• Aucun résultat trouvé

A R K I V FOR MATEMATIK Band 6 nr 2

N/A
N/A
Protected

Academic year: 2022

Partager "A R K I V FOR MATEMATIK Band 6 nr 2 "

Copied!
21
0
0

Texte intégral

(1)

A R K I V FOR MATEMATIK Band 6 nr 2

1.64141 Communicated 11 November 1964 by L. GJ~RDING and L. CARLESO~

M i n i m i z a t i o n p r o b l e m s f o r t h e f u n c t i o n a l SUpx F(x, f(x),f'(x))

By GU~NAn AaoNsso~

l . Introduction

L e t F(x, y, z) be a g i v e n f u n c t i o n , defined for z 1 ~ x ~ x 2 a n d all values of y a n d z.

L e t f u r t h e r :~ be a class of f u n c t i o n s / ( x ) , all of which are defined o n x 1 ~ x ~ x ~ a n d are sufficiently regular. F o r e v e r y /C :~, we define t h e f u n c t i o n a l

H(/) = sup F(x, /(x), /'(x)).

X l ~ X ~ X z

W e are i n t e r e s t e d i n the p r o b l e m to m i n i m i z e H(/) over :7. F o r example, we will t r y to answer these questions: Does there exist a m i n i m i z i n g f u n c t i o n ? Is it u n i q u e ? H a s it a n y special properties? W h a t is t h e v a l u e of infr~ s H(/)? F o r reasons of b r e v i t y , m a n y of t h e results are not g i v e n i n t h e m o s t general form. W e shall o n l y consider real f u n c t i o n s a n d real variables.

If g(x) is c o n t i n u o u s a n d n o n - n e g a t i v e o n x I ~ x ~x2, t h e n

(? )

m a x g ( x ) = lim (g(x))~dx 1/~.

X l ~ X ~ X ~ Tt"-)'Or X l

This suggests t h a t we should a p p r o x i m a t e t h e f u n c t i o n a l H(/) w i t h the sequence of f u n c t i o n a l s

(? )

H~(I) = [F(x,/(x),/'(x))]ndx ~/~, n = 1, 2, 3 , . . . .

X~

T h e E u l e r e q u a t i o n corresponding to Hn(/) = rain is

)

dx [F(x, y, y')~] - ~yy [F(x, y, y')~] = 0, which c a n be w r i t t e n as

n ( n - 1 ) F n - 2 [ d x Y' dx

L e t us p u t t h e expression i n b r a c k e t s e q u a l to zero a n d t h e n let n t e n d to i n f i n i t y .

(2)

c. ARONSSON,

Minimization problems

T h e n we get (formally) a new e q u a t i o n

d ! !

_ _ o

dx (F(x, y, y )) F~.(x, y, y ) = O. (*)

W e w a n t to s t u d y the connection (if there is any) between this differential equation a n d the minimization problem.

I t m i g h t be expected t h a t functions

/(x),

such t h a t

F(x, /(x), /'@))-constant,

should be i m p o r t a n t for the problem. This is true, as we shall see in sections 2 a n d 3.

I n section 4, we shall i n t r o d u c e a class of functions which minimize the functional

"on

every i n t e r v a l " a n d prove t h a t such a function m u s t satisfy the e q u a t i o n (*) in a certain sense.

A similar problem has been studied in [1].

2. T h e special case

F = F ( y , y ')

W e shall start with a s t u d y of the case where F is i n d e p e n d e n t of

x,

since this case is simpler t h a n the general a n d since we are interested in the interaction between y a n d y'.

2 A. The minimization problem

L e m m a 1:

Suppose that:

1)

/(x) is continuous/or a ~ x ~ b , /'(x) is continuous/or a < x < b,

2) / ' ( x ) > 0 / o r

a < x < b ,

3)

g(x) is absolutely continuous on a ~ x ~ b,

4)

g(a) </(a), g(b) ~/(b) a n d / $ g .

Then there exist numbers tl, t 2 on the open interval (a, b) such that

l)

/(tl)=g(t2) ,

I I )

g'(t~) exists and/'(tl)

< g ' ( 4 ) .

Proo/:

Clearly, we m a y assume t h a t

g(a) - / ( a ) , g(b) - / ( b )

a n d / ( a ) <g(x)

</(b)

for a < x < b. For, if this is n o t the case, we define

p - m a x {x [

g(x) </(a) },

q - m i n

{x I x >~p, g(x) >~ ](b)},

and, instead of g(x), we consider

gl(X)=g(p+(q-p)(x-a) [ b - a ]

1). (If

gl=/,

t h e n the result is trivial; if gl ~ / , t h e n the proof below applies to

gl,

a n d t h e n the result for g follows.) N o w

y - / ( x )

has a continuous inverse

x - ~ ( y )

f o r / ( a ) ~ y ~ / ( b ) .

