• Aucun résultat trouvé

Fatigue resistance

N/A
N/A
Protected

Academic year: 2022

Partager "Fatigue resistance"

Copied!
47
0
0

Texte intégral

(1)

Fatigue resistance

Contents

• Fatigue failure phenomena

• Fluctuating loads / stress -- > models

• Fatigue resistance determination:

Life calculation, endurance limit, endurance diagram

Fatigue safety factor

• Load/stress spectrum – cumulative damage theory

• 1stapproach on cracking

Cracks, types, propagation,

Stress intensity factor

(2)

Fatigue failure phenomena

Fatigue failure - History

• Observed phenomena around 1800 on the train car axles after a limited service life

Introduction of the notion of fluctuating moments/stresses (rotary bending…..)

• August Wöhler published in 1870 his research founding's:

Definition of :

Endurance limit vs. Number of Cycles,

Diagram (σ-N)

• Fatigue : term used by Poncelet in 1839

(3)

Fatigue failure - Introduction

• A part subjected to a variable loading breaks at a stress level below the yeld/ultimate stress of the material: fatigue

phenomena

• 90% of failures in operation are due to fatigue

• The demands for increasing performance and reducing environmental impacts imply to design systems by

considering fatigue either to ligthen them, and to extend their service life

The 3 phases of failure

1 : ignition 2 : Propagation

2 : Propagation 2 : Final failure

Any surface discontinuity contributes to the crack

ignition

(4)

Fatigue failure – Wöhler experiments

Probabilistic behavior: for a given

stress amplitude several life !

Line of 50%

Modeling Wöhler

experiments

(5)

Rotary bending

L1 L1

R1 2L2

F F

R2

A

C

B D

Force equilibrium Moment equilibrium in A

Rotary bending

L1 + L2 F

F F

F

A

B C

D 0

Cohesion wrench in 0 Global basis

Constant in the global basis

(6)

Rotary bending

In the local basis rotating at ω

y z

L1F

ωt

Variable in the local basis P

Stress in P (x2, x3)

Stress in Q (d/2, 0) Q

Cohesion wrench in 0

Fatigue failure – Wöhler experiments

σ

moy

= 0

Temps σ a et σ

(7)

Sinusoidal stress

time

σa σm

σmax

σmin

σ 1 cycle σm is the mean or average stress:

σais the amplitude stress:

fully reversed stress: σm= 0, σa0 alternated stress: σm0, σa0 Repeated stress: σmin= 0 ou σmax= 0

Variable stress: σmax< 0 in compression, σmin> 0 intraction

Wöhler experiments

Modeling the Wöhler experimental results

102 103

10 104 105 106 107 108 109 1010

Time defined by Number of cycles (Log. scale) Possible fatigue failure

Fatigue test

Nb of cycles for 50% of failure

Equi-probability curve for 50 % Stress, σa (withσmoy= 0)

(8)

Using the Wöhler curve

102 103

10 104 105 106 107 108 109 1010

Oligocyclic

Fatigue Finite life (endurance) 0,9 σu

Prob.50%

Fatigue Limit à 107 Cycles (andProb.50%) σD(107,σmoy= 0)

Stress, σa (withσmoy= 0)

Time defined by Number of cycles (Log. scale)

Endurance limitσD for steels

102 103

10 104 105 106 107 108 109 1010

Infinite life σD

Prob.50%

Prob.99%

Endurance limit

Time defined by Number of cycles (Log. scale) Stress, σa (withσmoy= 0)

(9)

Dimensioning based on Wöhler criteria

• For steels, one can use the endurance limit for dimensioning : thanks M.Wöhler !

• This is valid only for: σa≠ 0 et σm= 0, which is very limitating in terms of applications…

• This valid only for materials that have a constant endurance limit when N tends to infinity. NOT THE CASE OF ALUMINIUMS….

