• Aucun résultat trouvé

ARKIV FOR MATEMATIK Band 4 nr 45

N/A
N/A
Protected

Academic year: 2022

Partager "ARKIV FOR MATEMATIK Band 4 nr 45 "

Copied!
11
0
0

Texte intégral

(1)

ARKIV FOR MATEMATIK Band 4 nr 45

Read 28 F e b r u a r y 1962

A b i l a t e r a l T a u b e r i a n t h e o r e m

By AKE PLEIJEL

This note contains t h e proof of a bilateral T a u b e r i a n t h e o r e m which in in- complete f o r m was used in m y p a p e r [2].

B y the e l e m e n t a r y proof t h e T a u b e r i a n t h e o r e m is reduced to two well-known t h e o r e m s b y H a r d y a n d Littlewood, see [1].

1. The Hardy and Littlewood theorems

L e t a be a real function of b o u n d e d v a r i a t i o n on e v e r y finite s u b i n t e r v a l of 0~<~t< + ~ .

T h e following Abelian t h e o r e m s are easily proved.

Theorem A {q}. I / 0 < q < 1 and a(,~) = o(~ q) when ,~--> + ~ , then

f / ( 2 + t) -1 da(2) = o(tq-a), t-+ + cr

Theorem A{0}. I / a ( 2 ) = a ( + ~ ) + o ( 1 ) when ~-~ + ~ , then

f/(

2 + t) -1 d a ( ~ ) = (a( + ~ ) - a(0)) t -1 + o(t-1), t - > + ~ .

The conclusions are still valid if t tends to infinity along half r a y s f r o m t h e origin in the c o m p l e x t-plane which are different f r o m t h e real negative axis.

To see this one has only to use the i n e q u a l i t y 12 + t I ~> (~t + It I) sin 89 (~, l arg t I ~< ~ - (~, w h e n the necessary e s t i m a t i o n s are p e r f o r m e d .

To f o r m u l a t e the corresponding T a u b e r i a n t h e o r e m s we need

Definition 1. The /unction ~ belongs to T s i/ there is a real constant C such that d ( ~ ( ~ ) + C ~ - i d 2 is de/inite, >~0 or <~0, /or su//iciently large values o/ ~.

T h e t h e o r e m s are

Theorem T {q}. I / 0 < q < 1, ~ E T q and

(2)

AXE PLEIJEL, A bilateral Tauberian theorem

f : ( 4 + t) -1 da(4) = o (tq-1), t---> + 0%

then a(4) = o(4 q) w h e n 4--> + r162 Theorem T {0}. H a E T o and

f : (4 + t) -1 da(4) = H t - 1 + O(t-1), t--> + cr

then a ( 4 ) = a ( + oo)+o(1) w h e n ,E-->+ oo. T h e constant H is related to a by H =

~( + oo) - ~(0).

2. Certain lemmas

An addition of a constant to the function a of the previous section is evidently irrelevant. The same holds for the functions of this section since we are essen- tially only interested in their differentials. Thus the definition

,kip( ) =

determines Ik• up to an additive constant. I t is always possible to avoid di- vergence difficulties b y taking the lower limit of integration positive. Obviously

IJ(Ikip) = I j + kip .

Definition 2. W e write ip(4)fi to ~ il q ( 4 ) = o ( 4 s) w h e n 4--> + ~ a n d s > 0 or i!

ip()~)=ip(+ c ~ ) + o ( 4 ~) w h e n ),--> + ~ a n d s<~O.

Consider Ik~p when tP fifo'- I t is no restriction to assume ip = 0(4 ~) also when s ~< 0. F r o m the relation

I k f p ( 4 ) - / k i p ( A ) = ~ 4 k+~ tP~A 7) A k + s _ k f a

J A ~ - ip(~) #k+S-id#

(1)

it follows when k + s > 0 t h a t

Ikip(4) = o(4k+'), 4 - ~ + oo.

I f k + s < 0 relation (1) shows the convergence of Iklp(4)when 4-->+ c~. The transition to the limit A - + + cr then leads to a formula from which one con- cludes t h a t

Ikip(4) - F @ ( + o0) = o(4k+'), 4 - + + oo.

Thus we have proved

(3)

ARKIV FOR MATEMATIK. Bd 4 nr 45 Lemma 1. I / ~ 6 c o ~ then

Ikq~6~o~+s

provided b 4 - s .