~'(y)

is continuous a n d positive for

/(a)<y</(b).

Hence ~(y) is absolutely continuous on

](a) <~y <~/(b).

F o r m the function

q~(x)-at(g(x)).

I t is absolutely continuous on

a ~ x ~ b

a n d

q/(x)=ot'(g(x)).g'(x)

a.e. B y assumption, there exists a n u m b e r

xo, a<xo<b,

such

(3)

ARKIV FOR MATEMATIK. B d 6 n r 2 that/(Xo) ~:g(x0); say/(xo)

<g(xo)

(the other case is t r e a t e d similarly). T h e n we h a v e

~(x0) > x 0 a n d

floq~'(x)dx=q~(Xo)-q~(a)=q~(Xo)-a>xo-a.

So there m u s t exist a n u m b e r ~ such t h a t :

a<~<xo,

g'(~), ~'(~) exist a n d ~ ' ( ~ ) > 1.

T h u s B u t

~'(g(~)).g'(~)>l.

~'(g(~))=/,[~(g(~))], 1 which gives us

g'(~) >/'[~(g(~))].

Obviously, the n u m b e r s t 1 = a(g(~)) a n d t~ = ~ will h a v e the required properties.

Remark:

If we change the conditions 2 a n d 4 t o / ' ( x ) < 0 a n d

g(a) >/(a), g(b) ~/(b),

respectively, a n d the assertion I I to

g'(ta)</'(tl)

, t h e n we get a n o t h e r f o r m of t h e l e m m a which follows f r o m the preceding b y the substitution t = - x .

N o w let us consider a function F =

F(y, z)

a n d let us impose a few conditions u p o n it:

1) F is defined a n d continuous for all y a n d z.

2) exists for all y a n d z a n d ~ is = 0 if z = 0

< 0 if z < 0 .

Let [xDx2]

be the interval m e n t i o n e d in the i n t r o d u c t i o n a n d let

Yl,Y~

be a n y t w o numbers. F r o m n o w on, the class ~ of admissible funetions is defined as follows:

~ is the class of all absolutely continuous functions o n X l ~ Z ~.x2, which satisfy t h e b o u n d a r y c o n d i t i o n s / ( x l ) - Y l a n d / ( x 2 )

=Y2.

L e t / ( x )

E ~-

a n d let E be the set where

['(x)

exists. I t should be noticed t h a t x 1 a n d x~ belong to E if the one-sided derivatives in question exist.

N o w

H ( / ) =

SUpx~E

F(/(x),/'(x))

is well-defined a n d obviously

H(/) >~

m a x

(F(y 1, 0), F(y 2, 0)).

Therefore infr~ ~

H(/)

is finite, a n d the questions m e n t i o n e d in the i n t r o d u c t i o n are meaningful.

W i t h the use of L e m m a 1, we can easily prove t h e following simple theorem:

Theorem h

Suppose that F(y,z) satisfies the conditions 1 and 2 stated above. Suppose /urther that/(x) is an admissible/unction such that

a)

/'(x) is continuous/or x 1 ~ x ~x2,

b)

/'(x):#O /or xl <x<x2,

c)

F(/(x), /'(x)) = M /or x 1 ~ x ~ x 2 (M is any constant).

Then/(x) is a unique minimizing/unction in :~. I.e.: i/g(x) is a di//erent element o/

5, then H(g) > H(/).

(4)

G. ARONSSON, Minimization problems

Proo/: Consider t h e case /'(x)>0. A c c o r d i n g to L e m m a 1 t h e r e e x i s t t D t 2 such t h a t / ( t ~ ) =g(t2), 0

<ff(tl)<g'(t2).

This gives

H e n c e

H(g) >~ F(g(t2) , g'(t2) ) > F(/(t~),/'(t:)) = M = H ( / ) . H(g) > H(I).

T h e o t h e r case is t r e a t e d a n a l o g o u s l y (see t h e r e m a r k to L e m m a 1). This t h e o r e m s h o u l d b e c o m p a r e d w i t h t h e t h e o r e m s of s e c t i o n 3.

I n o r d e r to give a m o r e s y s t e m a t i c t r e a t m e n t of t h e case F = F(y,z), we i n t r o d u c e a n o t h e r c o n d i t i o n on F :

3) lira F ( y , z ) - + c~ for all y.

As is e a s i l y seen (using t h e c o n d i t i o n s 1 a n d 2 also), t h i s i m p l i e s t h a t t h e l i m i t s l i m F ( y , z ) = + ~ , l i m F ( y , z ) = + c~

Z - - - ) + o r Z - - - ) -

a r e u n i f o r m for b o u n d e d y.

