• Aucun résultat trouvé

ARKIV FOR MATEMATIK Band 5 nr 21

N/A
N/A
Protected

Academic year: 2022

Partager "ARKIV FOR MATEMATIK Band 5 nr 21 "

Copied!
5
0
0

Texte intégral

(1)

ARKIV FOR MATEMATIK Band 5 nr 21

1.63091 Communicated 22 MayA963 b y AKE PLEIJEL a n d LARS G~-RDING

A g e n e r a l i z a t i o n o f a T a u b e r i a n t h e o r e m b y Pleijel By SVEN SPANNE

1. Introduction

I n [4], [5] Pleijel proved the following T a u b e r i a n theorem. (The factor 121 -a in [4] is here included in the measure da.)

I / 8 < 1 , a ( 2 ) E T s, a ( - 2 ) E T s and

f +:r (2 A- t) -~ d(r(2) = t-l p(t -1) -4- o(tS-1), (1)

- - o 0

when t--> ~ along all non-real hal/rays/rom the origin, then a(2) E I s and a( - 2) E I s.

I / s is an integer, I s ( a ( 2 ) - ( - 1 ) s a ( - 2 ) ) E ~ o ~

I n (1) p is a real polynomial, ar~l the relation ~ E ~ s means t h a t ~ ( 2 ) = c o n s t a n t + o ( 2 s) when 2 - ~ + c~. I k is defiffed b y dlkcp=2kdq9. I f Ik~0Eeo k+s for one value of k, t h e n the same relation is valid for all k * - s a n d we write

~0EI s. W h e n s:~O, I S = t o s, b u t w ~ is a - p r o p e r subset of I ~ The integral in (1) is convergent if a n d only if 1-10*E(D0. Finally, c f E T + ( T _ ) ~ s means t h a t there is a constant C such t h a t dq + C2 s ld2 is >~ 0 ( ~< 0) for sufficiently large positive 2, a n d T s = T~ U Ts-.

I n the proof in [4] of the T a u b e r i a n theorem, the a s y m p t o t i c relation (1) is used only along the imaginary halfrays except in two exceptional cases, which occur when s is an integer. I n these cases ( 1 ) i s used for the four ha[frays arg t = 41~r + n . 89 ~, n = 0, 1, 2, 3. Thus the conditions in the theorem are unne- cessarily strong.

A closer s t u d y of the question has shown t h a t it is sufficient to h a v e the a s y m p t o t i c relation along an a r b i t r a r y pair of non-real halfrays which are sepa- r a t e d b y the imaginary axis. This includes the case when one or b o t h ha[frays are purely imaginary. Moreover, the use of a larger Tauberian class t h a n T s led to a more n a t u r a l proof of the Tauberian theorem.

We can suppose t h a t the halfrays are the i m a g i n a r y ha[frays. F o r if (1) is valid along a n o t h e r pair of rays, the relation holds also along the complex con- jugate rays as the polynomial p is real. The integral a n d the polynomial in (1) increase so slowly when t--> c~ t h a t the Phragmdn-Lindel6f principle can be used in the angles formed in the u p p e r a n d in the lower ha[fplane b y the four halfrays. These angles contain t h e imaginary ha[frays.

(2)

S. SPANNE, A generalization o f a Tauberian theorem by Pleijel 2. Tauberian classes

W e use T a u b e r i a n classes which are closely connected with t h e slowly de- creasing functions.

Definition. A f u n c t i o n q) belongs to the class US+ i f lim lim in/ x-~(qD(y)-q~(x))>~O.

/~-->1+0 x---)r162 x<~y~t~x

W e p u t U ~ = - U ~ +, U s = U+ U ~ U ~_ and U ~ = U + N ~ US_.

T h e class U ~ consists of t h e slowly decreasing functions a n d t h e class U0 ~ of t h e slowly oscillating functions (on t h e i n t e r v a l (0, ~ ) ) .

T h e classes US+ a n d Us are c o n v e x cones, U~) is linear a n d if ~1 a n d ~2 belong t o U s, t h e n either ~1 + ~ 2 or ~ 1 - ~ % belongs to U ~. I f ~ E U ~ a n d yJ E U~), t h e n ~ + y~ belongs t o U ~.

T h e classes T~ (T~_) are included in t h e classes U+ (U~), for take, for instance, E TS+. T h e n dq~ + C;t ~ 1 d;t >~ 0 for ;t >~ 40, a n d we m a y e v i d e n t l y a s s u m e t h a t C > 0. T h e n

x - ~ ( ~ ( ; t ) - ~ ( x ) ) > ~ - C x - ~ ; ; t ~ - l d 2 > ~ - C ; u ~ - ~ d u , w h e n ;to ~< x ~< y ~</~x. T h e last integral t e n d s to 0 w h e n #-->1 + 0.

W e shall need t h e following p r o p e r t i e s of t h e classes U.

Proposition.

(a) I f qgEUq+, then IPq)eU~+ +n /or p>~O.

(b) I f cs E Uq+, then cf(;t ~) E Uq+ ~ /or ~ > O.

