• Aucun résultat trouvé

Correlation of data for adsorption of binary gas mixtures on solid adsorbents

N/A
N/A
Protected

Academic year: 2021

Partager "Correlation of data for adsorption of binary gas mixtures on solid adsorbents"

Copied!
87
0
0

Texte intégral

(1)

GAS MIXTURES ON SOLID ADSORBENTS

by

Charles E. Speer

B. S., University of Texas 1949

6ubmitted in Partial Fulfillment of the Requirements for the Degree of Master of Science

from

Massachusetts Institute of Technology 1949

Signature redacted

Signature redacted

Super v or 7 -~ Head ot Department

WY

(2)

zKi4

asx*T loTh l$aqevITU ~.

eitt rzo'1 alne.xIiOi p*I eziJ lo Ineim~fV1Ju Ialtsoz nl belclmjU4

*oneloa lo qe$88m lo 69,130(

i~oloririoeT lo eiwttztaaI alessvuoasM

'A..AA.ASR.g Las

-io vxoqjia

;fn9mlrxsq9(l 'J'o bBOH 00,

(3)

qC)

Dept. of Chemical Engineering Mass. Institute of Technology Cambridge 39, Mass.

September 1, 1949

Professor Joseph S. Newell Secretary of the Faculty M.I.T.

Cambridge 39, Mass. Dear Sir:

The thesis entitled, "Correlation of Data for Ad-sorption of Binary Gas Mixtures on Solid Adsorbents," is hereby submitted in partial fulfillment of the re-quirements for the degree of Master of Science in Chemical Engineering.

Respectfully submitted,

Signature redacted

(4)

iii

TABLE OF CONTENTS

Page

I. Tables - - - - - -- -

---II. Figures - - - - - - - vi

III. Summary - - - - - - - - - - - - - - - - - viii

IV. Introduction - - - - - - - - - - - - - - - - - 1

V. Literature Survey - - - - - - - - - 3

VI. Thermodynamic Test of Data - - - - - - - - - - 5

VII. Solid Fugacity Functions - - - - - - - - - - - 25

VIII. Precision - - - - - 53

IX. Results - - - - - - - - - - - - - - - - - - - 54

X. Appendix - - - - - - - - - - - - - - - - - - - 55

A. Original Data - - - - - - - - - - - - - - 56

B. ?Functions - -- -- - - - - - - - - - - 66

C. solid Fugkcity Functions - - - - - --- - - 71

D. Sample Calculations -- - - - - - - --- 76

E. Nomenclature - - - - - - - - - - - ---- 77

(5)

iv

TABLES

Page I. Hydrocarbon Systems Analyzed - - - - 4

II. Broughton's Test of Data - - - - - - - - - 23

Original Data Ethylene-Propane-PCC -Ethane-Propane-PCC - -Isobutane-Butene-l - -Acetylene-Ethylene-PCC Ethylene-Propane-PCC Methane-Ethylene-CG - -Ethylene-Ethane-CG - -Ethylene-Propylene-CG -Ethylene-Propane-CG - -Propane-Propylene-CG -Propane-Propylene-GLC -Methane-Ethylene-SG - -Ethane-Ethylene-SG- - -Ethane-Propane-SG - -Isobutane-Butene-l - -Acetylene-Ethylene-SG -Propane-Ethylene-SG - -Ethylene-Propylene-SG -Propane-Propylene-SG -EthyleneoEthane-SG - -56 56 57 57 58 58 59 59 60 60 61 61 62 62 63 63 64 64 6b 65 (Functions AXXI. AXXII. AXXIII. AXXIV. AXXV. AXXVI. AXXVII. AXXVIII. AXXIX. AXXX. AXXXI. AXXXII. AXXXIII. AXXXIV. AXXXV. AXXXVI. AXXXVII. AXXXVIII. AXXXIX. Ethylene-Propane-POC -Ethane-Propane-PCC - -Isobutane-Butene-l-PCC Acetylene-Ethylene-PCC Ethylene-Propane-PCC -Methane-Ethylene-CG - -Ethylene-Ethane-CG - -Ethylene-Propylene-CG -Ethylene-Propane-CG - -Propane-Propylene-CG -Propane-Propylene-GLC -Methane-Ethylene-SG - -Ethane-Ethylene-SG - -Ethane-Propane-SG - - -Isobutane-Butene-l-SG Acetylene-Ethylene-SG -Propane-Ethylene-SG - -Ethylene-Propylene-SG -Propane-Propylene-SG -AXL. Ethylene-Ethane-SG - - - 66 - - - 66 - - - 66 - - - 66 - - - 67 - - - 67 - - -

69

- - - 67 - - - 68 - - - 68 - - - 68 - - - 68 - - - 69 - - - 69 - - - 69 - - - 69 - - - 70 - - - 70 - - - 70 - - - 70 AI. AII. AIII. AIV. AV. AVI. AVII. AVIII. AIX. AX. AXI. AXII. AXIII. AXIV. AXV. AXVI. AXVII. AXVIII. AXIX. AXX.

(6)

Solid Fugacities AXLI. AXLII. AXLIII. AXLIV. AXLV. AXLVI. AXLVII. AXLVIII. AXLIX. AL. Ethane-Propane-PCC - -Isobutane-Butene-l-PCC Acetylene-Ethylene-PCC Methane-Ethylene-CG - -Ethylene-Ethane-CG - -Propane-Propylene-GLC -Isobutane-Butene-l-SG -Propane-Ethylene-SG - -Ethylene-Propylene-SG -Propane-Propylene-SG -71 71 72 72 73 73 74 74 75 75

(7)

vi FIGURES / Functions Page 1. Ethane-Propane-PCC - - - - 7 2. Isobutane-Butene-1-PCC - - - - 8 3. Acetylene-Ethylene-PCC - - - - 9 4. Ethylene-Propane-PCC - - - - - - - - - - - - -- 10 5. Methane-Ethylene-CG - - - - - - - - - --- - - - 11 6. Ethylene-Ethane-CG - - - - - - - - - - - - - - - 12 7. Ethylene-Propylene-CG - - - - - - - - - - - - - 13 8. Propane-Propylene-GLC - - - - - - - - - - - - - 14 9; Ethane-Ethylene-SG - - - - - - - - - - - - - - - 15 10. Ethane-Propane-SG - - - - - - - - - - - - - - - 16 11. Isobutane-Butene-1-SG - - - - - - - - - - - - - 17 12. Aoetylene-Ethylene-SG - - - - - - - - - - - - - 18 13. Propane-Ethylene-SG - - - - - - - - - - - - - - 19 14. Ethylene-Propylene-SG - - - - - - - - - - - - - 20 15. Propane-Propylene-SG - - - - - - - - - - - - -- 21 16. Ethylene-Ethane-SG - - - - - - - - - - - - - - - 22

Solid Fugacities vs. Pressure 17. Ethane-Propane-PCC - - - - - - - - - - - - - - - 28 18. Acetylene-Ethylene-PCC - - - - - - - - - - - - - 29 19. Methane-Ethylene-CG - - - - - - - - - - - - - - 30 20. Ethylene-Ethane-CG- - - - - - - - - - - - - -- 31 21. Isobutane-Butene-1-SG--- - --- 32 22. Ethylene-Propylene-SG - - - - - - - - - - - - - 33 23. ropne-Popyene-G -- - - - - -AA 23. Propane-Propylene-6O---3 Solid Fugacities vs. N 24. than-PrpanePCC- -- - -- -- -- - -- --3 24. Ethane-Propane-PCC---3 25. Acetylene-Ethylene-PCC - - - - - - - - - - --- 36 26. Methane- Ethylene-CG - - - - - - - - - - - - - - 37 27. Ethylene-Ethane-CG - - - - - - - - - - - - - - - 38 28. Isobutane-Butene-1-SG - - - - - - - - - - - - - 39 29. Ethylene-Propylene-SG - - - - - - - - - - - - - 40 30. Propane-Propylene-SG - - - - - - - - - - - - - - 41

(8)

vii

Solid Fugacities vs. N for Mixture Adsorption Only

Page Ethane-Propane-POC - -Acetylene-Ethylene-PCC Methane-Ethylene-CG Ethylene-Ethane-CG - -Isobutane-Butene-l-SG Ethylene-Propylene-SG Propane-Propylene-SG -42 43 44 45 46 47 48

Solid Fugacities vs. P for Mixture Adsorption Only

38. Adsorption on Carbon -

-39. Adsorption on Silica Gel - -- - -- - -- - - -- - - -- - - - -- - - 5049

31. 32. 33. 34. 35. 36. 37.