I n t h e r e s t of section 2, we shall a l w a y s a s s u m e t h a t F(y, z) satisfies t h e c o n d i t i o n s 1, 2 a n d 3 g i v e n a b o v e .

W e n o w i n t r o d u c e t w o a u x i l i a r y functions:

De/inition: I / F ( y , O ) < M , then we set OM(y)=the positive number z such that F ( y , z ) - M , tFM(y ) - t h e negative number z such that J T ( y , z ) - M , and i/ F ( y , O ) = M then we set r (If F ( y , O ) > M , t h e n t h e e q u a t i o n F ( y , z ) = M h a s no s o l u t i o n z.)

L e m m a 2: OM(y) and t F u ( y ) are continuous /unctions o/ y and M on the set where they are de/ined.

T h e p r o o f is s i m p l e a n d we o m i t it.

W e will n o w t r y to give a c o m p l e t e s o l u t i o n of t h e m i n i m i z a t i o n p r o b l e m u n d e r t h e a s s m n p t i o n s 1, 2 a n d 3 a b o u t F(y,z). W e shall p a y m o s t a t t e n t i o n t o t h e case Yl <Y2 a n d t h e c o r r e s p o n d i n g r e s u l t s for t h e case Yl > Y2 will be g i v e n l a t e r w i t h o u t proofs, since t h e r e a s o n i n g is v e r y s i m i l a r in b o t h cases. F i n a l l y , we shall consider t h e case Yl = Y~-

A) L e t us n o w s u p p o s e Yl < Y2- (v2 (it

I n t e g r a l s of t h e t y p e .]vl(I)M(t) t u r n o u t to b e v e r y useful. L e t us a g r e e to call t h e i n t e g r a l a b o v e w e l l - d e f i n e d if a n d o n l y if (PM(t)> 0 a.e. on Yl < t ~<Y2" T h e n (])~(t) is n o n - n e g a t i v e , m e a s u r a b l e a n d f i n i t e a.e. L e t us use t h e n o t a t i o n 1

f

Y~ dt y~ d)M(t~ = s

T h u s s > 0 a l w a y s a n d t h e p o s s i b i l i t y s = + ~ is n o t e x c l u d e d .

(5)

ARKIV FOR MATEMATIK. B d 6 nr 2

L e m m a 3:

Assume that M~-+M, MI>M2>Ma>... and that, /or all

v, s

is well-de/ined and

s

<~ C (C independent o/ v). Then

s

is also well-de/ined and

l : ( M ) - l i m ~ _ ~ ~(M~).

Proo/:

I f

yl<~y<~y.~

then, clearly,

F(y,O)<M,

for all v a n d

F(y,O)<~M.

This means t h a t

OPM(y )

is defined for

yl<~y-<,y2.

I f

(I)M(y)>O,

then, according to L e m m a 2,

1 1

CPM,(y) OM(y)'

a n d if OM(y)= 0, t h e n - - -1 - - - ~ C x 3 . (D.~(y)

F o r e v e r y y we have 1 1 1

OMI(Y) OM~(y) r ....

B u t it is also t r u e t h a t

r',~ dy

- - < ~ C

J ~, q%~(y)

I t follows f r o m B e p p o - L e v i s t h e o r e m t h a t lira 1

~-~ (P~.(y) Y~ ~< Y ~< Y2 a n d t h a t

-h(y)

exists finite a.e. on

fY~ h(y) dy

= lim d y , O ~ ( y ) - - lim s

(Y~ dy

Y l v - - > ~ v - - - > o o

F r o m the preceding we see t h a t h ( y ) =

OM(Y)

1 a.e., which completes the proof.

Theorem 2:

I/there exists an admissible/unction/(x) such that

supx

F(/(x), /' (x) ) 4 M, then ~(~I) is well-de/ined and I=(M)4x2-x 1.

Proo/:

I f

M ~ = M + l / v

for

v = l ,

2, 3 . . . t h e n

H(I)<M~.

Hence, if

y l 4 y 4 y 2 , F(y,O) <M~

a n d

(~Mv(y)

> 0 .

We m a y assume t h a t

yl~/(x)~y2.

T a k e an a r b i t r a r y u. F r o m the inequality

F(/(x),/'(x)) <M,

it follows t h a t / ' ( x )

<O~,(/(x))

(a.e.). Therefore

1'(~)

b,,~(l(x)) < ]" (])

l "y dt

N o w ~ ( y ) = | - - is a c o n t i n u o u s l y differentiable function of y for Yl ~< Y < Y2.

Jy, O~,~(t)

T h u s ~ ( x ) = ~(/(x)) is absolutely c o n t i n u o u s on x 1 ~<x ~ x 2. I t follows f r o m (1) t h a t

~F'(x) 4 1 a.e.