(10)

Fatigue resistance calculation for a part (fatigue limit)

Recherche d’une loi représentative des essais

Real curve

Wöhler model

Basquin model

* Basquin : model the most used

Fatigue resistance for σ

m

= 0

(11)

Fatigue resistance

endurance of a part (fatigue limit) (for σm=0)

The Wölher curve and its models permits determining:

The endurance limit σ D:

Largest amplitude of σafor which no failure occurs (only for Ferrous metals)

The fatigue limit σ D(N), σ D(Ni) :

Amplitude of σafor which it is observed 50% of survive with σm=0, after Nigiven cycles of loading. >> obtained from Wöhler curves

For steels, one consider that for Ni≥ 107cycles σD(Ni)=σD

The endurance ratio:

σa< σD

Use of Basquin model

log Ncycles

logσ a

σ m=0

103 104 105 106 Log 0.9.Rm

107

B

C

logσD(N) logσD(Ni)

Ni

From the garph (Thalès) Fatigue resistance

endurance of a part (fatigue limit) (for σm=0)

(12)

Use of Basquin model

Sample of steel ac: σu=920 MPa; σD=400 MPa σD(105)=?

Ni if σD(Ni)=600 MPa?

Fatigue resistance

endurance of a part (fatigue limit) (for σm=0)

Fatigue resistance

endurance of a part (fatigue limit) (for σm=0)

• Endurance limit σ D, approximations:

Steels N=107

• σD(N)=O.5*σu for σu<1300 Mpa

• σD(N)=600 MPa for σu>1300 Mpa

Founts N=107

• σD(N)=O.4*σu

Aluminium alloys N=5*106

• σD(N)=O.4*σu

(13)

Correction factors for σD(pour σm=0)

• Tests are done with samples !! -> σD

• ?? Endurance limit of a real part : σD*=(kakbkckdkekf).σD

ka surface finishing kb size of the part kc reliability expected

kd temperature of operation ke stress concentration kf side effects ….

Correction factors for σD(pour σm=0)

• ka , surface finishing

(14)

Correction factors for σD(pour σm=0)

• kbsize of the part

Relative volume criteria

V, volume of the part

V0, reference volume (test sample)

Characteristic dimension criteria

Kb=1 for d≤7.6 mm

Kb=0.85 for 7.6mm<d50 mm Kb=0.75 for d>50 mm

Correction factors for σD(pour σm=0)

Reliability (R) Reliability factor (kC)

0,5 1

0,9 0,897

0,95 0,868

0,95 0,814

0,99 0,753

0,999 0,702

0,9999 0,659

0,99999 0,620

0,999999 0,584

kc Reliability factor

(15)

Correction factors for σD(pour σm=0)

• kdtemperature factor

1

0,5

71 100 150 200 250

kd

Correction factors for σD(pour σm=0)

• ke stress concentration factor

Discontinuity in cross sections In Statics -- >(factor Kt).

With variable loading, one must account for cross section discontinuities since cracks often ignitiate there

Stress concentration factor in fatigue is given by:

It depends on the part geometry and on the material loading

q: factor related to the discontinuity, see after

(16)

Correction factors for σD(pour σm=0)

ke stress concentration_in fatigue

_ .

And when σ

m

0 ??

-> endurance diagram, etc …

(17)

Load/stress fluctuation definition

Random stress

Non centered sinusoidal stress

contrainte

temps

σa σm

σmax

σmin

σ 1 cycle

σ

moy

= 0

Temps σ a et σ

Centered sinusoidal stress: Wöhler

Sinusoidal stresses

Non centered sinusoidal stress

stress

time

σa σm

σmax

σmin

σ 1 cycle σm , mean stress:

σaamplitude stress (alternated) :

fully reversed stress: σm= 0, σa0 alternated stress: σm0, σa0 Repeated stress: σmin= 0 ou σmax= 0

Variable stress: σmax< 0 in compression, σmin> 0 intraction

(18)

Sinusoidal stresses

• Example

V B

A

C

C

M ωt

V

x y

z y

Case 1

L

d

Case 2 M

ωt

V

z

y F

σa< σD ????