T h a t the lemma is not valid without the condition It=t=- s is seen b y the ex- ample r log log t. This function belongs to r when s 4 0 but I - S v ( t ) = log log ~t is not in r ~

Definition 3. W e write q ) 6 I s i / I k q ) 6 w ~+s /or all k ~ = - s .

Observe t h a t it follows from l e m m a 1 t h a t if Ik~ fi co k+s holds for an arbitrary value of k it holds for all values k * - s. This leads to

Lemma 2. to s = I s i/ s # 0 and to ~ c I ~

The function log log i belongs to I ~ b u t is not in r ~ L e m m a 3. ~ 6 I s i m p l i e s I k q ~ 6 I k+s.

L e m m a 3 is an immediate consequence of the definition of P . The lemma is closely related to l e m m a 1 b u t is free from supplementary condition.

Lemma 4. T h e class I s is linear.

L e m m a 5. I] ~v(~)6I s then q~(~k)6iks.

L e m m a 4 a n d 5 follow from the definition of to s and I s.

L e m m a 6. I/ qp 6 T" then IkqD 6 T

TM.

For if dq~+ C]t'-ld]~ is definite, the same is true for the differential obtained when d q ~ + C 2 " - l d 2 is multiplied b y 2 k.

Lemma 7. I / 9)1, ~f26 T" then either q~l + r 6 T s or (Pl - q~26 T s.

If d~l + C 1 ~tS-ld2 ~> 0, d ~ + C 2 is-1 dt/> 0 it follows b y addition t h a t ~1 + ~ E T ' . I f d~, + C 12s- ld2/> 0, d~2 + C2 t ' - ld2 ~< 0 subtraction yields ~, - ~ 6 T s.

L e m m a 8. I / ~ ( t ) e T" then q~(~k)E T ~`.

L e m m a 9. I / s < r then T" c T r, T s . T r. A l s o oJ" c eor,r 4- w r and I" c I ~, I" ~ I ~.

L e m m a 8 is obtained b y a change of the independent variable and L e m m a 9 is easily deduced from the definitions of T s, m s a n d I s.

3. U n i l a t e r a l t h e o r e m s

L e t a be a function of the t y p e in section 1 and assume t h a t the integral of 2-~da(2) converges absolutely when t a k e n over a right side neighbourhood of the origin. Under this condition consider

(4)

.~KE PLEIJEL,

A

bilateral Tauberian theorem

fo ~-h(~

-]- t) ldo.(,~.). (2)

If this i n t e g r a l converges a t i n f i n i t y for one v a l u e t = to, for i n s t a n c e for t = 0, i t is seen b y i n t r o d u c i n g i n (2)

fl(2~) = f~/LI-h([,~

"~ to)-ldo'(#), a > O,

a n d b y p a r t i a l i n t e g r a t i o n t h a t (2) converges a t i n f i n i t y for e v e r y t. If

f/

~(,~ + 0 -1 d I - h - l a(2)

is i n t e g r a t e d b y p a r t s it follows t h a t (2) is o(1) w h e n t t e n d s to i n f i n i t y along half r a y s different from t h e n e g a t i v e real axis. T h u s we h a v e

Theorem 1. Necessary and su//icient /or the convergence o/ (2) is I - h - l a E o ) ~ The integral is then o{1) when t - ~ c ~ along hall rays /rom the origin which are di]/erent ]rom the negative real axis.

I n t h e A b e l i a n t h e o r e m for (2) which will be considered p r e s e n t l y , it is as- s u m e d t h a t a E I s w h e n s - h 44= i n t e g e r or I sa E eo ~ w h e n s - h = integer. These relations a p p e a r as conclusions i n t h e corresponding T a u b e r i a n theorem. I t fol- lows t h a t it is n a t u r a l t o suppose s < h + 1. If s = h + 1 t h e c o n d i t i o n I - * a E ~o ~ is e q u i v a l e n t to t h e existence of t h e i n t e g r a l (2) a n d also implies t h a t this in- tegral is o(1) w h e n t--> ~ . T h e A b e l i a n a n d T a u b e r i a n t h e o r e m s g i v e n below c a n therefore be e x t e n d e d i n a t r i v i a l w a y to i n c l u d e also t h e case s = h + 1 i n w h i c h t h e T a u b e r i a n t h e o r e m holds w i t h o u t t h e T a u b e r i a n c o n d i t i o n a E T ~. W e re- strict ourselves to t h e n o n - t r i v i a l case s < h + 1.