So ~F(x~) -~F(xl) ~x~-Xl.

(6)

G. ARO~SSOrr Minimization problems

:But ~ ( x l ) =(~(Yl) = 0 a n d

~F(x2)

=(P(Y2) =

I~(M~). This gives

s < x2 - x r Now the assertion follows from the preceding lemma.

Theorem 3: I / ~(M) is well-de/ined and /inite, then there is a /unction /(x) with these properties:

1) /(x) is de/ined and strictly increasing/or 0 ~ x ~ F.(M), 2) / ( 0 ) - Y D / ( s =Y2,

3) /'(x) is continuous/or 0 ~ x ~ IZ(M),

4) F(/(x), ] ' ( x ) ) - M /or O<~x<F.(M) (i.e./'(x)=(I)M[/(x)]).

Proo/: Form the function el(y) = ~

dt/(~M(t ).

Clearly, it is continuous and strictly increasing for Yl ~< Y ~< Y,. Further, ~(Yl)= 0 and ~(Y2)= E(M). If we define/(x) as the inverse function of ~(y), then it follows at once t h a t / ( x ) satisfies 1 and 2. I n order to s t u d y / ' ( x ) , take an x 0 on the interval 0~<x0~< I~(M) and let {~}~ be a sequence such that ~--~x o and ~ # x o for all v. S e t / ( ~ ) = ~ and/(Xo) =Yo (~-->Yo but ~:4=yo).

Then we have

/ ( ~ ) - / ( X o ) _ ~ - Y o _ 1 _

~ - x o ~V(~]~) - ~o(y o) ~ ( ~ v ) - ~O(Yo)

~v -- YO

l ('~ dt "

~ - YoJy. O~(t) I t follows from the continuity of

(I)M(t)

that if

(~)M(Yo)>0,

then

~(~v) - ~ ( Y o ! _ _ > 1 _ 1

~ v - y o O M ( Y o ) OM(/(Xo))' b u t if

OM(Yo): O,

then ~(~) - qO(yo) _+ ~ .

~Tv - Yo Hence

in both cases, and we have

/(~)-/(Xo)

~r )

~ v - - X 0

l'(xo)

=r B u t then it follows t h a t / ' ( x ) is continuous and

F(/(x), / ' ( x ) ) = M for O < x < E ( M ) . This completes the proof.

The solution of the minimization problem is given in the following Theorem 4:

a) Given M, a necessary and su//ieient condition/or the existence o/ a /unction /E :~

such that H(/) = M , is that ~(M) •x 2 - x l ;

b) there is a number M o such that F.(M) <~x 2 - x 1 i / a n d only i / M >~ Mo;

c) M0-infr~ ~ H(/);

(7)

ARKIV FOR MATEMATIK. B d 6 n r 2 d)

there exists a minimizing/unction/o (which can be chosen continuously di//erentiable);

e) the minimizing/unction is unique i] and only i / s 2 - x l ;

f) i] the minimizing/unction is not unique, then

M0=maxy,<y<y ~ F(y,0),

but the con- verse is not true.

Proo/:

a) This is seen from Theorems 2 and 3. I n general, the function in Theorem 3 must be translated in the x-direction and continued as a constant to give the function mentioned above.

b) I t follows from the properties of

F(y,z)

and the definition of

OM(Y)

that

OM(y)

is an increasing function of M and hence s is decreasing. Let E be the set of all numbers M such that s ~ x 2 - x 1. I t is clear that E is bounded from below. Let M 0 = inf E. Lemma 3 implies that M 0 E E and, since s is decreasing, the assertion follows.

c) and d) Consequences of a), b) and Theorem 3.

e) Suppose first t h a t s 2 - x 1. I t is clear t h a t the function in Theorem 3 can be translated in the x-direction and continued as a constant in different ways so as to give us different minimizing functions.

Suppose then t h a t I:(M0)=x,~-x

1.

If

/(x)

is the function from Theorem 3 with

M = M o ,

then we assert that

h ( x ) = / ( x - x 0

is the only minimizing function. Let

g(x) E ~

and assume for example g(~)<h(~) for some ~ between x 1 and x~. According to our choice of

h(x)

we have

f Y~ h(~) OM~ dt x 2 - ~"

If

H ( g ) = M ,

then, according to Theorem 2,

f ~ dt

I t follows t h a t

Y~ dt ~Y~ dt

h(~) OM(t) < j h(~) O~o(t)"

This implies that M >M0, which completes the proof of assertion e).

f) First we shall prove that if the minimizing function is not unique, i.e. s

x 2 - x l ,

then M0=maxyl<u<y ~

F(y,O).