(9)

viii

SUMMARY

The object of this work was to find correlations based on sound thermodynamic principles which would permit prediction of the adsorption of binary gaseous mixtures on a solid from the adsorption isotherms of the pure gases only. Data concerning the adsorption of

twenty hydrocarbon mixtures were examined first by utilizing the thermodynamic requirements proposed by Broughton and then by considering the solid as a

component of the system and calculating the variation in its fugacity. Neither of these methods of analysis yielded a general correlation of the data. This was primarily due to the fact that both require extremely accurate data as the pressure of the gas being adsorbed approaches zero, and such data were not available.

It was concluded that the LangmWir and the Magnus equations as extended to gaseous mixtures are not

generally applicable, that the Broughton criterion cannot be used for testing data or as a possible means of general correlation unless the data are extremely accurate at very low pressures, that there is no general correlation for the variation in the fugacity of the

solid adsorbent, and that the Van Laar type of equation cannot be applied in the form proposed by Cadogan and Chertow since the fugacity of the solid varies with the composition of the gaseous mixture.

(10)

For many years there has been much interest in the nature of the adsorption of gases on solids. Not only is adsorption of primary concern in many catalytic reaction processes, but also it may prove to be of conrsid'rable importance in the separation of petroleum refinery gases. It is the latter consideration that prompted this work.

The normal method of separating the hydrocarbons of petroleum is the distillation and rectification of the crude petroleum. Naturally this method depends on differences in the boiling points of the various com-ponents present. However, when the molecular weights of the compounds are nearly equal, these differences become too small to afford a practical separation in

this manner. In addition, the very low molecular weight compounds are gases at normal temperatures and pressures, and special high pressure or low temperature equipment would be required to use the distillation procedure at all. A reliable method of predicting the characteristics of selective adsorption would be of great value in

judging whether or not the distillation process could be replaced by an adsorption process.

The purpose of this work then was to analyze and correlate previously published data in such a manner

(11)

solid could be predicted from data on the separate

adsorption of the pure gases on the solid. In addition, it was proposed to derive these correlations from sound thermodynamic bases rather than from purely empirical considerations.

Most of the previous work done has been concerned with the adsorption of a single pure gas on a solid. Various empirical and semi-theoretical correlations have been presented for predicting the adsorption

iso-therms of specific systems, but no entirely general correlation has been found. Attempts to extend these theories to gaseous mixtures have not met with much success. One of the main difficulties encountered in these extensions has been the lack of experimental data for mixture adsorption. Such data are now available and show the lack of general applicability of these

extensions, the most important of which are the Langmuir

j2, the Magnus (?, and the Hill (5 equations .

Broughton jLhas also provided a thermodynamic means of testing such equations and he has shown that the Langmuir equation is correct only in a very special instance. Likewise, the Magnus equation proved to be generally inapplicable by this test. The Hill equation

is at present in such an impractical form that it could not be tested either by the Broughton criterion or by

(12)

LITERATURE SURVEY

Since the main interest in mixed adsorption lies in the possibilities of separation of hydrocarbons, it was thought desirable to confine the examination to hydrocarbon mixtures. A search of the literature

revealed that the only signifigant data were to be found in work recently done at the Massachusetts Institute of Technology. Most of this work was done by Cadogan (3) and Chertow (4 and their coworkers, and all of the data were summarized and presented by one or the other of these men. These two references were the only sources of data used for this analysis. Since the majority of the investigations were carried out at a temperature of 25*C and a pressure of one atmosphere, it was decided to further restrict the examination to data obtained under these conditions. All the data used in this work as original data were obtained from the smoothed curves presented in the references. Table I presents the

systems considered and Tables AI through AXX give the original data for them.

(13)

Table I

Hydrocarbon Systems Analyzed

Hydrocarbons Adsorbent Reference

Ethylene-Propane PCC+ (3) Ethane-Propane it Isobutane-Butene-1 " Acetylene-Ethylene (4) Ethylene-Propane "t Methane-Ethylene CG++ (3) Ethylene-Ethane It Ethylene-Propylene "t Ethylene-Propane "1 Propane-Propylene It Propane-Propylene GLC (4) Methane-Ethylene SG++++ (3) Ethane-Ethylene it I" Ethane-Propane " " Isobutane-Butene-1 t Acetylene-Ethylene (4) Propane-Ethylene It Ethylene-Propylene "t Propane-Propylene I Ethylene-Ethane "

+ Pittsburgh Coke and Chemical Co. Activated Carbon,

28/60 mesh.

++ Columbia G Activated Carbon, 8/14 mesh. +++ Godfrey L. Cabot Carbon Black.

(14)

THERMODYNAMIC TEST OF DATA

Broughton (1) presented a thermodynamic basis for the examination of binary mixture data but at the time of presentation, not enough data were available to test

it adequately. The initial step in the analysis then was the testing of the data for thermodynamic validity. Broughton showed that for a binary gas mixture maintained at constant temperature and at equilibrium at all times

fN,, Me

0 f Pa

where: N = the number of moles of gas adsorbed per unit weight of solid.

P*

=

the pressure of pure gas over the solid. P = the partial pressure of the gas in the

binary mixture over the solid. This equation can be further simplified to

NO

i-Vr

/;7?4.

where: N* = the number of moles of pure gas adsorbed per unit weight of solid under a total pressure equal to the mixture pressure. = the ratio P/P*.

r = the ratio N/N*.

Thus, the graphical integration of ln

(

= $(r) for the two gases in a binary mixture should provide a means of determining the validity of the reported data, i. e., the ratio of the areas under the curves should be equal to the reciprocal of the ratio of the NO's.

(15)

&

Figures 1 through 16 show these "L" functions for sixteen of the systems. Four of the systems so obviously violated this condition that the _ funtions were not

plotted. Tables AXXI through AXL give the calculated values of l and r for all twenty systems.