Calcul de résistance à la fatigue pour σ

m

0

stress

time

σa σm

σmax

σmin

σ 1 cycle

(19)

Fatigue resistance

Endurance limit of a part (fatigue limit) for σm0

σm

Fatigue resistance

Endurance limit for σm0

Endurance diagram, HAIGH diagram

Endurance diagrams (abscissa σmet ordinate σa) are deduced from Wölher curves. They defines σD(N)as a function of the mean stress for a given number of cycle N

Number of cycles σD2 (106m2)

σD1 (106m1) σD3(106m3)

σD2 (108m2) σD1 (108m1) σD3(108m3)

Wöhler curves with Prob. Of failureα%

105 106 107 108 109

σa

σm= 0 σm 1

σm 2

σm 3

σD

0 < σm1< σm 2< σm 3 σD (N,σmoy=0)

σR σmoy Haigh diagram

(pour N cycles)

σm 1 σm2 σm 3

0

Possible failure zone

σD2 (N , σm2) σD1 (N , σm1)

σD3(N, σm3) σD (N , σm =0)

σa

(20)

Fatigue resistance

Endurance limit for σm0

Do not forget the probabilistic aspect !!!

Acier AISI 4340 N = 2,5 . 106cycles (r = σa / σm)

138 276

414 552

Mean Stress σm (MPa)

138 276 414 552 690 828 966 1104 1242

σD (N , σm =0)

Fatigue resistance

Endurance limit for σm0

Modeling of HAIGH’s diagram

138 276

414 552

Mean stress σm (MPa)

138 276 414 552 690 828 966 1104 1242

GERBER parabola

> Too complex for simple use

σa

σD (N , σm =0)

σu

(21)

Fatigue resistance

Endurance limit for σm0

138 276

414 552

Mean Stress σm (MPa)

138 276 414 552 690 828 966 1104 1242

GOODMAN ‘s line

> Most used

σa

σD (N , σm =0)

Modeling of HAIGH’s diagram

σu

Fatigue resistance

Endurance limit for σm0

Modélisons le diagramme de HAIGH

138 276

414 552

Mean Stress σm (MPa)

138 276 414 552 690 828 966 1104 1242

SODERBERG line: simple , accounts for elastic limit

> To be used in addition to GOODMAN’s criteria

σa

σD (N , σm =0)

σE σu

(22)

Fatigue resistance

Endurance limit for σm0

Recommended model

138 276

414 552

Mean stress σm (MPa)

138 276 414 552 690 828 966 1104 1242

The modified GOODMAN line :

• If, σ

a + σ

m < σ

E

1for

Else, σa+ σm= σE

σa

σD (N , σm =0)

σR

Fatigue resistance

Endurance limit for σm0 σD, σE,Yand σuare known: plot of the red line,

for compression stress one considers thatσmhas no influence d’influence on σa

Zone 1(white): fatigue failure for nb cycles smaller than Ni (point B)

Zone 2(Blue): life between Ni (point C’) and 107(point A’)

Zone 3(green):

Infinite life (point A)

σu

σE

σD σD(Ni)

σa

σm Re

Rm

σm>0 σm<0

A

C

σa(A)

σm(A) B

A’

C’ Modified Goodman

(23)

Fatigue resistance

Endurance limit for σm0

Safety factor in fatigue α

σD σD(Ni)

σa

σm

Re Rm

A

C

σa(A)

σm(A) σD

σE/α α= OC/OA,

This is equivalent as

considering a material with characteristics:

σD/α

σe/αet σm/α

O σE σu

Fatigue resistance

Endurance limit for σm0

σD σD(Ni)

σa

σm Re

Rm

A

C

σa(A)

σm(A) σD

Modified goodman criteria

If σa+ σm < σE

Else

σ

a

+ σ

m

= σ

E

/ α

For a given safety factor α

σu

σE

σE/α

(24)

Fatigue resistance

Endurance limit for σm0

σD σD(Ni)

σa

σm Re

Rm

A

C

σa(A)

σm(A) σ

E/α σD/α

Using Soderberg criteria

σu

σE

Fatigue resistance

Endurance limit for σm0

With Soderberg criteria

138 276

414 552

Mean stress σm (MPa)

138 276 414 552 690 828 966 1104 1242

σa

σD (N , σm=0)

(25)

Example

correction factor of σD

Steel shaftcold-drawnof diameter 40mm: σE=490MPa, σu=590MPa.

