer Institut, Villigen, Switzerland

99Institute for Particle Physics, ETH Zurich, Zurich, Switzerland 100Universita¨t Zu¨rich, Zurich, Switzerland

101National Central University, Chung-Li, Taiwan 102National Taiwan University (NTU), Taipei, Taiwan

103Cukurova University, Adana, Turkey

104Middle East Technical University, Physics Department, Ankara, Turkey 105Bogazici University, Istanbul, Turkey

106National Scientific Center, Kharkov Institute of Physics and Technology, Kharkov, Ukraine 107University of Bristol, Bristol, United Kingdom

108Rutherford Appleton Laboratory, Didcot, United Kingdom 109Imperial College, London, United Kingdom 110Brunel University, Uxbridge, United Kingdom

111Baylor University, Waco, Texas, USA 112Boston University, Boston, Massachusetts, USA 113Brown University, Providence, Rhode Island, USA 114University of California, Davis, Davis, California, USA 115University of California, Los Angeles, Los Angeles, California, USA

116

University of California, Riverside, Riverside, California, USA 117University of California, San Diego, La Jolla, California, USA 118University of California, Santa Barbara, Santa Barbara, California, USA

119California Institute of Technology, Pasadena, California, USA 120Carnegie Mellon University, Pittsburgh, Pennsylvania, USA 121University of Colorado at Boulder, Boulder, Colorado, USA

122Cornell University, Ithaca, New York, USA 123Fairfield University, Fairfield, Connecticut, USA 124Fermi National Accelerator Laboratory, Batavia, Illinois, USA

125

University of Florida, Gainesville, Florida, USA 126Florida International University, Miami, Florida, USA

127Florida State University, Tallahassee, Florida, USA 128Florida Institute of Technology, Melbourne, Florida, USA 129University of Illinois at Chicago (UIC), Chicago, Illinois, USA

(15)

130The University of Iowa, Iowa City, Iowa, USA 131Johns Hopkins University, Baltimore, Maryland, USA

132The University of Kansas, Lawrence, Kansas, USA 133Kansas State University, Manhattan, Kansas, USA

134Lawrence Livermore National Laboratory, Livermore, California, USA 135University of Maryland, College Park, Maryland, USA 136Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

137University of Minnesota, Minneapolis, Minnesota, USA 138

University of Mississippi, University, Mississippi, USA 139University of Nebraska-Lincoln, Lincoln, Nebraska, USA 140State University of New York at Buffalo, Buffalo, New York, USA

141Northeastern University, Boston, Massachusetts, USA 142Northwestern University, Evanston, Illinois, USA 143University of Notre Dame, Notre Dame, Indiana, USA

144The Ohio State University, Columbus, Ohio, USA 145Princeton University, Princeton, New Jersey, USA 146University of Puerto Rico, Mayaguez, Puerto Rico, USA

147Purdue University, West Lafayette, Indiana, USA 148Purdue University Calumet, Hammond, Indiana, USA

149Rice University, Houston, Texas, USA 150University of Rochester, Rochester, New York, USA 151The Rockefeller University, New York, New York, USA

152Rutgers, the State University of New Jersey, Piscataway, New York, USA 153University of Tennessee, Knoxville, Tennessee, USA

154

Texas A&M University, College Station, Texas, USA 155Texas Tech University, Lubbock, Texas, USA 156Vanderbilt University, Nashville, Tennessee, USA 157University of Virginia, Charlottesville, Virginia, USA

158Wayne State University, Detroit, Michigan, USA 159University of Wisconsin, Madison, Wisconsin, USA

aDeceased. b

Also at CERN, European Organization for Nuclear Research, Geneva, Switzerland.

cAlso at Universidade Federal do ABC, Santo Andre, Brazil.

dAlso at Laboratoire Leprince-Ringuet, Ecole Polytechnique, IN2P3-CNRS, Palaiseau, France. eAlso at Suez Canal University, Suez, Egypt.

fAlso at Fayoum University, El-Fayoum, Egypt.

gAlso at Soltan Institute for Nuclear Studies, Warsaw, Poland.