Assume then that M0>maxyl<~<y ~

F(y,O).

This means that

(YPMo(Y)>0

:[or

yl<~y<~ya.

Since

F(y,z)

and

(PM(Y)

are continuous functions, there must be a number 5 > 0 such t h a t

1/Oi(y)

is uniformly continuous for Yl ~< Y ~ Y2 and I M - M 0 1 ~<5. But then there also must exist a number M 1 < M 0 such t h a t

s

1. But this contradicts b).

Hence

M 0 = max

F(y,O).

(1)

Yl<~Y~Y~

I n order to show that the converse assertion is not true, we give an example where (1) holds and the minimizing function is unique.

Choose

F ( y , z ) = y 2 + z

e , x l = y l = 0 , x 2 = ~ and y ~ = l .

(8)

a . AROr~SSON,

Minimization problems

P e r h a p s t h e easiest w a y to see t h a t y - s i n x is t h e u n i q u e m i n i m i z i n g f u n c t i o n is t o a p p l y T h e o r e m 1. (But, of course, t h e s a m e conclusion can be d r a w n w i t h t h e a i d of e) above.)

C l e a r l y

M 0 = 1 - m a x F(y, 0).

0~<y~<l

This c o m p l e t e s t h e p r o o f of T h e o r e m 4.

B) yl>y2.

T h e i n t e g r a l s is n o w r e p l a c e d b y

s ff I

at

(=(~'dt~

a n d o u r c o n v e n t i o n s are c o r r e s p o n d i n g to t h o s e of t h e f o r m e r case. Thus, for e x a m p l e , 0 < s + ~ .

T h e e x a c t a n a l o g u e s of L e m m a 3 a n d T h e o r e m s 2, 3 a n d 4 are n o w o b t a i n e d in a v e r y n a t u r a l m a n n e r b y s u b s t i t u t i n g s for C(M) a n d (in T h e o r e m 3)

~FM(y )

for

(~PM(Y)"

I n T h e o r e m 3, we m u s t also c h a n g e t h e w o r d i n c r e a s i n g i n t o decreasing. T h e proofs are p r a c t i c a l l y t h e s a m e in b o t h cases.

C) Yl=Y2.

Clearly, t h e f u n c t i o n ](x)=Yl is a m i n i m i z i n g f u n c t i o n . L e t us w r i t e M o - F ( y 1, 0).

As r e g a r d s t h e q u e s t i o n of u n i q u e n e s s , it follows f r o m T h e o r e m 4 a n d its a n a l o g u e in case B t h a t t h e m i n i m i z i n g f u n c t i o n is u n i q u e if a n d o n l y if none of t h e c o n d i t i o n s

a n d fi b e l o w is satisfied:

~) b o t h i n t e g r a l s a n d dy __

~ y , r ~ , --'FM0(y)

b o t h i n t e g r a l s (Y' d y a n d ( y l d?]

P)

e x i s t finite for s o m e ~ > O;

e x i s t f i n i t e for s o m e (5 > 0.

2 B. Determination of the attainable cone

L e t us now l e a v e t h e m i n i m i z a t i o n p r o b l e m a n d consider a n o t h e r question.

S u p p o s e t h e r e are g i v e n a p o i n t (x 0, Y0) a n d a n u m b e r M >~ F ( y o, 0). D e n o t e b y E t h e set of all p o i n t s (x, y) such t h a t

a) x>~Xo,

b) t h e r e is a n a b s o l u t e l y c o n t i n u o u s f u n c t i o n /(t), j o i n i n g t h e p o i n t s (Xo, Yo) a n d (x,y), such t h a t supt F(/(t), /'(t)) <~M.

Our t a s k is to d e t e r m i n e t h e set E. As a c o n v e n i e n t n a m e for t h e set E we use

" t h e a t t a i n a b l e cone". I f x >~x 0 t h e n c l e a r l y (x, y0)E E. I f x > x 0 a n d y >Y0 t h e n we k n o w a l r e a d y t h a t ( x , y ) E E if a n d o n l y if ,~odt/(~M(t ) is w e l l - d e f i n e d a n d ~<x x 0.

Of course, t h e r e is a s i m i l a r c o n d i t i o n for t h e case y < Y0. I f (x, Yl)E E a n d (x, y2)E E, t h e n (x, y) C E for e v e r y y b e t w e e n Yl a n d Y2.

(9)

A R K I V F O R M A T E M A T I K . B d 6 n r 2

W e define

g(x)

= inf {y:

(x, y) C E}

a n d

h(x)

= sup {y: (x, y) C E}. The f u n c t i o n s

g(x)

a n d

h(x)

m a y t a k e on infinite values. I f

g(x)

is finite, t h e n

(x,g(x))EE

a n d t h e s a m e is t r u e for

h(x).