(16)

Fiur 1.4l F7 -4-444-4 ~4~L ~ I. _ I~L444- LJ4~ _ L A-A, _+_J I-4 - 44-i e- .... ._ .-4 .4- .+. m~ I- li p , -~ T --44-~-z r--4t f f-A ~ -4-t~ 7 -- ,

I

I

-

1* 1- t .. .... '-i 54F--i - T4 3-I 0. 0.+. . 0.1 0. lz 0.,3 0.,v 0.!s 0.4, 0.7 0. If 0. rf /0 Figure 1. r1c e -4 a -n P_ o"l-60--oRkne

(17)

-t S --- --6 - --Figure 2. 2 - - -t-

-I

-I-- -- 4--Li: -t I - 4-LLLIJJW~1~ -j~J -t -0.3 .-. u olr c

:Af

I

I

U

I

I

rt~T

-I---7t1

0.1 c -- -t -4---- -4---- -- I

CO-&~t

T - -t I--1-4 r~$ +- --A -a-IITIII-V

bIzhIi

tI~fl-LW

- i - Inow 77 77- I--4 t- I - 4 -4j - --- - - 4 t -

-4

7 -- - -4-= --

-4

i

(18)

0 I ..~ .il ... .- . '-- --14 ITI 4+ OD~-- FK~4''4 ~-11 lid;t~ 11i ; 0 1 + IT I!,.~i Ir Fii~--' W!H- Hl k t++ Fi w'i' IjI i

4

I~i th C4--IsI * !-4-~ IL 4.-4-1 i44- T4 C , 1- ---KI)i I-ttt E i)

V

~~iF~j r,

(19)

17 1 F III:t ITIT N 11111

1!I

1

kI

iI

i

tT ii I I~~ J~ WilI 111111 +. I A+ 4~+ l.44 t44 11 141i r+i + I I r 4lII 47VH-T- 0 1-T ;!Ii f :if T I p

(20)

!! , , , I ~ it I I M w II I*** I t I II f1 I 1!k 111 it -t-4 H--r t t ~~If 10

(21)

-44 I t WA~L I I go

Tt~

!tajjj

i

l

4-4 1 * + 1 1 L l 1 it~ _ 01111 -4t v Wi W 11 w N1J ' 0

Iw_

Is

w

91

w

ul

V1

%%

(22)

-Figure 7.

1

-U - -- AR -; 7 -7:t -* V 74~ 3a

I

-44

+ -IT 3a

(23)

0 CD .5. iI . ~ I_ I 111 44-. itI ,iI I ,I II .1r 2 -% it I t 1111111t KrI I IK t if if 1 '3 1~ C 'I N. f%

(24)

Figure 9. 10

tt

-4-3-F ET 4- -- 4-4- - :T: 2 4. 4~I f t 4 - -

E

i

::_ -+ -

I

-4 t 040 Z.

.

4-

'- -

065

/0

0

LS

(25)

Figure 10.1 al0 -4 - --4A 44--1 --- -4 .----4 4 1-r4 - -- - - - - -O 0.3 0. 4 0.5 .6 Or 0. 0r rf/,Ieor' l

(26)

I--:1, V J 4 7+7-r 77'

I4-N 1 -I 0.1 ~ k T

fi-.-

---- --1 I- 4-Figure 11. I -t 4EE t o.3 --4

-$

14 -4-T --4 I 'i ~- I - t-I -- Wi-t Wi-trl I a, t - ---0. *f or I-iuteie-I _________ ~ --- ----i I 0.5 0.4 -~- 4 - -

-I-

-A-- t TI-- ---- -T_

--V

-- 4

-A--i --t + - 4 --+ 4 4 --~ 44 4-4-4-44 4 -I- 4----I 4--i-- ~

t

7

----1--441 * It

-~

14--

4---4

J,

(27)

111t f IfiI i pi

LVVt

T t-T; 141.4z -I. 1+ I+ I l.lT ; f , A4 '4'.r I . I I IlI I 4+4~~ t ..L4 ~ ~

+

I t 1,H li l l ' l lii- I ' I! II L iI i I i + 0i

(28)

Figure 13.* I 0.1 aq~

19

I'

j 1. U~ 0 -+ - - - -- ------* ---6I 3 -3:7 -O ---4 9 -O o-3

(29)

10 -. Figure 14.0 ---. .. + . .J I-~-- -- -- - -- -f-44 H- -4 -L 0,4 05 MEN. -O . - -

To,

(30)

-it, "

-471

iH j11I~i I Itji ~ 4.$-* VV 4 I I I- I~ IL 101!HT id Hl I-, 'p E 0 0 'I 0) 116111 w I I w 1111 vi %14 W N %, I

(31)

-I itI TII II. . t f Ii-4 l it l 11 1W l

W, li

Ii

I

h

~l111

!1

PI l~ ~ 1lIIII i II N i Ii l , h 1 :1 1 11 111 111 '1jllii I 1111H 1 1 tI 11 1il !k 1 ll I 1 H I I! I it H I: i , I I Ii I Il t I I i I I i i 11 ;il Il , 1 I 1 1111 , -4--I i tt

F

LLf, v1 i 4~~i ttr' i+t+4~ 1

__7

Ip *40

(32)

23

Table II presents the results of the graphical integration of the L functions.

Table II

Broughton's Test of Data System

Component A Component B Ads. Ethylene Ethane Isobutane Acetylene Ethylene Methane Ethylene Ethylene Ethylene Propane Propane Methane Ethane Ethane Isobutane Acetylene Propane Ethylene Propane Ethylene Propane Propane Butene-1 Ethylene Propane Ethylene Ethane Propylene Propane Propylene Pro pylene Ethylene Ethylene Propane Butene-1 Ethylene Ethylene Propylene Propylene Ethane PCC " " " " CG it tI it t GLC SG if it ift "I "t " "

%

Diff. o ~j NjOlnies 4(-J2+oo 7 A ->100 1.375 1.151 -16.3 3.56 4.20 18.0 0.786 0.593 -24.6 1.235 2.39 -93.5 0.413 0.276 -33.2 1.81 1.74 - 3.90 2.75 1.24 -55.0 ->100 Insufficient data. 1.759 1.823 Unreliable data. 0.1445 0.170 1.012 0.389 0.230 0.358 0.445 0.0566 0.0814 0.106 1.043 0.267 0.1825 0.3875 0.402 0.1315 - 3.6 -42.4 -37.6 3.06 -31.4 -20.6 9.08 - 9.67 132

It can be seen that, according to this test, few of the data seem to be consistent with the thermodynamic requirements. This is due to the fact that the test requires high precision of the data in regions where

this is usually not obtainable. Most of the area under each curve is to be found at the end at which r approaches zero. At this end, the pressure is also approaching

zero and as this happens, the precision of the original data becomes very poor. In order to obtain values of Y

(33)

at low r's, it was necessary to extrapolate the original data to such low values of pressure that errors of 50% or more could easily be made. Even with careful ex-trapolation of the original data as far as possible, it was still necessary to extrapolate the ffunctions to zero r. With these extrapolations, which occur at such critical regions, it is not surprising that the correct area ratios are not obtained. It seems unlikely therefore, that this test can be used for more than a qualitative check unless extremely precise data for the critical regions are available. It can be used for this however, and on this basis the following systems seemed

doubtful enough to be neglected in subsequent examinations. Ethylene-Propane-PCC (3) Ethylene-Propane-PCC (4) Ethylene-Propylene-CG Ethylene-Propane-CG Propane-Propylene-'CG Methane-Ethylene-SG Ethane-Ethylene-SG (3) Ethane-Pr opane-SG Acetylene-Ethylene-SG Ethylene-Ethane-SG (4)

In spite of the difficulties ino lved in using this test, attempts were made to find simple empirical equations for the )'functions,.and in doing so, impose the condition of correct area ratios. It was thought that these functions might possibly be correlated by

such means. Such investigations showed that the wide diversity of the shapes of the curves prevented the

(34)

SOLID FUGACITY FUNCTIONS

In a further attempt to find a sound thermodynamic correlation, the possibility of a relation between the fugacity of the solid adsorbent when the pure gases are separately adsorbed and the fugacity of the solid adsor-bent when the gaseous mixture is adsorbed was investigated.