T h e following A b e l i a n a n d T a u b e r i a n t h e o r e m s are p r o v e d in section 4 a n d 5.

Theorem A ( 0 , ~ ) . I / s < h + l and a E i s or in case s - h is an integer, i/

I - S a E eo ~ then

f/2-h(~+t)-~da(~)-t

~p(t71)+o(t s-h ~), t-> +

Cx3 ,

(3) where p is a polynomial.

Recall t h a t if s 4 0 t h e c o n d i t i o n a E I s coincides with a E co s i.e. a ( ~ ) = o(~ s) w h e n s > 0 a n d a(),) = a( + c~) + o(~ s) w h e n s < 0. T h e c o n d i t i o n I - S a E e) ~ is e q u i v a l e n t to t h e convergence a t i n f i n i t y of

f ~ ,~-S da( ,~ ) .

According to l e m m a 1 a n d d e f i n i t i o n 3 t h e r e l a t i o n I - S a E eo ~ implies t h a t a E I ~ b u t t h e converse is n o t true.

(5)

ARKIV F/JR MATEMATIK. Bd 4 mr 45 The conclusion of A(0, ~ ) also h o l d s w h e n t t e n d s t o i n f i n i t y a l o n g a r b i t r a r y half r a y s f r o m t h e origin d i f f e r e n t f r o m t h e n e g a t i v e r e a l axis.

Theorem T ( 0 , ~ ) .

I /

s < h + l ,

i/ n E T ~ and i/, with a polynomial p,

f ~ ~-h(~

+ t ) - i d ( ~ ( ~ ) =

t-~p(t-~) §

o(tS-h-1), t-->

§ ~ ,

(4)

then a E I s. I / s - h is an integer the result can be sharpened to I-~aEeo ~

Remark. T h e a s s u m p t i o n a E T s can be r e p l a c e d b y t h e s l i g h t l y m o r e g e n e r a l c o n d i t i o n t h a t a + ~ E T s for a ~ s a t i s f y i n g ~ E I ~ or, in case s - h = i n t e g e r , I-S~o E co ~

4. P r o o f o f t h e u n i l a t e r a l A b e l i a n t h e o r e m

T h e o r e m A(0, c~) is e a s i l y r e d u c e d t o

A{q}

a n d A { 0 } . I f 0 < s - h < l t h e p o l y n o m i a l

t-lp(t -1)

is i r r e l e v a n t in ( 3 ) a n d c a n b e i n c l u d e d in t h e r e m a i n d e r . W h e n

s - h = O

o n l y t h e first t e r m

alt -1

of

t - l p ( t -1)

is r e l e v a n t . T h e l e f t h a n d side of (3) c a n be w r i t t e n

f o (~ + t)- l dI-ha(2).

A c c o r d i n g t o l e m m a 3 i t follows f r o m t h e c o n d i t i o n a E I s of A ( 0 , ~ ) t h a t

I - ~ a E I s-h

a n d if

s-h=~O

we k n o w f r o m l e m m a 2 t h a t

IS-h=eo s h.

T h u s i - h a E e o s h w h e n

s - h 4 = O

which shows t h a t if 0 < s - h < l t h e o r e m A(0, ~ ) r e d u c e s t o A {q} w i t h

q = s - h

a n d w i t h a r e p l a c e d b y I : h a . W h e n

s - h = 0

i t is r e q u i r e d in A(0, c~) t h a t I - : a E ~ o ~ which is t h e c o n d i t i o n of t h e o r e m A { 0 } if a in t h i s t h e o r e m is r e p l a c e d b y

I - h a = I - S a .

T h u s A(0, c~) is p r o v e d w h e n 0 ~ < s - h < l .