This follows f r o m t h e c r i t e r i o n a b o v e .

F o r t h e d e t e r m i n a t i o n of E , i t is t h u s sufficient t o d e t e r m i n e

g(x)

a n d

h(x),

a n d we shall confine our discussion to

h(x).

L e t us use t h e n o t a t i o n ~(y) = x 0 + S~0

dt/OgM(t)"

T h e d i v i s i o n i n t o v a r i o u s cases b e l o w a n d t h e f a c t s a b o u t

h(x)

follow e a s i l y f r o m t h e c o n d i t i o n ~(y)~<x a n d t h e p r o p e r t i e s of ~(y).

A) F o r e v e r y

Y>Yo, cp(y)

is infinite or n o t defined. T h e n

h(x)=Y0

for all

x>~x o.

B) ~(y) is d e f i n e d a n d f i n i t e for

yo<~y< Y < o~

(clearly ~ ( Y ) = oo).

h(x)

= i n v e r s e of q0(y) for all

x>~x o

lira

h(x)= Y.

x--> or

C) ~(g) d e f i n e d a n d f i n i t e for Y0 ~<Y ~< Y < oo

i n v e r s e of ~v(y) for

Xo<~X<~v(Y ), h(x)=

Y for x~>~v(Y).

D) ~(g) d e f i n e d a n d f i n i t e for all

Y>~Yo"

1. l i m ~v(y)=

y--->~

h ( x ) = i n v e r s e of ~v(y) for all

x>~x o

lira

h(x)= c~.

x--->oo

2. lira ~v(y) = X <

y---> ~

i n v e r s e of ~v(y) for x 0 ~<x < X

h ( x ) =

§ o~ for

x>~X.

Clearly,

h(x)

is s t r i c t l y i n c r e a s i n g on e v e r y i n t e r v a l w h e r e i t is d e f i n e d as t h e i n v e r s e of ~v(y).

F u r t h e r , t h e r e l a t i o n

F(h(x), h'(x))=M

holds a t e v e r y p o i n t w h e r e

h(x)

is finite.

3. S o m e s u f f i c i e n t c o n d i t i o n s for a g i v e n f u n c t i o n to m i n i m i z e t h e f u n c t i o n a l i n t h e case F =

F(x, y, z)

L e t us n o w r e t u r n to t h e g e n e r a l case w h e r e F is allowed to d e p e n d on x also.

As we h a v e seen in section 2, m o n o t o n i c f u n c t i o n s / ( x ) , such t h a t

F(x, [(x), ['(x)) -

c o n s t a n t , a r e of g r e a t i m p o r t a n c e . S u c h a f u n c t i o n m i n i m i z e s H([), as is seen f r o m T h e o r e m 5. R o u g h l y s p e a k i n g , T h e o r e m 6 shows t h a t if

](x)

is also s t r i c t l y m o n o t o n i c , t h e n

](x)

is t h e u n i q u e m i n i m i z i n g f u n c t i o n . C o m p a r e also T h e o r e m 1.

Of course, i t can be d e d u c e d f r o m t h e c o n d i t i o n

F(x,/(x), ]'(x))=constant

t h a t

[(x)

has a c e r t a i n degree of r e g u l a r i t y (at least for t h e f u n c t i o n s

F(x,y,z)

t h a t we s t u d y ) . B u t since t h i s is e a s y to do a n d n o t v e r y i m p o r t a n t for t h e t h e o r e m s , we

(10)

G. AnOr~SSON,

Minimization problems

shall o m i t a discussion of t h i s a n d i n s t e a d choose t h e c o n d i t i o n s o n / such as to m a k e t h e proofs simple. P e r h a p s we shall r e t u r n to t h i s q u e s t i o n in a l a t e r connection.

N o w l e t us a s s u m e t h a t t h e f u n c t i o n

F(x,y,z)

satisfies t h e c o n d i t i o n s : 1) F is c o n t i n u o u s for

xl<~x<~x ~

a n d all y a n d z,

2)

~F/~z

e x i s t s for

xl~x<~x 2

a n d all y a n d z.

> 0 if z > 0 ,

F u r t h e r , ~F__ is = 0 if z = 0 ,

~z < 0 if z < 0.

W e shall use t h e s a m e n o t a t i o n s as in s e c t i o n 2 a n d t h e s a m e d e f i n i t i o n s of a d m i s - sible f u n c t i o n s a n d t h e f u n c t i o n a l . I t follows t h a t

H(9)

~>max

(F(xl,yl,0), F(x2,y2,0))

for a n y g E 5.