hAlso at Massachusetts Institute of Technology, Cambridge, MA, USA. iAlso at Universite´ de Haute-Alsace, Mulhouse, France.

jAlso at Brandenburg University of Technology, Cottbus, Germany. kAlso at Moscow State University, Moscow, Russia.

lAlso at Institute of Nuclear Research ATOMKI, Debrecen, Hungary. mAlso at Eo¨tvo¨s Lora´nd University, Budapest, Hungary.

nAlso at Tata Institute of Fundamental Research - HECR, Mumbai, India. oAlso at University of Visva-Bharati, Santiniketan, India.

p

Also at Facolta` Ingegneria Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy.

qAlso at Universita` della Basilicata, Potenza, Italy. rAlso at Universita` degli studi di Siena, Siena, Italy.

sAlso at California Institute of Technology, Pasadena, CA, USA. tAlso at Faculty of Physics of University of Belgrade, Belgrade, Serbia. uAlso at University of California, Los Angeles, Los Angeles, CA, USA. vAlso at University of Florida, Gainesville, FL, USA.

wAlso at Universite´ de Gene`ve, Geneva, Switzerland. xAlso at Scuola Normale e Sezione dell’ INFN, Pisa, Italy.

yAlso at INFN Sezione di Roma, Universita` di Roma ‘‘La Sapienza,’’ Roma, Italy. zAlso at University of Athens, Athens, Greece.

aaAlso at The University of Kansas, Lawrence, KS, USA.

(16)

bbAlso at Institute for Theoretical and Experimental Physics, Moscow, Russia. ccAlso at Paul Scherrer Institut, Villigen, Switzerland.

ddAlso at University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear Sciences, Belgrade, Serbia. eeAlso at Gaziosmanpasa University, Tokat, Turkey.

ffAlso at Adiyaman University, Adiyaman, Turkey. ggAlso at Mersin University, Mersin, Turkey.

hhAlso at Izmir Institute of Technology, Izmir, Turkey. iiAlso at Kafkas University, Kars, Turkey.

jjAlso at Suleyman Demirel University, Isparta, Turkey. kkAlso at Ege University, Izmir, Turkey.

llAlso at Rutherford Appleton Laboratory, Didcot, United Kingdom. mmAlso at INFN Sezione di Perugia, Universita` di Perugia, Perugia, Italy.

nnAlso at KFKI Research Institute for Particle and Nuclear Physics, Budapest, Hungary. ooAlso at Institute for Nuclear Research, Moscow, Russia.

pp

Also at Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest, Romania.

qqAlso at Istanbul Technical University, Istanbul, Turkey.

rrAlso at Laboratori Nazionale di Legnaro dell’INFN, Legnaro, Italy.

Figure

FIG. 2 (color online). Ratios of measured normalized ’ dijet
FIG. 3 (color online). Ratios of measured normalized ’ dijet

Références

Documents relatifs

State Research Center of Russian Federation, Institute for High Energy Physics, Protvino, Russia 107 University of Belgrade, Faculty of Physics and Vinca Institute of Nuclear

Thigmomorphogenesis versus light in biome- chanical growth strategies of saplings of two tropical rain forest tree species... DOI:

To summarize, a large choke is replaced with two smaller chokes, a sense choke and a drive choke, along with active op-amp control.. The size of the sense choke is a critical

Using an adaptive clock model based on precise carrier phase measurements, the clock bias error can be estimated and a corresponding Vertical Protection Level (VPL)

recherche a été menée sur un échantillon de base se compose de 12 joueurs, et le chercheur a utilisé la méthode expérimentale avec mesure avant et après à un groupe celui qui

1 ةيلاو يف نيئشانلا يرود تايرابمل انتعباتم للاخ نمو ،نيئشانلا ةئفل بردمك ثحبلا يف انليمز لمع ءوض يفو لمحتو ماعلا لمحتلا يف ةلثمتملا

Therefore cover cropping, and more generally soil surface management, regulates soil functions in ways that may lead to the provision of either ecosystem services (better

The dielectric behaviour of mature Portland cement pastes prepared at water/cement ratios 0·3 to O' 7, and pastes containing various percentages of silica fume at water/cement ratio