To p r o v e t h e t h e o r e m w h e n s - h < 0 we use t h e i d e n t i t y

k - 1

(~ § -I = ~ (-- ~)it-J-l § (--t)-k ~ ( ~ +t)-I

i=0

w i t h

h - s < ~ k < h - s +

1. T h u s t h e left h a n d side of (3) e q u a l s a p o l y n o m i a l in t -1 w i t h o u t c o n s t a n t t e r m p l u s

( _ t ) - k ~ - h ( ~ + t)-ld(~(~t). (5)

Since a E I s i t follows t h a t I - h +j a E I s - h +j c I s - h + k- 1 = ~os - h + k- 1 c co0 w h i c h shows t h e c o n v e r g e n c e of t h e occurring integrals. I n (5) 0 ~ < s - ( h - k ) < 1 a n d t h e in- t e g r a l can be t r e a t e d in t h e s a m e w a y as t h e left h a n d side of ( 3 ) w h e n 0 ~< s - h < 1. This c o m p l e t e s t h e proof.

(6)

AKE PLEIJEL, i bilateral Tauberian theorem

5. Proof of the unilateral Tauberian theorem

W h e n 0 ~< s - h < 1 t h e T a u b e r i a n t h e o r e m

T(O, ~ )

is reduced t o T {q} a n d T ( 0 ) . T h e a s s u m p t i o n

a E T s

gives

l - h a E T €

according to l e m m a 6. Hence if 0 < s - h < l it follows f r o m

T(q}, q = s - h ,

t h a t

I-haEco~-h=I s-a.

L e m m a 3 shows t h a t

a E I s.

W h e n

s - h = O

the theorem T ( 0 ) gives I-h(rEco ~ or

I-~aEco ~

I f

s ~ h < O ,

t h e basic relation (4) implies t h a t

f:(

] t + t ) - l d I - h a = a l t 1-[-O($-1), t-->-~ c~.

Since

I - h a E T s-~

a n d

s - h < O

it follows f r o m l e m m a 9 t h a t

I - h a E T ~

T h u s T{0} shows t h a t

I-~aEco ~

Because of this a n d t h e o r e m 1 formula (4) can be written

f o , ~ - h d a - f o~l-h(~ + t)-lda=al + a2t-l + ... + o(t~-h).

L e t t i n g t t e n d to infinity one finds because of the second p a r t of t h e o r e m 1 t h a t

a n d the formula reduces to

f : ,~-ada = a 1

f : ~.l-h(2 + t)-lda(~.) = _ a 2 t -1 _ ... + O(tS-h).

Thus, provided s - h < 0, formula (4) can be replaced b y a similar one with h - 1 instead of h. I f

s - ( h - 1 ) < 0

t h e procedure is repeated. F i n a l l y a formula is o b t a i n e d in which h is replaced b y h - r with 0 ~< s - ( h - r ) < 1. We are t h e n in t h e case a l r e a d y considered a n d t h e proof i s accomplished.

6. Inhomogeneous theorems

L e t Z = K ~ ~ w h e n s=~0 a n d ~ > ~ a > 0 a n d let

z-=K

log ~t when s = 0 a n d

~ t > / a > 0 . Here K a n d a are constants. F o r 0~<~t<a t h e f u n c t i o n Z is arbi- t r a r i l y defined so as to cause no trouble a b o u t the convergence a t t h e origin of t h e integral

f:~t-h(]t +

t) -1

dZ(]t).

(6)

I t is easy to see t h a t when s < h + 1 the condition I - a - l Z Ew ~ is fulfilled which guarantees t h e convergence at infinity of the integral. Also i~ E T ~.

I f a is replaced b y ~ - Z in A(0, oo), T(0, cr these theorems are transferred into " i n h o m o g e n e o u s " theorems connecting the conditions ~0 - X E I s or I-s(cp _ Z) E co o (when s - h = integer) on one side a n d

(7)

ARKIV FOR MATEMATIK. Bd 4 mr 45

f : ~-h( X + t)-ldcp = f : ~_~(~ + t)_ld Z + t-lp(t -1) + o ( [ t [~- h-~)

o n t h e o t h e r . I n t h e i n h o m o g e n e o u s T a u b e r i a n t h e o r e m t h e c o n d i t i o n ~pET s t a k e s t h e p l a c e of a E T ~.

S i m p l e c a l c u l a t i o n s show t h a t in t h e s e i n h o m o g e n e o u s t h e o r e m s t h e i n t e g r a l (6) c a n be r e p l a c e d b y

K 7~8

sin z ( s - h ) - - t s - h - x w h e n s # 0 , s - h # i n t e g e r ,

K s ( - 1)s-at s-h-1

log t w h e n

s#O, s-h=integer,

7~

s m ( - n h ) w h e n s = 0, s - h # integer, K ( - 1 ) - h t - h - 1 log t w h e n s = 0 , s - h = i n t e g e r .