T h e o r e m 5:

Suppose that F satisfies the conditions 1 and 2 above. Let / be an admis- sible/unction such that:

a)

/'(x) exists/or x I ~X~'~X2,

b)

/(x) is monotonic (not necessarily strictly),

c)

F(x, /(x), / ' ( x ) ) - i /or xl <~x<~x 2.

Then/(x) is a minimizing/unction. (/(x)

n e e d

not

be t h e o n l y one.)

Proo/:

L e t us choose t h e ease where

/(x)

is n o n - d e c r e a s i n g . L e t h be a d i f f e r e n t e l e m e n t of :~. T h e n we h a v e , for e x a m p l e , h ( ~ ) < / ( ~ ) for s o m e ~:, x 1 < ~ <x~.

T h e n t h e r e m u s t e x i s t a n x 0 ~ x 2 such t h a t

h(xo)=/(x0)

b u t

h(x)</(x)

for ~ ~ x < x 0.

H e n c e lira

h' (x) >~ /' (Xo) >~ O.

X--~X0

I f / ' ( X o ) - 0 , t h e n i t follows a t once t h a t

l i m

F(x,

h(x),

h'(x)) >~

F ( x 0,/(Xo),/'(x0)) = M . (1)

X'-~Xo

If/'(Xo) > 0 , t h e n we t a k e a ~ > 0 a n d a sequence ~ - - ~ x 0 such t h a t h ' ( ~ ) >/'(Xo) - ~ > 0 . This m e a n s t h a t

F ( ~ , h(~), h ' ( ~ ) ) > F(~,,, h ( ~ ) , / ' ( x o ) - ~ ) . T h e r i g h t m e m b e r t e n d s to

F(xo, /(Xo), /'(Xo)-~).

I f we l e t (5-~0, t h e n (1) follows again. T h u s

H(h) >~ F(x o,/(Xo),/'(xo) ) = i =H(/).

This c o m p l e t e s t h e proof.

T h e o r e m 6:

Suppose that F(x,y, z) satisfies the conditions:

(11)

A R K I V F O R M A T E M A T I K . B d 6 n r 2

_ _ _ _ Ix1 ~< x ~< x 2 ,

A)

F, ~F~y, ~F~z ezist and are continuous/or [y, z arbitrary.

~F [ > 0 if z > 0 , B) ~ z

is l = 0

if z = 0 ,

< 0 if z < 0 .

Suppose/urther that/(x) is an admissible/unction such that:

a ) / ' ( x )

is continuous and ~ 0/or x 1 <~ x <~ x2,

b)

F(x, /(x), /'(x)) = M /or xl <-<x<x2.

Then/(x) is a unique minimizing/unction in 5.

(Compare T h e o r e m 1.)

Proo/:

Following our habit, w e will c a r r y o u t the proof only for the case /' > 0 . Assume n o w t h a t

gE :~, g~-/and H(g)<~M.

We w a n t to derive a contradiction f r o m this.

L e t g(~)>/(2) for some 2, X l < ~ < X 2 . T h e n there m u s t be a n u m b e r x o such t h a t x 1 ~< x o < ~ a n d

g(x) > ](x)

for x o < x ~ ~ b u t

g(xo) =/(xo).

Hence lim

g'(x) ~ / t

(Xo).

X'-~X.+{}

:But since

F ( x , g , g ' ) < M

a n d

/'(xo)>0

it follows w i t h the use of B ) t h a t lim g (x)-~/(Xo).

x.-.).x o

' X ' X

C o n s e q u e n t l y lira g ( ) = / ( o ) .

x--~xo

F o r m ~v(x) =g(x)

-/(x).

If g'(x) exists, t h e n we a p p l y the m e a n value t h e o r e m to the function

9 (t) = F(x,/(x) +t~(x),/'(x) +tqJ'(x))

between t = 0 a n d t = 1. This gives

~(x). F~(x, /(x) +Oq~(x), /'(x) +Oq)'(x)) +~'(x) Fz(...)

40,

i.e.

q)'(x) Fz(... ) <~ -q)(x) Fy(...).

(1)

L e t 5 be a n u m b e r > 0 such t h a t x o + 5 ~< ~, a n d write Ja =

[Xo,

Xo + b]. T h e n ~0(x)~> 0 for

xEJ~.

F o r m the function

C(~) = sup ~'(x).

xeJ6

Clearly O<~(x)<(~C((~) for

xEJ(~.

(2)

P u t (5~ =

1/v

a n d select, for every

v >~Vo, x~ EJ~

such t h a t

~'(x~) > (1 - ~ ) C(5~) > 0 .

g'(x~) >/'(x~)

implies lim

g'(x~) >~/'(Xo).

v--> r162

(12)

G. AnoNssor%

Minimization problems

B u t lira

g'(x) =/'(Xo).

x.-.~xo

H e n c e lira g' (x~) = / ' (x0).

v---> o r

P u t x = x , in (1).