(e) u'+ = u~+ i/ p < q.

(d) I q = U~.

(a), (b) and (c) are valid also /or the classes U _ . Proof.

(a) Suppose ~ E Uq_. A simple calculation shows t h a t

(IPcf(y) - I % f ( x ) ) = x q (q~(y) - of(x)) + x -p q f / ( o f ( y ) - cf(;t))

x - p ~ q d(;tv).

T h u s if

X-q(q)(y)--~(X))~--C

for

;to~X~y~x,

where c>~O, t h e n x - ~ - q ( I % f ( y ) - I P ~ ( x ) ) >~ - c + x p q f : - c;tqd(~ ")

w h e n ;t o ~< x ~< Y ~< r This p r o v e s (a).

312

(3)

ARKIV FOR MATEMATIKo B d 5 mr 21

(b) S u p p o s e ~c E U~. E v i d e n t l y

x :'q (qo(y ~') - qo(x~')) = X - q ( q : ( Y ) - ~f(X)) >~ - c,

w h e n ;t o ~< X ~< Y ~< # X , w h e r e X = x% Y = y% t h a t is, w h e n ;tl/~ ~< x ~ y ~< #11~ x, a n d (b) follows because /, -+ 1 + 0 w h e n /,1/~_+ 1 + O.

(e) Obvious.

(d) I f q~=O, t h e n I q=~o q, a n d if ~oE1% t h e n

Ix -q ( ~ ( y ) - of(x)) 1 = l ( y / x ) q q ~ ( y ) / y ~ -- c f ( x ) / x q l <. ( ( y / x ) q § 1) o(1) --> 0

w h e n x --> § ~ a n d x 4 y ~</~x. Suppose secondly t h a t ~ E/0. T h e n x - 1 So ;t d~(;t) = o(1) w h e n x--> + ~ . E v i d e n t l y

x

~(x) = x -1 f ~ o ( ; t ) d2 + o(1), w h e n x - > + ~ . a n d t h u s

; fo

W e get q~(y)-~v(x)=o(1) + y -1 q)(;t)d,~-x 1 ~o(;t)d2

= o('l) + y-1 fff ~(;t)d;t § (x/y -- l)X -1 f~ ~9(;t)d~

= o(1) + y - ~ f ; ~ ( ; t ) d;t + ( x / y - 1) ~(x)

= o(1) + y-~ ( ~ (~(;t) - ~(x)) d;t, g x

w h e n x--> + c~, x ~< y ~</~x. This gives

inf ( q o ( y ) - - c f ( x ) ) > ~ o ( 1 ) + ( 1 - # -1) inf ( ~ o ( 2 ) - ~ o ( x ) ) .

x<~y<<ux x<~<~y<~,ux

T h u s inf (q(y) - q~(x)) ~>/~o(1).

T h e s a m e reasoning gives a n u p p e r bound. T h e result is lim sup '] q(y) - q(x) l = 0,

X--.>+~ x ~ y ~ t l X

which m e a n s t h a t ~c is slowly oscillating.

(4)

S. SPANNE, ~4 generalization of a Tauberian theorem by Pleijel

3. T h e u n i l a t e r a l T a u b e r i a n t h e o r e m

W e shall use t h e following unilateral T a u b e r i a n t h e o r e m . T h e o r e m . I[ 8 <~ 1 and ~rE U s, then

j

' ~ (2 + t) -1 da(2) = t - l p ( t -~) + o(t s -1), t -'-)" -1- (:x~,

0

implies that (rEI s. I1 s is an integer, the result can be improved to I - ' G E ~ ~ F o r s = 0 a n d for 0 < s < 1, t h e t h e o r e m is a n n o u n c e d b y H a r d y a n d Little- w o o d [1] a n d b y K a r a m a t a [2], b u t no explicit proof is given. W e s k e t c h t h e proof. L e t 0 < s < 1. A p a r t i a l i n t e g r a t i o n (justified b y t h e f a c t t h a t I-laE~o ~ gives

io o

t -1 (2/t) s (1 + 2/t) -2 (~(2)/2 s) d2 = o(1) + K, (2) where t h e c o n s t a n t K = 0 if s > 0.

T h e kernel g ( x ) = x S ( l + x ) -2 is a W i e n e r kernel since

f /

g(t)" t~"dt sin

z~(s +

~z(s + ui) * 0

ui)

for u real.

I f s = 0, t h e t h e o r e m follows f r o m a t h e o r e m b y K a r a m a t a [3]. I f s > 0 , a E U~

gives t h a t a(2)/2 s is b o u n d e d below ( K a r a m a t a [2] p. 36). F r o m this c o m b i n e d with (2) we get t h a t Stoa(2)d2=O(t s+l) as t--->+ oo. H e n c e

(it -- 1). ta(t) = ((#t - t ) a ( t ) - f ~ t ( r ( 2 ) d 2 ) + O ( t s~) f f

(a(2) - a(t)) d2 + O(t s+l) ~ C. tSd2 + O(t s+l) = O(t s+l) as a E U~. W e conclude t h a t a ( t ) = O(tS). I f a E U s a n d a ( 2 ) / Y is b o u n d e d , it is easy t o see t h a t a(2)/2SE U ~ T h e t h e o r e m b y K a r a m a t a t h e n gives t h e w a n t e d result.