Consider the system of pure gas and solid as a binary one, i. e., include the normally neglected solid as a component. If

s-~ 2~ ,TtNg

P,T,Ns

where: N is the number of moles adsorbed. F is the molal free energy.

F is the partial molal free energy. s refers to the solid.

g refers to the gas.

then, from basic thermodynamic relations

N'ds + NgdFg =

PT

- - - - - - - -(1)

If, during the adsorption process, the total pressure is assumed to be held constant by a non-adsorbable gas that has a negligible effect on

Fs

and Fg, then the

restriction of constant pressure may be neglected. Since dFsR RTdlnfs, where f is the fugacity, equation (1)

(35)

26

solid remain constant,

dlnfNs = -N dlnf T - - - - - - - - - (2) For the gas mixtures, i. e., ternary systems, similar reasoning shows that

dlnf = -NAdlnfA -NBdlnfBP,T - - - - (3).

Here one does not require the hypothetical non-adsorbable gas to maintain constant pressure. Since the pressures in question are all atmospheric or less, partial pres-sures may be substituted for the fugacities of the gases. Also, dlnP = d and dPA

=

-dPB' Upon

substi-P

tution in equations (2) and (3), one obtains the final equations

dlnfNs s:n ~~J---(4)= - dP

dlnfjs

-(N,

- NM dPA T - - - - - - - - - - (5) Equation (4) applies to the binary system and equation (5) applies to the ternary system.

Graphical integration should then reveal ln fgs or f N as a function of Pg for the binary systems and

as a function of PA for the ternary systems. If the fugacity functions of the solid in the ternary systems

could be related to the fugacity functions of the solid in the binary systems and if the empirical relation that NA is linear in NB be assumed (4), then the

character-istics of mixture adsorption could be predicted from data on pure gas adsorption alone.

(36)

Figures 17 through 23 show fs= (Pg) for pure gases and fI = '(PA) for the mixtures. Figures 24

through 30 show the fugacities of the solid as functions of N. Figures 31 through 37 show the fugacities of

the solid in the mixtures as functions of N on a larger scale and Figures 38 and 39 diow ln f s = ( The numerical values from which these curves were plotted may be found in Tables AXL through AL. The basis for all calculations was the assumption that the fugacity of the pure solid is 1.0. In three cases the functions

i N for the pure gases were so lacking in precision at g

low pressures that the fugacity of the solid for pure gas adsorption could not be calculated. For these

cases the fugacities of the solid in the ternary systems were calculated by arbitrarily assigning a fugacity of

1.0 to the solid when one of the pure gases is adsorbed under a pressure of one atmosphere. Since the basis

of calculation in now different from the original one, the numerical values of the fugacity of the solid are incorrect. However, the shapes of the curves are cor-rect and are shown in Figures 38 and 39.

(37)

- -. Figure 17. v~ i*-~~ -Md~dL +1 I mm t, pet F -- -j

A

i 4 .4 .4/4-t ~ 4~4$& +

-~Th4~.-W4T-J F4iI- +-4~A- -I-i 4-4-4 -[-LJ4-44H+14-1 i 4 4++ A+ IA iF-lt + -4--4 J .- t-4-4 4 44~4~ 4-44-4-i+4+ 44-If - Ii f4 H, 4 T _v t r-i I. y_ -, _ i4 -1 -1-

4-.,-4.

441

;

--H'44" 0 c1I fOb

4T44H+"It

I I - t 0 4-! o.q 0. b 7 I 4- LL .. . 1.4 77-1

7

2

:4H 14 P-41 1 i 1 i 1 P -++* + t-t+ Ct2

(38)

A,4. 4,4 4r+ wwmj 7H4 -~I -I 4 4 -f 4--I-- -4-A-~ ## -4-h -+ -4-4-L4 :t, ]A-f-ti 4- 4 f4i rr/~e9~v TW

(39)

Figure 19. 4 I- A- 14--~ I. 4-J-4 4-+ 4-+ L -4+ -.--44 4-4-'4 44 T 11 -7-t 4@ U +4 -t t-- 'a-7 -1jTi 4 4 71 "--4 --- 1

-Ii~I4.

i 4t/1 1 4 * - 4 .* ~ ..~ ~ I~.4-1-4 L-4-t 1 id

rPu

-L4-4..LLL.A..iLZ~~iJA.74jLLV7 4: 7 Vi ~- -. t- -4 ~ ______ l T TTITYT4 t t1 4i 4--+ -t-~ 1t IT 4# 44 4T 44 i - - -4-44-444

I4,----4- 4 ~- I... . .-... . I -.4. IJ.L244-. 1 LW 7V T 1 A

-4-

-~-'~~~~1 L 1 4

t-14 I i-t~v 4 .'44- I 4-4-~ -~.4- I ~ -.-.--,-.-I----. -- ~ I ~ ... 4 4 .4-J .~LJ4 .L LLL4. I LI. 41

i 4-- I - _ 7]~ 14 -4T I4 I -4 ~T.ft+ -T 141 *1-rt , HL -4-_0 -- f 44-~424F-T E LU. 74.5 7T1 1 T7~7 V 4. t 11 4.4.11 Ill T4 11 4. * I 4-,-rt-t.-4-44

4+4---/

4 ~ 4 4-~ 4 -'-44 ..- 4-9-4 4 ~ 4 s-.-.. ~ J&.4-..4I~...LL...LLL~...LLLLLLLLL 4.. V" --tt r*. Ti4f -4 - AFI _i J _4 _ 4t 1-t 7. .4 +4 . -WI _ 4 + JIlT 1~-'-~~ ~44~,. F t ~- 21 TI -44-,-I 4-"-" 7. -4. - ~ tr ~ i -f-44 : -t4-4--t-r1--t-4-$-+4-t4*4 rt-I~h.FH-+4.-41- IJ44,444I44LL 0.8 -T t__ _ .A : 4 o.2af. o-6

petylneor / &vf hia-FE) a "

1W

I

I- tt 4-. #14 K

I

: r 4-J t ft 12p,+ L4 41 -4Th~t -4-,---- -. -i-i-Hi

3 0

~72~ 14

-

U,4

I

1 11 4- + /0 47 tTt ll Ha -4 4-4-4-+-4-F 4 44 4. -:It~.tTji -'I F - ~ #4h 7444-, 4- 4 . . . . . . 7 + 7- +T 4 Xhl -_H_ iff f -4i 4 U 4J, TT 4: 4+ + LIJ. 9f 11 j 44-aa 777 44 4__ 'tt_ Jj :t t_+-t-+ -. -. 4,j Ah -4 i Tj . 11 T 17 '-*-I- '_ '! I T_. t -4. i+H-4 L,-; 1. 4 rttt, + f 7 I -T, =7 4L 7 T d -7 47 4 ihi -44T -7, + T-1 T, 1, 7-T I-, ETTT-T7-1 _44 4 7: _11 7 11 _L1 _LL i I 4 Ji 4+ 4-, i + 4-4,' -07 TFT 4:rlI T , , 1- -1 ii-, - I I . 1 -1-11 -T Jrt H-HI,

(40)

Figure 20. tf 4-~

31

*1~-~*~~~ 4, 4 -, -j44

T-h1.4...

...4. .

A

-4

T- :-f 1 -I - 1~ L~ }~ iL1]~Th7 441441H r-oM

04444TP1

A 1 i;4 J-~ '-A-4 4 It -A45

-77

4 14- --TH4 t

1.