Inititial axial load F0=70 kN, variable load Fv: 0 to 100kN.

A stress concentration factor in statics Kt=2.02 for a groove r=5mm.

Determine the safety factor for an unlimited life and a reliability of 90%

Material endurance limit:

σD(N)=O.5*σu= 295MPa as σu<1300 Mpa Endurance limit for the part:

σD=ka.kb.kc.kd.ke.kf.σD’

ka=0.76 kb==0.85 kc=0.897 kd=1

ke=1/Kf où Kf= q(Kt-1)+1 q=0.86,

Kf= 0.86(2.02-1)+1)=1.877 ke=0.532 kf= 1 (no correction)

σD=0.76*0.85*0.897*1*0.532*1*295=90.9 MPa

Fi + Fv(t)

Example

safety factor calulation

Induced stress (by the axial loading) F0=70kN ; Fv=100kN Fa=Fv/2 Fm=F0+Fa=120kN

A=πd²/4=1.257.10-3 σa=Fa/A=39.8 MPa; σm=Fm/A=95.5 MPa

Safety factor calulation σD=295 MPa / 90.9 MPa ; σE=490 MPa ; σu=590 MPa

SODERBERG α=OS/OA=3,03 / 1,58 GOODMAN α=OB/OA=3,37 / 1,66

In statics:

Fa

F0 Fm

Fv

σr

Goodman

σD σa

σm σE

A B σa

σm

C

σE

Sollicitation line

S

Fi + Fv(t)

(26)

Application

Application

The beam ,with a circular cross section, is clamped on its left and subjected to a fluctuating load F(Fmin=-F0; Fmax=3F0) on its right.

One aims at determining F0such that the life of the beam is infinite.

By neglecting the internal shear force, determine the critical section along the beam length. The stress concentration will be neglected in a first analysis.

Then determine F0such that the life of the beam is infinite.

Material data: σu=560 Mpa; σY,E=480 Mpa; σD=280 Mpa

(27)

Calculation scheme : Forces/Moments in A Application

A B C

l1=l

! F

l2=5l

d1=2d d2=d

"# $%# 0 '# ()

*# 0

+# $ ,# 0 +# 0 -# 6)/

A B C

Cohesion wrench - stresses Application

"# $%# 0 '# )

*# 0

+# $ ,# 0 +# 0 -# 6)/

01 $!2

00

3 )4 5/2 0 $%# -7 0 '# 89 0

*# 8: 0 3 +4 5/2 1 0 +# 10 ∧ "# +<

2 1

"</2 $- 0 89 () 8: 0

+<

2 1 $ +7 0

+9 0 +: ) !2( 6/

A C

l1=l

! F l2=5l

G

/7

/9

/: cohesion wrench in G

77 =

> 2 @?? AB? !:(@ C

CC AB !9=(D@ BEFG

CC AB !9 79 H?

> 2 (@II I2 !:= > 2ED

7: 8:

J !1 +7

K77 !1 !9 0

Stresses in section G

(28)

Application

Critical section

77 () !2( 6/

K:: 2 !9

79 ()

J !1

7: 0

Max on the outer diameter, I33/xG max A1 or B1

Max section B+

Critical section Application

007 $ 0 L72 L

0

"</2 $-7 0 89 ()

8: 0

+<

2 0 $ +7 0

+9 0 +: (6). /

0O7P $ / L72 L/2

0

"</2 $-7 0 89 ()

8: 0

+<

2 O $ +7 0

+9 0 +: (5). /

77 24). / SL:

79 ()

SL9

7: 0

J7 SL9 K::,7 SLU

4 J9 SL9

4 K::,9 SLU 64

77 160). / SL:

79 (4)

SL9

7: 0

Resistance criteria to be applied in section B+

(29)

Application

• Fluctuating load Fluctuating stresses

) ) 1 2 sin YZ

77 160. /.) 1 2 sin YZ SL:

79 [ (4) 1 2 sin YZ SL9

160. /. 2. )

SL: \ 160. /. )

SL: [\ (4)

SL9

[ (8)

SL9

• N.A.