7. A bilateral A b e l i a n t h e o r e m

I n t h e b i l a t e r a l case f u n c t i o n s a(2) a r e c o n s i d e r e d which a r e d e f i n e d on - - ~ o < 2 < + ~ a n d of b o u n d e d v a r i a t i o n o v e r e v e r y f i n i t e s u b i n t e r v a l . I t is a s s u m e d t h a t

fill

c o n v e r g e s o v e r a t w o - s i d e d n e i g h b o u r h o o d of t h e origin.

W e a r e c o n c e r n e d w i t h t h e s t u d y of t h e i n t e g r a l

which is s u p p o s e d to converge. This m e a n s t h a t

I-h-la().)

a n d

I-h-la(-$)

a r e in co ~ w h e n c o n s i d e r e d for p o s i t i v e v a l u e s of ~. A s in t h e u n i l a t e r a l ease i t is n a t u r a l t o a s s u m e s ~<h + 1 a n d t h e case w h e n s = h + 1 is t r i v i a l . W e t h e r e f o r e s u p p o s e s < h + 1.

T h e p a r t of (7) w h i c h comes f r o m - ~ < $ < 0 is t r a n s f o r m e d i n t o a n i n t e g r a l f r o m 0 t o + ~ b y t h e s u b s t i t u t i o n 2 = - / x . A f t e r w a r d s / x is r e p l a c e d b y ~t. W i t h

t h e r e s u l t r e a d s

S(~) = a(~) + a( - ~), A(~t) = a(~) - a( - ~),

f o]tl-h().2 - t2)-l d~q().) - t f : ).-a(~,2 - t2)-i dA(~).

(8)

AKE PLEIJEL,

A bilateral Tauberian t h e o r e m

F r o m this it follows t h a t a relation

f ~ ] ~I-h(~ § t)-ldo-(~)~ t-lp(t-1)+ o ( ] t Is-h-l),

holding w h e n t--> ~ along two opposite n o n real half rays, can be split into f o r m u l a s

f~

A h/~ (A + T ) -~ d A ( V A ) = T - I P I ( T -~) + o ( t T I ~2-ht2-~) (8) f : A n~l (A + = r + o [ / s _ h - 1 1 \

), (9)

valid w h e n T--> ~ along a half r a y different f r o m the n e g a t i v e real axis. H e r o T = - t z, A = ~t 2 a n d t h e polynomials P1, Pz are d e t e r m i n e d b y p ( x ) + p ( - x ) = 2 PI( - x2), p(x) - p( - x) = - 2 x P 2 ( - x 2) when t h e p o l y n o m i a l p is known. Evi- d e n t l y 8 9 1 8 9 2 4 7 8 9 1 8 9 since s < h + l .

T h e bilateral Abelian t h e o r e m is n o w a n i m m e d i a t e consequence of A(0, ~ ) applied to (8), (9).

Theorem A( - ~ , + ~ ) . I / s < h + 1 a n d s - h is not a n integer it ]ollows / r o m a(2) E F , a( - ,~) e I ~ that

f +~12 l-%~ § t)-i d(~(~) = t-l p(t-~) § o( ]tI ~-h-~)

- oo

w h e n t - - ~ along n o n real hal~ rays /rom the origin. Here p is a p o l y n o m i a l . I / s - h is a n integer the same result is valid under the s u p p l e m e n t a r y conditions I - ~ ( ( ~ ( ~ ) § ~ w h e n s - h is odd, I - S ( ~ ( ) . ) - ~ ( - g ) ) e o ~ ~ w h e n s - h is even.

8. The bilateral Tauberian t h e o r e m

Theorem T ( - ~ , § ~ ). L e t s < h § ] a n d a s s u m e that (~(~) E T s, (I( - ~) E T s /or positive values o / L I / with a p o l y n o m i a l p

(10)

as t--->~ along n o n real hall rays / r o m the origin, then a ( ~ ) E I s and o ' ( - - ~ t ) r s /or ~--> § ~ .

Observe t h a t t h e couple A ( - ~ , + ~ ) , T ( - ~ , + ~ ) does n o t show t h e s a m e s y m m e t r i c reciprocity as A(0, c~), T(0, + ) .