+-IT -- rf +-1

RlItj--1~.

--

4----I

t

-.- R~-~ -H f7 I

I

IWqiit{

1-41 :.4 40 th + Lq - Jj . I~~~ . f+l Lt -! i '-i-~r

IL

P

1

1

YtF$~

4~t

I~44--4

Hlu~tu

f. 0

~K

41 ~ 4Th: -4-4-4-4 LLt.2T 4144ftj [2~

II ~

rV

+T~fd~~~W

I-o-Z

1 erica 2e 0.or Aky/e, pe -1

ThT

44 j 4--IN A 41 4- 0 -- - - 10.7-0 .9 T 1131T p 4-4, j -14

(41)

Figure 21. 5--l -4 14 -4-+lTjt14Y~b4 ~ 74.1 .,

32

lft4U4 4 D ! r3 '4 4ffl~ t1 J t 1 2 T mLH-4

~.

I,.

4

- --T7 f t 14 t-I ---r To

j

T H IT - HF--I I f - --Ip til-T-Hr T 1_ 7 t Tt n+ bTr -- t t d~- +' T * -11~ V4- I.-27::l -- ... 1 T-i' ~2I: 114 ~- 1-i '41-

14H

H44.&.LLL~...4. 11~ J.. ,...Lin..L A .-..-...-.-- &-. 4. ~ I ~4 44-4-4.4 ..-.4--. 4. .- 4.4~4. 4 4...4 4. 4.-4 4 - 4 4 ~... 4 ~+4.4444 4. 4~44* I ~44 4. ~-+4 44

4.--t7T -1: I + s?- .4a.r . ...i.... . .... . . +74 - _ * 1-V. L~. I - T -7f-;: I _______________________________________ . 0, f 0.64 0-.5 -li .4 t l- 0 or

|-c

m. I

K

* _the6 IQIr 1.

_

T

4fri

.

K

1j

j

TA~ 4- hl-I T I I I T i l l 74 4 -H 44:1 _T_ --i 7 T Ir 4-r- T j!I L Tri rr a un a r - I F. - 44!tL-fill 4-f. If I ~TL

44

4i

4-4

1-1144-' +414. ... . . ..... ft ttt-ttt t -J

(42)

I A Ll I-1. TER t Figure 22. 4-'-.17 4H -1+44 IT i + t U 4~~~~ L r ~ 44

El-i

I--0. If 0.4 0.6 '.0

,Perpykwre

ooP IfPehyl/., aem.r

I -F, -C 145~ I lid t7 at

m~.

s.

4-

1

4-tit 7, 1 1 , 14- -4 ! !! I A 7j. 1 1-4; _44!1+1 Hit: fi, VH--I -L4pJ- I . I. 1 1 1 1 T-, TZ-f Tt LL +L f4. -4 ;4 4

(43)

-Ir~rr~i 17Et 'r K -4 4

,;

7

jKl

trr!L

4-4

1

~

iN

I

434

*-~H

4 4-1 ILL 4.~~2?

h~4fTh+

4

4'

14[+1A4~t 4 ~+444 -~ Vt~jT~tth~4it~t~VB4d+

4

#thd

T IT Ij + 41 t Ft t- f

__J

i-

A

~kf11t K 4 ft 4 t~ Fi

~fl

irF t. I

42;

ITftJ

I~~~~

tATtdt-4

4-i-H 41 {' +A K VIU.' t.31 1 4 -1 T-t 4 ---I 7* T-T . __ : i a Ila 1 0.4 0 d ' I 19 F. .1 f I q . -IT t-r r 4-4 4 7-I -f -T jr-_ " ' -1 7 r 7- tt r I T I f I L44 7 LET "T:j T "g, r t- TF -4 r rj "rt' r t-.A +; 4+ WIT I-F, + .44 44 7 -. 2 IT'" -t rl-l-T4 _H_'l -t'll 1-1 .4-1 4- L 11 'I-!! f+ t,- 4 rr h -i-r _TT '4 jL 4J+t [t + Tq' 1-7 t 1-T It- R r+4-4- ;+ 14- __ tU4 f f-T 4-il t- rt v 11- -1 11-1 i t .4-tL h+ f T ' T" T r -. _Z1 4- Lj I tT.-4 j 4. -fj rL Lr -r -L It -" ; 4 E T T__ 7_7 Afl p '4 4-4j-Ttt j so -T4-fF 4_ 7_ _ij L L t + t

(44)

Figure 24.

3

+ -. -t I $4 4 Rp~~ 44-if4t 4- 4 il 4-11 di 4r~ 14~ g tT~t Tit S T#T Hi --t ~IT~m 4 14 1 --4i-2! I 1t .- - -I T, T-n di 4i

Kw

p KI 1~ .1-jr 4.

-I--.-I

K; 'j41 -d 11 + 44 4--i tP- 1 4:2 4-I

-4

t j- J fi ud T+J J-IL '' t

'4-1-I

1+i ~tr

A

-71 14-+ I r- 4- .- I , Taii: T1 4 i4 r; T TT -~ -t . -4,N 0.8 I' 32 -I-A 4 7 ' 4 {4 -v J. on Ur LIM-&Q -H'T 4-lii- .i~:~-ltj =-,T ? ~-- --t 4- -H-i L--I t ;4 1 1 4 ff4 -I -I . I I I I . I I . . . I I I -444-4+! 44 -4-ki c "0 0.9 z

(0

-12 N;N wI It aI-rs

(45)

Figure 25.

3

itti I ~ ty- EtaA ~ b4

14-

1-

1~

&~ i'or~b~e ~t~7I J t 14

m -I4 Y.4c Li b 4-. 11 1 1 j---,-IT ---EF 4 S 44

4L--4- It - -1 T4 4 P, It i4 --A - --

4ft-

...- + T i + Z-4 4 -,

4 F$

K.A

-

-

T t f:-

:t.-i

4 - - It A i A T7

14-~

_

i

1-

7 - r

4-,4

I~ 1-4 -4 4 _ I

(46)

Figure 26. - I ~ .. 1 h 1.6 2.4- 3.2 0 I~.7

~Au

T' '4 = I -T 44 -6 t 41

-7nK

t 4 T- T 21 + 4-i

tH-IIHHH-H H Hi+dtH++HH PmtIH H H+1HY HH d tVH F H Ih H Ii+

Th444414~ F~LH4l4~44

-1-$

~-+++I -H-I-H-H-t-t-H-+9 -4 ++-++t- I-+-,--i-i+H-H-1-t ++4-1 4+1 A-4-4-1-1+t-~ r

444-!'1 14 14 4444-4-P f4 _4 _ $p 1

$1

+ t 11ttfh+ + ti+i tt ~t1444$$$b4$$$14$4 ---'it;

77*

7L-~4~i41AI~

+j~ftjj4~r'At~t H tttr ~ ~!t~frH H ThtI ii ft HI hclttrlti'+: Ij h1 ~tt

I

rrr- 1T--rlrrrrrnrTrr'F~T rrrr.-rrrr rvr lrr 'urrrmr t1 4-K T Z 4 -L T $ t$$-$$ $4$$$$4$$$ $$$ $$ F 1T " . r-t +-] .T .s ++ 4 P - 4TT r I - 4T 7 :th1 W + i 4 4 -1 1 +1 1 + + 4-i -'1 4 +1 +7-4 i+ i i _7 F