1,3. ) \ 0,65. ) _ (`, ` a. b` [\ (0,008. )

77 160). / SL:

79 (4)

SL9

7: 0

Application

• Fatigue resistance criteria

1- Shear stress and stress concentration factor neglected

1,3. ) \ 0,65. ) [ (0,016. ) [\ (0,008. )

<

\c 1 d 1,3. )

<

0,65. ) c 1

d ) c1

d . 1 1,3

<

0,65

) c 166 -

de4fg 1

σD(Ni) σa

σm σu

σa(A) A σm(A) σE

σD

σE σu

Soderberg

Goodman σa(C)

σm(C) σD C

σu σE

Soderberg

<

\ h c1

d

) c1

d 1

1,3

<

0,65

h

) c 171 - 1,3. )

<

0,65. ) c1

d Goodman

Material data: σu=560 Mpa; σY,E=480 Mpa; σD=280 Mpa

(30)

Application

• Fatigue resistance criteria

2- stress concentration considered – shear stress neglected

calculation of Kf

Soderberg, Goodman

1,3. ) \ 0,65. ) [ (0,016. ) [\ (0,008. )

< k<l

m,g km,gn

kl.

<

kn. \

m c 1

d kl.

<

kn. \

o c 1

d

Application

• D/d=2, r/d= 0.28

Kt=1.3

q=0.9

(31)

Application

• Fatigue resistance criteria

3- Shear stress considered multi-axial stress state

Calculation of an equivalent stress based on Von Mises formula

1,3. ) \ 0,65. ) [ (0,016. ) [\ (0,008. )

Fatigue resistance in torsion

for τ

m

0

(32)

Fatigue resistance

Endurance limit for τm0

Haigh’s diagram

Pure torsion

τE

τD(Ni) τa

τm τu

A C

τa(A)

τm(A)

B

τu

τE

τD Some experiments have shown thatthe

mean stress τmhas no effect on the torsion endurance limit τD.

Given the stress loading line, the part resistance is limited by :

the horizontal line τD

The elasticity limit line Safety factor

α=τDa α=τE/(τa+τm)

Stress loading lines The fatigue resistance in shear (torsion) is determined by analogy to the yeld stress from the distorsion energy principle:

Fatigue resistance

Factors influencing the endurance limitσD(pour σm=0)

Type of loading (bending, traction, torsion, etc.)

σm, τm

σa, τa 2D Bending

Rotary bending Traction

Torsion

(33)

Fatigue resistance for: multi- axial fluctuating stresses

Fatigue resistance for: multi-axial fluctuating stresses

• Context–equivalent stress

Very often, parts of machines are subjected to multi axial and fluctuating stresses (2D or 3D)

Calculation of equivalent mean and amplitude stresses:

σa_equiet σm_equi

σz τzx τzy

σy τyx

τyz σx

τxz τxy σy

τyx

σx τxy

σy τyx

σx τxy

(34)

Fatigue resistance for: multi-axial fluctuating stresses

• σa_equi and σm_equi

τyx σx τxy

σy τyx σx

τxy

σy

σz τzx τzy

σy τyx

τyz σx

τxz τxy

Fatigue resistance for: multi-axial fluctuating stresses

• σa_equi and σm_equi

Then, use of the endurance diagrams

_pqh r r

_pqh r r

(35)

Application

• Fatigue resistance criteria

3-shear stress accounted for multi-axial stress state

equivalent mean and amplitude stresses

Resistance criteria:

Soderberg, Goodman

In this case, the shear stress has no effect, it can be neglected

1,3. ) \ 0,65. ) [ (0,016. ) [\ (0,008. )

\_4sgt \9 3[\9 0,652. )

_4sgt 9 3[9 1,304. )

) c 166 -

d 1

) c 171 -

Fatigue resistance of a transmission shaft

Method :

Calculation of the stresses

Equivalent stresses

Application of the modified Goodman criteria

σu

Modified Goodman

σDou σD(Ni) σa

σm σE

A B

σa_equi

σm_equi C

σE

Stress line

Modified Goodman criteria:

If σa_equi+ σm_equi< σE/α

_pqh _pqh

h

else

σa_equi+ σm_equi= σE

(36)

Fatigue resistance of a transmission shaft

Cohesion wrench constant in the global frame

y z

Mf ωt Mt Q

Rotating shaft bending/ torsion

Cohesion wrench variable in the local frame

Stresses in Q

Fatigue resistance of a transmission shaft

Equivalent stresses

Fatigue resistance criteria

\_4sgt \9 3[\9 3.[\ _4sgt 9 3[9

3. 16. +5

S. L:. g 32. +

S. L:. < 1 d

L de4fg

S 3. 16. +5

g

32. +

<

C

(37)

Synthesis , fatigue resistance, 1 single stress level

Uniaxial

σm=0 σm≠0

Haigh

(endurance) diagram - Soderberg model - Goodmann model - Goodmann model

Multi axial

Direct use of Wölher diagram

- Wolher model -Basquin model

Tensile strength Yeld stress

Gerber model

σE

σu

σE σu

Example: shaft of a starter-alternator

Calculation scheme

Bearing centers

Pulley center

Winding center

L

x z

FA d

e

Cm A

D B

e/2 C y

-Cm

FB FD

L e d FA Cm

150 mm 100 mm 30 mm -4000 N 80 N.m

σr σD σE

700 MPa 300 MPa 600 MPa

(38)

Example: shaft of a starter-alternator

Example: shaft of a starter-alternator, stress state in statics

• Stress in section B+ 77 -J +K999!:(+K:::!9 u` ∗ 64SLU !9

79 89

J (+7

K77!: (r```

SL9 (w` ∗ 32 SLU !: 7: 8:

J +7

K77!9 w` ∗ 32 SLU !9

B /7 !

/9

/:

M

77 79

7:

O+ $!7

!9

!: x,yGI,G?,GCz

O+7 $ 0

L/20

x,yGI,G?,GCz

77 50 ∗ 64 SLU L

2 50 ∗ 32 SL:

79 (2000 SL9

7: 80 ∗ 16 SL:

{ 9 3[9

[= 799 7:9

77

{ 779 3 799 7:9

L | m

+9,:∗ 32 S

9

3 +7∗ 16 S

9 7:

α=1 d=11,3 mm α=2 d= 14,3 mm

Références

Documents relatifs

Imprinting isolated single iron atoms onto mesoporous silica by templating with metallosurfactants.. Ersen,

Loïc Francon, Thierry Ameglio, Erwan Roussel, Irène Till Bottraud, Guillaume Charrier, Christophe CoronaB. To cite

Here, the node displacement fields of a tensegrity structure in different states of self-stress under several strategies of static loadings is studied by comparing the

Forgetting the short plateau of the flow curve for the clayey emulsion we get the following rough picture: both materials have a similar behavior in the liquid regime but the

Fig.4 presented the peeling stress distribution along the interface of pin and PCB resulted from the cooling process. It was obvious that strong stress

The primary contributions are (1) a system understanding of the small-plot remote sensing context which can be used to assess the utility of improvements in

In Figure 4, the free volume of simulated Nafion membrane has been calculated and a linear trend is observed with the water content.. This indicates the formation of water

The general analysis of verbal inflection and auxiliary use is able to attribute variation in auxiliary distribution across languages to two factors independently known to