I f we w a n t e d t o i~lclude also t h e case when s = h + i we would conclude f r o m t h e m e r e existence of t h e integral in (10) t h a t I "~(~)Ew ~ I - S ( ~ ( - 2 ) E o) ~ which implies a(2) e F , o( - ~) E I s.

(9)

ARKIV FOR MATEMATIK. Bd 4 wr 45 B u t for certain exceptional eases occurring only when s - h is an integer the proof of T ( - ~ , + oo) is obtained by replacing t in (10) b y

it,

the new t being real. If the resulting relation is split as in section 7 we obtain (8), (9) with T real positive.

According to l e m m a 7 and 8 either s(V-A) or A(VA) belongs to

T sly.

L e t us first assume S(VA)E T ~/2. Then T(0, o~) can be applied to (9) with the result

S ( ~ A ) E I s/2.

I f s - h is an odd integer T(0, cr gives in addition the convergence of

f ? ,t-~d(a(~) + a( - 2))

which, however, is of no use in the rest of the proof. Provided s - h is not an even integer theorem A(0, oo) yields

j ~ h 8 h

A -~ (A +

T ) - l d S(VA) = T -1P~(T -1) + o(1T [~ --~- 1),

0

(11) where P~ is a new polynomial. Addition and subtraction of (11), (8) lead to separate formulas for a(~A) and a ( - l/A). Application of T(0, ~ ) to these for- mulas finally shows t h a t a(V-A), a ( - ] / A ) E I s/2 and the conclusion of T ( - ~ o ,

+ c~) follows from lemma 5.

I f instead A(VA) E T ~j2 the same method is applied b u t with starting point in (8). The same result is obtained provided s - h is not an odd integer. I f

s - h

is an even integer we find the additional result t h a t

?,F~d(a(,~) - a( - ,~))

exists.

The exceptional cases s - h = even integer, S(~)E T s and s - h = odd integer, A(~) E T s remain to be considered.

9. P r o o f o f the bilateral Tauberian t h e o r e m in the exceptional cases To t a k e care also of these eases we m u s t use (10) not only along one couple of opposite half rays b u t along two. Since it is not more complicated to con- sider n couples we do this.

The point of departure is the partition in partial fractions 2n-1

2nt2n-~-l).~(~.2n +t2n) -1 = -- ~ S~+l'~t~-- ekt) 1,

(12) k=0

where ~ = 0 , 1 , 2 . . . . ( 2 n - l ) and

(10)

AKE P L E I J E L , ~4 bilateral T a u b e r i a n t h e o r e m

I n (10) t is now r e p l a c e d b y - r k = 0 , 1 , 2 . . . . ( 2 n - l ) , a f t e r w h i c h t h e re- s u l t i n g f o r m u l a s "are m u l t i p l i e d b y e~ +1 a n d a d d e d . T h e r e s u l t is c o n d e n s e d b y h e l p of (12) a n d o c c u r r i n g i n t e g r a l s f r o m - c r t o 0 a r e t r a n s f o r m e d i n t o inte- grals f r o m 0 t o + ~ . A t l a s t t h e n e w v a r i a b l e s A = ~t ~ , T = t 2~ a r e i n t r o d u c e d .

T h e f o r m u l a s d e d u c e d in t h i s w a y a r e

~ : h - g 1 1 8 h - ~ 1

A 2n ( A + T ) - l d ( a ( A ~ ) _ ( _ I ) ~ a ( _ A ~ ) ) = T - 1 p ~ ( T - 1 ) + o ( I T I ~ - ~ - - ) ,

(13)

~ = 0 , 1 , 2 . . . . ( 2 n - l ) . T h e y a r e c e r t a i n l y v a l i d w h e n T - - > ~ along t h e p o s i t i v e r e a l axis.