A-+

- 7 P~t4tPT I I~~1~.. 1 T -17 L 4tj T-i.44 i-4,

-N,

mf/iree/es

#1

-4., ii 4

'K']

14 I go

1-L

't t t-, LL 4- 4- .A1-~44444-~144+I-.4 [-4 4 '-I 4-4t

7

VP

4

+-I --7 4-4 -~ -4- 1- 'I-.-.,-fl+441++

IfH+LJVIH

Fl H +W&r+1 t4tl V4 -.1.1

tffitL iAt tA tiJ ii I~ ti ff t fttLI d1lit~ I I L PH+r~i H+tWH tt

S-4 TI-,-4-It 4-pi

-xl

I

I7

4-. + ~-+ ~. I I-f

S

-1

0.8 -t -4-L' t4 ... ()0

t~t~

4

4

IT~ LIIlLJI- ItI IA Ii 11 tL-" 4 t . ..... ........ . . ..... 1 1 J i l l, -t v -L 4 11 ia a ss ~ s + 1 11144 14 ;I mJ. 11-1. _TH 4 .+g AS J, t I J i i i P i i i I'Pq 11111 H -I j i i i i i i 1 j T $ $$$$$144$t4V M$4i; $$$$$$$1$?+$$ 3.2 2.114 p 44 4 .. . ... i .. .... .. . I + H #H$$4- $ $$j$,$$$$$$$$t$$$

(47)

.

7

1

.7--n t ST.

r-r

44

W

--:- L44 L 1 * __I

L I

141

4

-4 1-4k H- If t

it+-

441 jtq. TI 0 r- $ -- I-7;7 I II 7

3'

.

4

4:

4ftV

r%

AD

-T-r Lt -. 1 .7 * ~ 4V -'L-..

4-4

T'-A

I--7

(48)

Figure 28.

3

14 R j4 41--4-F

I

La

24 -u-4 -144-4H 474 +-4. -L ,4 7HA -4 -4 T-444~ 4 4 t -4 TT7j -l

ill

1

442 .4 V --=4~ _ -hr Vi.?4 IT Cq ~

$IW4

A-4 7 .. .

+<

41

I

414~1-4.-

I

:1.1 -1 Mt T-4 4 +i ;7t-4, 4F 4 -1-4-1 -4, 7 - T .x 1 f 4-IT 4 - :i? f , n J ++ iT 4-4+ 4 4, :4 p 4+i I+ -7 14- t-4- T t-r 4T 4-, -4 T.-1 T .14 -4-+ 4- -i-+ T #-4-T: TIT -4 4-. HR t l T I . i 1 1: 4-4 A Li .4 -t4+.-r 14 7171 __l L 1 7 ___i L; TTr 1# 4+ -4 44 4+ 7 T-rl 4:4 T7 4 4 _r 7-4 44, + A+ th 11 -FT :4F- . T. _T .4 -LILL IAL A~

-rr

L1L j47-~ 1 1 .4 _: 4

l++4WM4

I

-4.

fh

-t~~ir~rn~

'-rtI4 -r-2 4r

#to

4 ~A: 0.8 /6 H-+41

LT

2.41

4(o

NV

wlfiwe 0 S 4 H '44 jJ4 4 T U,4. T _j 44 ot 4"R 4H 4 + 4 L4-t AI Y TL A .4t i4_ -4 i( t4 I 4t1

4

T--how"" Ll .. ... ... 1.. 4 + al4;44

(49)

Figure 29.

40

t p

Mo

4 A'4

I

I

T

7~

04d

r~~ :44~

T'i

71 i Jt~ t 4 t t~ I- Lt -- I I~~ ~ I r

W I

4-

11

14 Al~t -- 2+t p r4 - +_- 4 ~ 4---147771~~ -7 1.

t

4

--1-44 4K

4

44:q

-WI

.:1

7

77 H 4 ,11 - r L_ 7. -I

TT

T ~ , - I r -I,-, J 42- -~ 44 +__ __ __ __ ___ __ __ __ _ -L

%

m,/,4~.e

(50)

1~ Figure 30. S a T--r -I--. 4 -IT t4 --t T t 4 ;4

is

-F T - - +t 4 7, Tl~ -j + t- -7-V-414 I ~ ~ - . T - -TT 44- + 4 ti + T __T .4+ - }-- -- 4 4 ~ 4 -4 - -_q --0.0 /. N,wsee

4f

4) 1+4

U11

v 24

jJ~-4-"}~

4 44H 44i -n't -4 .4 -o 0. Y o 4-~ -14 -41 In I T --=t 7H - -14-+ T# 4-+ I + 4 -4 -4 --- I - -+ -- - -1 I --z ALl I.I

It

-- -4 T

(51)

14, -L4 4 -~t4 4 444-m44 4- r _11 14 410 -11 TI:

7-A

61 1d ' u g acdI1 _ yp 6 A o a s a o r~c b dl G .#_ j

1

-4 -T 1~1+ 4T -L -I- .--~ti + :-T f24 1 t~~A M7tt . .4, -t

igure

31.'

4F

L

44-S T4 7144 T i 4 2 14+ 1 ~T .44 14 4 TV tNA ~i -4 4-m

T

I'

-14 '4 ;

+

~ ~ Z-8 fa, Y?'//o/s tt

t

4 ~ 4-14-44-1 1 1 1 .-. 1.1...1. --...-3.z Tp_ 7 + 4-44 4-: 4LE-4 T-4

(52)

VT,. Ii

-L-i

pitt .4- V. 44 t I -I Ii+ 4t iT4<t ,-14-~ I1 I 741 L... . 44

2

'~~~~1 -~ L .-f 14 H -T -A

4T

2

TT-+

~Lh 1 ~i~

'Pm

Figure 32.

43

.4 A W___________________________________ -,: T -

a/

'2-01 -Z.04 Z-08 Nt id )??f/I no/ S 212 dT f 4 .+le i-I T +4~ I t~ --pp n44-1 + -14 $If - 1

-K

+ tii f .4 Ii t y - ---o + ~.O4I 4- + T*T i 4-t 44 T T Tt I I 11 7 41 -- 4 7a t3 4 4-tv, ... :J 1 -T $

(53)

4

0

04

I

IL''

+T

-- . -LZ7 1' 4 -TE r I I -i 44, i--I. 4 '4 i- it 4- lit Ii ~t 4 -T 1' 14 I -__ t zt i4 4- -4-I. I~4-~j1 141 4-. 4 - 4 41 7 + T44"4 t---4 7 - -- -. 7,E 4 ~~~~~*IT-1W +4-+ -4 t -TJ

ti

-L 4 L I IT + t _

-4-tLAA4+

h~

IAS

-r i -

-11

T +44 4- fz

IE1

41

K 4~-~: ~flr + '-- 4 - -r4 . 4

VT

T 4 lit .44 -1 4zi .- 4 1.6 24 3.1 3-' l-ta/ / /e Figure 33. a t 44 +. 4.X4L j t:H' I Tt-.Va 7 I+ Y 4 -'-t ' L -4 Z T; +TJ El I + -t +t .. ... .... 4' "-4-44 44 -4

f-i

3./ 3.fo -1 .1 -.4 fit

44

4 I,

4-I

S4A

L~P

Ti -4 7

--+1

+ 41 7 4-; ' ' 4 +% 4 4L 1 . -T4 + -4 -~ H 1t '4 144f, --II- H4 I-4-T

(54)