T h e case s < 0 is r e d u c e d to t h e case 0 ~ s < 1 in t h e s a m e w a y as in Pleijel [4]

p. 565. This r e d u c t i o n uses t h e properties (a) a n d (c) of t h e T a u b e r i a n classes.

4 . T h e b i l a t e r a l T a u b e r i a n t h e o r e m

Suppose t h a t (1) holds along t h e i m a g i n a r y halfrays. I n t h e same w a y as in [4] it follows t h a t

~ : ( 2 + t) idA(V2) = t-lpl

(t

2) + o(t,/2-1), (3) 314

(5)

ARKIV FOR MATEMATIKo B d 5 nr 21

: ( ) . 4- t) -1 ]/~ dS(V~) = t - l p 2 (t -1) +

O(t(s+l)12-1),

(4)

when t-> oo along the positive real axis. In these formulas Pl and p , are real polynomials and

S ( ~ ) = a ( ~ ) + a ( - ~ ) , (5)

A(~)=a(~)-~(-~). (6)

We replace the Tauberian condition in the theorem in section 1 b y the con- dition a(~) E U s, a( - ~) E U 8. F r o m this follows t h a t either S(~) or A(~) E U s.

Suppose t h a t S, say, belongs to U s. Then IS(k)E U s+l b y the proposition (a), and IS(V~)E U 89 b y (b). The unilateral theorem now can be applied to (4).

This gives I S ( ~ ) E I 89 which is the same as S(~t)EI', and b y (d) it follows t h a t S(~t) E U~.

From (5) and (6) follows t h a t A(2) = 2a(2)-- S(2), where 2a(2) E U s and - S(2) E U ~.

This implies t h a t A(2)E U s and A(I/]}EU s/2. F r o m (3) we obtain, using the uni- lateral theorem, t h a t A ( 2 ) E I s, and when s is an even integer, I - S A E~o ~

The case in which A(2)E U s follows from the original Tauberian conditions is treated in a completely analogous way, starting from (2) instead of from (3).

We have the following bilateral Tauberian and Abelian theorem.

Theorem.: Let s< 1 and a(~), a ( - ~ ) E U s. Then the [ollowing conditions are equivalent

1. The relation (1) is valid along one pair o[ non-real hal]rays /tom the origin separated by the imaginary axis.

2. The relation (1) is valid along all non-real hal/rays /rom the origin.

3. a(2) and a ( - 2 ) E P , and I s ( a ( 2 ) - ( - 1 ) s a ( 2 ) ) E e o ~ i[ s is an integer.

We have proved the Tauberian part, 2. ~ 1. ~ 3. The Abelian part, 3. ~ 2 . , is the Abelian theorem in Pleijel [4] p. 568.

R E F E R E N C E S

1. HARDY, G. H., and LITTLEWOOD, J. E., Notes on t h e t h e o r y of series (XI). On Tauberian theorems. Proceedings of t h e L o n d o n Mathematical Society, Series 2, vol. 30, p a r t 1, 23-37 (1930).

2. KARAMATA, J . , Neuer Beweis u n d Verallgemeinerung der Tauberschen S~tze, welche die Laplacesche u n d Stieltjessche Transformation betreffen. J o u r n a l ffir die reine u n d ange- w a n d t e Mathematik, B a n d 164, H e f t 1, 27-39 (1931).

3. KARAI~IATA, J., Bemerkungen zur Note: ~ b e r einige Inversionss~tze der Limitierungsver- fahren. Publications Math~matiques de l'Universit@ de Belgrade, Tome IV, 181-184 (!935).

4. PLEIJEL, A., A bilateral Tauberian theorem. Arkiv fSr Matematik, 4, 561-571 (1962).

5. PLEIJEL, A., R e m a r k t o m y previous p a p e r on a bilateral Tauberian theorem. Arkiv f6r Matematik, 4, 573-574 (1962).

Tryckt den 9 juni 1964

Uppsala 1964. Almqvist & Wiksells Boktryckeri AB

Références

Documents relatifs

The traditional way of proving a theorem of this sort is to use the Poisson representation of the harmonic function and show that the normal derivative of

The proofs of these more general theorems are considerably more com- plicated t h a n those of the theorems announced above which concern the behavior of our

Comparez les classi- fications des corps biquadratiques que nous avons donndes dans un travail antdrieur, voir Nagell [6], p... Ainsi il n'existe aucun sous-corps

Weighted mean square approximation in plane regions, and generators of an algebra of analytic functions.. By LARs

dimension two is obtained by using ideals similar to form ideals but generated b y power products of the variables. Serre defines fiat couples in homological

Almqvist &amp; Wiksens Boktryckeri

NAGELL, T., On the representations of integers as the sum of two integral squares in algebraic, mainly quadratic fields.. Nova Acta

The present table was computed on SMIL, the electronie eomputer of Lund University.. Two different methods were used throughout,