• Aucun résultat trouvé

Near-IR and mid-IR subwavelength engineered Si photonics

N/A
N/A
Protected

Academic year: 2021

Partager "Near-IR and mid-IR subwavelength engineered Si photonics"

Copied!
2
0
0

Texte intégral

(1)

HAL Id: hal-01802112

https://hal.archives-ouvertes.fr/hal-01802112

Submitted on 29 May 2018

HAL is a multi-disciplinary open access

archive for the deposit and dissemination of

sci-entific research documents, whether they are

pub-lished or not. The documents may come from

teaching and research institutions in France or

abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est

destinée au dépôt et à la diffusion de documents

scientifiques de niveau recherche, publiés ou non,

émanant des établissements d’enseignement et de

recherche français ou étrangers, des laboratoires

publics ou privés.

Near-IR and mid-IR subwavelength engineered Si

photonics

C. Alonso-Ramos, D Pérez-Galacho, D Oser, X. Le Roux, D. Benedikovic, W.

Zhang, S Serna, V Vakarin, E. Durán-Valdeiglesias, E. Cassan, et al.

To cite this version:

C. Alonso-Ramos, D Pérez-Galacho, D Oser, X. Le Roux, D. Benedikovic, et al.. Near-IR and mid-IR

subwavelength engineered Si photonics. Photonics North, Jun 2017, Ottawa, Canada. �hal-01802112�

(2)

Near-IR and mid-IR subwavelength engineered Si

photonics

C. Alonso-Ramos*, D. Pérez-Galacho, D. Oser, X.

Le Roux, D. Benedikovic, W. Zhang, S. Serna, V.

Vakarin, E. Durán-Valdeiglesias, E. Cassan, D.

Marris-Morini, L. Vivien

Centre de Nanosciences et de Nanotechnologies,

CNRS, Université Sud, Université

Paris-Saclay, C2N – Orsay, 91405 Orsay cedex, France.

* carlos.ramos@u-psud.fr

F. Mazeas, L. Labonte, S. Tanzilli

Université Côte d’Azur, CNRS, Institut de Physique de Nice, Parc Valrose, 06108 Nice Cedex 2, France

P. Cheben

Information and Communications Technologies National Research Council Canada

Ottawa, Canada

Abstract— Periodically patterning Si with a pitch small

enough to suppress diffraction, we synthesize an effective photonic medium with refractive index between those of Si and the cladding material. This technique releases new degrees of freedom in engineering of light-matter interaction, chromatic dispersion and light propagation in Si photonic waveguides. We present an overview of our recent results in the realization of novel devices including filters and waveguides for near- and mid-infrared wavelength range.

Keywords— Integrated optics devices; Waveguides, planar; Bragg reflector; Silicon.

The large transparency window of silicon (1.1 - 8 µm wavelength range) makes it a promising material for the implementation of a wide range of applications, including datacom, nonlinear and quantum optics, or sensing in the near- and mid-infrared wavelength ranges. Structuring silicon with features smaller than half of the wavelength releases new degrees of freedom to tailor material properties, allowing the realization of innovative high-performance Si devices [1].

Here, we exploit subwavelength nanostructuration to engineer light confinement, allowing the realization of two types of high-performance Si filters for quantum and sensing applications in the near- and mid-infrared. First, we will present subwavelength engineered Bragg filters that exploit an innovative differential corrugation width configuration to yield narrow-band rejection with a single etch step and relaxed fabrication constraints [2]. These filters exhibit remarkably narrow bandwidth of 1.1 nm with a rejection exceeding 40 dB. Then, we will present a corrugated Si membrane waveguide for single-mode operation in near- and mid-IR. Single-mode propagation in the mid-IR is allowed by choosing a 500-nm-thick and 1100-nm-wide silicon waveguide. A novel waveguide corrugation approach radiates out the higher order modes in the near-IR, resulting in an effectively single-mode operation in near-IR.

Fig. 1: Scanning electron microscope image of: (a) high pump-rejection filter for quantum photonics, and (b) Si membrane waveguide for applications in the near- and mid-infrared.

In conclusion, we exploit the subwavelength nanostructuration of Si to demonstrate efficient waveguide Bragg grating filters for several applications. Our achievements open a new route for the implementation of high-performance on-chip devices tailoring the flow of light in nanostructured silicon photonic waveguides.

REFERENCES

[1] R. Halir, P. Bock, P. Cheben, A. Ortega-Moñux, C. Alonso-Ramos, J. H. Schmid, J. Lapointe, D.-X. Xu, J. G. Wangüemert-Pérez, I. Molina-Fernández, S. Janz, “Waveguide sub-wavelength structures: principles and applications,” Laser & Photon. Rev. 9(1), L25 (2014). [2] D. Pérez-Galacho, C. Alonso-Ramos, F. Mazeas, X. Le

Roux, D. Oser, W. Zhang, L. Labonté, S. Tanzilli, E. Cassan, D. Marriz-Morini, L. Vivien, “Optical pump-rejection filter based on silicon sub-wavelength engineered photonic structures,” Opt. Lett. 42(8), 1468 (2017).

This work was partially funded by the Agence Nationale de la Recherche (ANR-SITQOM-15-CE24-0005), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC POPSTAR grant agreement No 647342) and the NANO2017 programme with STMicroelectronics funded by the “Ministère de l’économie, de l’industrie et du numérique”, “Délégation Générales des Entreprises”.

Figure

Fig.  1:  Scanning  electron  microscope  image  of:  (a)  high  pump-rejection  filter  for  quantum  photonics,  and  (b)  Si  membrane  waveguide  for  applications  in  the  near-  and   mid-infrared

Références

Documents relatifs

(1) Cette estimation d'emploi, réalisée par l'Insee à partir des résultats de l'enquête trimestrielle ACEMO et à partir des déclarations mensuelles des entreprises de

ont trouvé, chez des patients positifs pour le VIH et souffrant d’infections de cathéters implantés, qu’un traitement antibiotique systémique seul, administré par le

The definition of a quality factor adapted to VCSEL requirements and maximized by an optimization algorithm al- lowed us to obtain a polarization selective and high

Since our previous study showed that the local vegetation was the main sources of airborne microbial communities in relation to SC concentrations at the OPE site ( Samaké et al.,

After iodine subtraction from the contrast enhanced CCTA the mean attenuation in the ascending aorta decreased significantly from 359 ± 61 to 54 ± 8 HU (P \ 0.001), in the

Here, we show that the combination of single-side corrugation asymmetry and subwavelength engineering provides narrowband response with large corrugations,

The present study finds elevated rates of all-cause sickness absence among workers with high concurrent demands from work and home, with workers in the

ةيلاملا تايناكملإا ةلودلا نم ةحونمم تاناعإ ( عيزوتلا ةلداعم حنم ) مسر ،ينهملا طاشنلا ىلع مسرلا ،يراقعلا مسرلا ،بئارضلا موسر ،تامدخلا ةيدأت ىلع