FFr-j.-Figure 34. b 4-J 0) 1A W*d Nis 'I'm a 111, 1 1--H -4-AtA

E

4

LL4

144-~

44

444+

14

-J

4-t7

t- w

44

4It1

~42I

~r2I

I 4-.-T- r1-1~ 24--j 1~ -4- -4 I~1 I--I--I; ~ j- 4 4,-- 4:: : -Tt4Ir -4-,

4-1i-i1

-

414I

4-~ ~~ ~ 4- -:14 - 44 i-;,1 -H~ H 1, 77 t 4 -+~- ~ 29

**44 +44 11-!4-L444 -- 4 -i X4-a 1H-4!4--H--1-4+4--i-H-i i 11 ,I- +i

-H-1-. 1 .' I .1 --.I I 1 , 111- -17.H --.1 . A f 1.4 *T- I--4 -+ I I4 .4t 4 - 41 i44 LI 4 ~ j~ ~~

t'

-

NFt-44 4 ~ -- ~ i4 - t HF- - .4----37 4 L_ Jil l

-

_ _ _ 7A. --'.4---~ f41

11111-ttK

1174

4:5

4 471-- ., 4 I'll . ... . .. - . - - - - -- --- - -- -4 -F+--++-+ -4--4f- " %-4 4 filill flil.lli ! i f I _J_ 4-_1+ .8 3.9 T4-: -1-4 '44-ir' 1-4-' 7 n 4

(55)

Figure 35. 7-- T 1D 4, -f Oh T1Tt JT4

44

4w -It 4_ :L 2 qV 1 4i4 4+~ '44 41#, 1 4 I A 4- - i -- 4- 4r____ I ~ ~ ~

rlt' 41

V f

1

4--2.5 R.7 .3/ NVS./) inff-m./eS 3.3 3.5

(56)

I

i

L-I14 I Figure_36, 47_ ~~. 4.~ .4-.1 244 4 TIT 4jA--41k 1 pr' t t -1-ft 4i + + 14 4 144 1147ry1 f~ tr714 ;4it4-.

a~

WFI4~4~

4-.1 0.9

...

,..

4

PT44T4iIITTTY1IT-FJ-T{-hVTh+J4+-+-+Hj-H 1111 fi-H-4 - * t4M 1 141-11i+ j1 t-t-+ H-ii + 44 rM44

Ni.dt)

7111/I ve/os

+++I4 -*. 4!-+-t -H 44 + --V

+t-

47

f .-L

-f4

_ t -FH i-jKt4j L rT-t

I

I

r t t;-11+tr

5

o t + FT

i

i44

T t.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

..

.

.

.

..

.

.

.

.

.

.

. . . .. # 1 F1 +1 +4444A, . 1 1:1 I * -4 4-4 - 4. ; , : I I . .T . . I Z. 4F

(57)

I I if _ . FIT 1 4 144 Jj 1 7 if I 4-4T 17.

I

7. 1 Figure 37.o

I

kT1~

VI

.-

I

4t

1

~b

2ft+

~TUT~j

-i.t

42

T-

I

4L~ 1~T ~ 144

-J

41j-4I-, ~ -' p44< .4~4 j~u~~4

WJ~

L'~

444~.

I

I

4

48

t-:PTi-4Pf JZL

It

1< 4-.7 t-- 7 -_ Ij=I V.

Ii+-~-4.&~

4---t41t

~ 4----II { _;__ 4.J- 4 A T H+7U .1 -- Th 4- 44

j+T

vt~4 tT -:4 +J 4 -4: -4_4 --i rir~ 1r I4 4-i- II 4 -. -, 1 L. . . . . 4ft4tbtW4tWnti4 2 4,

O(to 19 itni. ro r t~t

top--i+

00

7!~i

~jF c f -t

-

--- I. ---I ~~~1 14 4 ti~ -t, 4 /.5 / f Z. / Z 3 z s

I-49. Li 1i 4-1 1 14.i i +

(58)

A)~4 0U 0) %RJJW -O6 (3 * 'J ~i~~qi

t

~

I;~

1L~~7

44 " al W~h 1 7 .~" ~.4-l-4-~U4-44 ~ 14-. 1~ I.4~ I 4...4-d Pw ,i I I : 44 T T s L--t-'f I ~trusmi-g-m'u'--I! ifl7 l i i iii,111,111-1h,"K ! i I 1IMPH:

Til-Tit I I 1 1 1 17 i t I FYiliTliTTIT I H ~1HH1BT 1: f I {4 TF i

~4~4~4+

~4

~ N+

7~

4~b

~T~'4h~

.JILL LilJLLLLLII 'I II 1 1-! ~T~i V Ifi 11111 11 . !!it! M IT H 11il II I IfI 11 29' 2J~ I I if44444 -H lilt ~ ~W~ft~fl HN' I ill II I 4

;

~~I

ll

I 11 T 0 -Ih t

I+.;

a

~~j17 I L- T ~ 44 ' 4+4 4.>' TB ttiiit, F T7 I iii I ii I!! ii ii~fJT IL 1 11T1i7 LiK,'' !I 7 T-T IT i H ill 1111111 IM ;:!J 0 11111 LL11 _________________

~

iiiiUIIfW hi liii

III

!~i[~;II I

I

~

I I I liii III Iii II MH . . .. I ; I

I

111PHIE"i,

_;I T

7

1

T

!'

-TI T1 iiIf

i-~.

~7

I~4

K

ii 1.1 1.4 A F" IT I i I I I i I I I I I I I I i I It j;tjq: HIM: ilMiNiT MW 1WHI -T, a,; 1, h '1111 -T L I If I fit 1 1 1 1 J ill 11 1:i; _T 'it: I H ill M , 1: 1 i ili il;1M IIIIII I f it III[ I!. ... . . . . 0 -11- .... 1 1 1 1 i I J FT FIT HI 1111191f Fill 1%) (0) 4 L4 01 %J OD 0 d Is _j a 0 0 11 --THT I I .

.

l i i

(59)

.41 1-~ 4-1444-1

7

11 jJ1

4,

IA- T1--trt ,ili itI!,m -- ., --i----

5L22~H_4

-. A '''I ~ 4 T it IT"/ +f44 I 2 7L4 ri 4 14-... .~. . .4 t +l, f'! ; -T t --it~4 till (, -0 1 (D 111, 0 ri I m N it) N -0) (ID r1_ 0 if) I m 0 a 0 1,- v In 14 0) N N

(60)

51

Unfortunately, no correlation could be found for predicting the fugacity of the solid in ternary systems from pure gas isotherms only. This may be due to the enormous difference in the range of values for the solid fugacity when under the pure gases and when under the mixture. This can be easily seen in Figures 24 through 30. If, for example, the fugacity of the solid when NA moles of A and NB moles of B were adsorbed at one time

(ternary system) were some function of the fugacities of the solid when NA moles of A and NB moles of B were adsorbed separately (binary systems), the fugacities

in the binary systems would have to be extremely accurate as they would be so much larger than those in the ternary system. It may be possible to find a correlation similar to this but involving only those portions of the curves for the binary systems which lie in the same range of fugacity values as those for the ternary system. For example, the fugacity of.the solid in the ternary system may be a function of the fugacities-of the solid in

the binary systems at points where the moles adsorbed in the binary systems are equal to the total moles ad-sorbed in the ternary system. This would require that the data for one of the binary systems extend to pres-sures higher than one atmosphere.