A c c o r d i n g t o l e m m a 8 a n d 7 we k n o w t h a t

1 1 8

(A 2 n) - ( - 1) ~ a ( - A ~ ~) E T 2~ (14)

h o l d s e i t h e r for :r o d d or even. A s s u m e first t h a t i t h o l d s for a o d d . T(0, ~ ) can t h e n b e a p p l i e d t o a n y of t h e f o r m u l a s ( 1 3 ) w i t h ~ o d d . r e s u l t is

1 1 s

a (A ~ ) + a ( - A 2~ ) r 12 ~ N e x t chose ~ e v e n a n d 'such t h a t

s h - ~ 2 n 2 n

T h e o r e m T h e (15)

is n o t a n integer. T h i s is p o s s i b l e if o n l y n > 1 i.e. if t h e r e is m o r e t h a n o n e e v e n :r 0~< ~ < 2 n . W i t h t h e c h o s e n e v e n a t h e o r e m A ( 0 , ~ ) shows b e c a u s e of (15) t h a t

f : h-~r 1 1 s h - ~ 1

A ~ ( A + T ) - l d ( a ( A ~ ) + a ( - A ~ ) ) = T - 1 p ' - ( T - 1 ) + o ( [ T [ ~ - 2 ~ - ), w h e r e P~ is a p o l y n o m i a l . This r e l a t i o n a n d f o r m u l a (13) w i t h t h e s a m e e v e n i

l e a d t o r e l a t i o n s for

f : A h-~ 2~ ( A + T ) - l d a ( + _ A 2 n ) 1 f r o m which i t follows b y h e l p of T(0, ~ ) t h a t

1 s

~ ( + A 2 " ) ~ I 2n.

A c c o r d i n g t o l e m m a 5 t h i s is e q u i v a l e n t t o a(~) r 18, a( - 4) ~ F .

T h e case w h e n (14) is v a l i d w i t h ~ e v e n is s i m i l a r l y t r e a t e d w i t h t h e s a m e r e s u l t .

(11)

ARKIV FOR MATEMATIK. Bd 4 ar 45 10. I n h o m o g e n e o u s f o r m o f the bilateral Tauberian t h e o r e m

With

when s 4 0 and

K12 s for 0 < a ~ 2

X ( 2 ) = K 2 ( - ~ . ) s for 2~< - a K log 2 for 0 < a ~ < 2 Z(2)= K 2 1 o g ( - 2 ) f o r 2 ~ < - a

when s = 0 the theorem T ( - ~ , + ~ ) takes the inhomogeneous form

Theorem T ( - 0 % + c~). I / s < h + l

and q~(2) E T 8, q~(-2) E T s and i/ with a polynomial p

;: 12]-h(A+t)-ldq~(2)= f;: 1 2 [ - a ( 2 + t ) - l d z ( 2 ) + t - l p ( t - 1 ) + o ([tl s-h-') as t - > ~ along non real hall rays /rom the origin, then

~ ( 2 ) - Z ( 2 ) E I s, ~ ( - ~ ) -

Z( - 2) e I s /or ]~--> + o~.

I n this theorem the integral on the right hand side

f: 2 -h (2 + t)-ldZ(2) + f : 2-h(2

- t ) - l d x ( - ~) (16) can be replaced b y expressions directly obtained from section 6. The expres- sion for the first integral in (16) shall be real when t is real positive (we as- sume K 1 and K 2 real) and the one replacing the second integral shall be real when t is real negative.

R E F E R E N C E S

| . HARDY G. H. and LITTLEWOOD J . E., Notes on the theory o] series (XI): On Tauberian theorems, Proceedings of t h e London Mathematical Society, Series 2, Vol. 30, P a r t 1 (1930), 23-37.

2. PLEIJEL A., Certain inde]inite di/]erential eigenvalue p r o b l e m s - The asymptotic distribution o/their eigen]unctions, Partial Differential Equations and Continuum Mechanics, Madi- son, The University of Wisconsin Press (1961), 19-37.

Tryckt den 23 november 1962 Uppsala 1962. Almqvist & Wiksells Boktryckeri AB

Références

Documents relatifs

Comparez les classi- fications des corps biquadratiques que nous avons donndes dans un travail antdrieur, voir Nagell [6], p... Ainsi il n'existe aucun sous-corps

We have the following bilateral Tauberian and Abelian theorem.. Then the [ollowing conditions are

Weighted mean square approximation in plane regions, and generators of an algebra of analytic functions.. By LARs

dimension two is obtained by using ideals similar to form ideals but generated b y power products of the variables. Serre defines fiat couples in homological

Almqvist &amp; Wiksens Boktryckeri

NAGELL, T., On the representations of integers as the sum of two integral squares in algebraic, mainly quadratic fields.. Nova Acta

The present table was computed on SMIL, the electronie eomputer of Lund University.. Two different methods were used throughout,

The proof requires some lemmas... AI{KIV FSR