Lacking a correlation between the adsorption of the pure gases and the adsorption of the mixtures,

(61)

considerable aid could still be obtained if the shapes of the solid fugacity functions for various ternary systems could be related to one another. If the shapes of these functions could be accurately predicted, then the slopes of these curves at various points could be used to find 1A A) if the empirical relation that NA is linear

in NB could still be assumed. Chertow has shown that this relation is within engineering accuracy in most cases. Here again, no such relation could be found. These solid fugacity functions are not of the types generally foiund in engineering work since all attempts to rectify the curves failed completely.

It might be well to mention here that the Van Laar type of relation proposed by both Chertow and Cadogan should not be correct, if the solid is to be considered as a component of the system as it certainly should be. The tacit assumption which must be made in order to apply their equation correctly is that the fugacity of the solid in ternary systems at constant pressure is not affected by changes in the composition of the gaseous mixtures. This is clearly not the case. An attempt was made to apply a similar type of equation to the adsorption of the pure gas with the intention of extending it to the ternary system by analogy to the original Van Laar extension.

However, no satisfactory equation could be found, the difficulty lying in the fact that ln P approaches-oo as P approaches zero. No means could be found to make this

(62)

PRECISION

Basically, the investigations carried out in this work were done in the light of the thermodynamic

equilibria requirements of the systems. Both the ori-ginal Broughton proposal and the idea of solid fugacity are seriously hampered by the lack of precision of the data in the most critical regions, viz. when the pres-sure approaches zero. This is probably the primary reason for the failure of the two methods of attack. As mentioned before, at pressures lower than 50 or 60 millimeters of mercury, an error of five millimeters would be magnified enormously when the Y or functions

are integrated. The last type of curve is not quite so bad as the first in this respect, since the total area under the curve is distributed more evenly over the

(63)

RESULTS

The results of the work done are mainly negative and may be summed up as follows:

1. It was found that the extension of Langmuir's for-mula is sound only when the moles of pure materials adsorbed in a complete monomolecular layer are equal. 2. The Magnus mixture equation is generally inapplicable. 3. The Hill equation is not in a usable form.

4. Logically, the Van Laar type equation applied in the form proposed by Chertow and Cadogan is incor-rect since the fugacity of the solid changes with mixture composition.

5. It is unlikely that the Broughton equation can be used to test data, though it is of great value in

testing proposed correlation formulae.

6. It is unlikely that a relation can be found between the fugacity of the solid under the pure gases and the fugacity of the solid under the gaseous mixtures. 7. It may be possible to relate the variation in the

fugacity of the solid under mixtures to various types of systems.

(64)
(65)

.56

Table AI.

Original Data for the System Ethylene-Propane-PCC Carbon at 25*C

(Cadagon)

Pure Ethylene Pure Propane Mixture (P* 1 atm.)

Ps mI. Hg. 13 60 100 203 300 356 500 645 760 N, mmols. 0.301 0.667 1*25 1.90 20275 2.48 2.67 2.79 2.88 2.96 3.08 3.20 3.30 3.38 m . Hg., 4 19.5 50 100 150 200 250 300 350 400 500 600 700 800 N, mmols. 3.15 3.03 2.79 2.79 2.52 2.37 Xe Ye 0.067 0.110 0.239 00239 0.439 0.601 Table AII.

Original Data for the System Ethane-Propane-PCC Carbon at 25*C (Cadagon) Pure Ethane N, mmo ls. 00167 0.381 0.625 0.925 1.16 1.35 1.62 1.82 2.06 2.21 2.41 P, . mm. Hg. 12.5 37.0 69.5 128 180 230 312 399.5 512 59705 751.5 Pure Propane N, P, mmols. mm. Hg. 0.301 0.667 1.25 1.90 2.275 2o48 2067 2.79 2.88 2.96 3.08 3020 3.30 3.38 4 19.5 50 100 150 200 250 300 350 400 500 600 700 800 Mixture (P= 1 atm.) N, Mmols. 3.23 3.19 3.12 3.06 3.00 2.95 2.85 2.77 2.71 2064 2057 2049 2.45 X, Et. 0.050 0.100 0.150 0*200 0.250 0.300 0.400 0.500 00600 0.700 0.800 0.900 0.950 Y,9 Et. 0.385 0.505 0.570 0.615 0.653 00683 0.735 0.785 0.840 0.883 0.938 0.967 0.984 N, Mmo 1s. 0.187 0.639 0.82 1.198 1.42 1.555 1.79 2.004 2.14 00409 0.553 0.782 0.786 0.914 0.949

(66)

Table AIII.

Original Data for the System

Isobutane-Butene-l-PCC Carbon at 2500 (Cadagon) Pure Isobutane N, P, nmiols. mm. Hg. 0.312 1.46 2.27 2.46 2.67 2.79 2.87 2.93 3.05 3.14 3.23 3.31 3.33 2.5 23.5 70.5 100 150 200 250 300 400 500 600 700 747 Pure Butene-1 N, mmols. 2.08 2.40 2.73 2.95 3.10 3.22 3.30 3*47 3.59 3*69 3,78 3.83 P, mm. Hg. 21 50 100 150 200 250 300 400 500 600 700 748.5 Mixture (P= 1 atm.) N, mmols. 3.82 3.80 3.75 3.70 3*66 3*60 3.55 3*50 3.45 X,9 Iso. 0.070 0.100 0.200 0.300 0.400 0.500-0*600 0.700 0.800 Y,9 Iso. 0.140 0.174 0.305 0.408 0.505 0*600 0*693 0.773 0.862 Table AIV.

OrigLnal Data for the System Acetylene-Ethylene-PCC Carbon at 25*C (Chertow) Acetylene Pressure, mm. Hg. Pure 760 723 690 645 580 458 363 274 200 135 83 45 30 20 10 Mixture 760, 744 734 717 688 632 572 513 453 383 308 218 165 113 55 Ethylene N, Pressure, mm. Hg. mmols. Pure Mixture

2.14 2.05 2.00 1.95 1.90 1.80 1.60 1.40 1*20 1.00 0.80 0.60 0.40 0.30 0*20 0.10 760 682 645 605 570 505 385 290 213 150 103 69 41 29 20 10 760 715 693 670 645 578 518 440 372 305 243 183 120 89 60 32 N, mmols. 2.04 2.00 1.96 1.90 1.80 1.60 1.40 1.20 1.00 0.80 0.60 0.40 0.30 0.20 0.10

Références

Documents relatifs

This adsorption is divided into two zones: a diffusion region and a kinetic area controlled by the reaction. The thermodynamic parameters show that the sorption is spontaneous

Inverse Gas Chromatography (I.G.C) technique can be used to determine the adsorption properties of the stationary phase of various materials.. The problem is formulated in

C’est exactement ce que dit la proposition suivante (la descente relativement `a l’extension des scalaires vis `a vis d’une extension de degr´e fini de K implique qu’on peut

Dans la section II, nous proposons un descripteur de formes pour la représentation des symboles graphiques en se basant sur le contexte de forme avec une extension du

FSCQ support code for CoqGo, including performance tweaks (such as which buffers to make immutable) and some boilerplate (a small wrapper for each record type and each

( 49 )- دقو ،برغلما نم هنأ ةيمستلا للاخ نم ودبي : يبرغلما يلبجلا ملاسلا دبع يديس خبلا حيحص ءارق نم ناك بأد ةداع تناك يتلاو رئازجلا ةنيدم يف ريبكلا عماجلاب

This statement acknowledges the fact that the mother tongue has a great impact on the new language the child is going to learn at school. If we take the case ofAlgeria, The

A new fast and accurate analyt- ical method for the calculation of the coefficients of co-diffusing gases in the intra- and inter-crystallite spaces of microporous solid (here ZSM