/'(x~)</'(x~)+O~'(x,)<g(x~).

~.~e see t h a t

/'(x,.) + 0 ~ (x,)

P _ _ ~

/ (x0) >0.

P

F r o m t h e c o n d i t i o n s on F i t follows t h a t

F,(x~, /(x~) +O~(x~), /'(x~) +O~'(x~)) ~ o: > 0

and

IF~(...)]<K for v~v~.

H e r e ~ a n d K are c o n s t a n t s i n d e p e n d e n t of v.

(1) can n o w be w r i t t e n (for r>~ra)

This i m p l i e s t h a t

for v ~ r 1

L e f t m e m b e r R i g h t m e m b e r

H e n c e a n d we h a v e

B u t t h i s gives a c o n t r a d i c t i o n if v - - > ~ .

T h e case g(~) </(~) can be t r e a t e d a n a l o g o u s l y , a n d so t h e p r o o f is complete.

0 <~'(x~) Fz(...) < ~(x~) F,(...).

[~'(x,)[ [F~(...)[ <]~(x,)l fF,(...)l,

>(1 c~,) C(d~) ~.

< ~ C ( ~ ) K (see (2)).

(1 -,~) C((~)~ <~,C(~) K

4. Examination o f functions which minimize the functional on every interval I n t h i s section we shall e x a m i n e m o r e closely t h e c o n n e c t i o n b e t w e e n t h e mini- m i z a t i o n p r o b l e m a n d t h e d i f f e r e n t i a l e q u a t i o n

dF(x,/(x),/'(x)) F~(x,/(x), fl(x)) = 0 dx

d e r i v e d in t h e i n t r o d u c t i o n . T h e m a i n r e s u l t s on this s u b j e c t are t h e T h e o r e m s 8 a n d 9.( 1 )

L e t us first s t a t e t h e c o n d i t i o n s on

F(x, y, z).

W e shall a s s u m e t h a t t h e c o n d i t i o n s 1 a n d 2, g i v e n in section 3 (before T h e o r e m 5) h o l d t h r o u g h o u t section 4, b u t we m u s t r e p l a c e [Xl,Xe] b y t h e i n t e r v a l c o n s i d e r e d in each case. L a t e r on, we shall i m p o s e f u r t h e r c o n d i t i o n s on F .

S u p p o s e t h a t t h e f u n c t i o n / ( x ) is d e f i n e d on t h e i n t e r v a l I a n d let

~ x < ~ f i

be a c o m p a c t s u b i n t e r v a l of I .

(1) See also the Theorems 5 and 6 of section 3.

(13)

ARKIV FOR MATEMATIK. B d 6 n r 2

Definition: I f i t is true, for e v e r y such i n t e r v a l [a,fl] (inclusive of I if I is c o m p a c t ) t h a t /(x) is a m i n i m i z i n g f u n c t i o n for o~<~x<~fl a n d a s s i g n e d b o u n d a r y v a l u e s /(a) a n d /(fi), t h e n /(x) is s a i d to m i n i m i z e t h e f u n c t i o n a l in the absolute sense on t h e i n t e r v a l I . T h e f u n c t i o n / ( x ) is s a i d t o be a minimal in the absolute sense on I . This will be a b b r e v i a t e d a.s. minimal in t h e sequel.

L e m m a 4: Let I be a compact interval and suppose that/(x) is absolutely continuous on I. Denote by E the subset of I where/'(x) exists, including endpoints o / 1 i / t h e ap- propriate one-sided derivatives exist. Then

s u p F ( x , /(z), /'(x)) = e s s s u p r ( x , / ( x ) , / ' ( x ) )

x~E xEE

in the sense that i / o n e member is finite, then so is the other and they are equal.

Proof: L e t x 0 be a p o i n t of 1 such t h a t / ' ( x o ) e x i s t s a n d let I s be a s u b i n t e r v a l of I c o n t a i n i n g x 0. T h e n i t is true, for e v e r y (~>0, t h a t / ' ( x ) > / ' ( x 0 ) - c ~ on a s u b s e t of 11 of p o s i t i v e m e a s u r e . S i m i l a r l y , /'(x)<f'(Xo)+(5 h o l d s on a s u b s e t of 11 of p o s i t i v e m e a s u r e .

F r o m this, a n d f r o m t h e c o n d i t i o n s on F ( x , y , z), i t follows e a s i l y t h a t e s s s u p

F(x,/(x),/'(x)) >~ F(x o,/(x o)/'(Xo)),

XE[ l fl E

a n d t h e r e s t of t h e p r o o f is obvious.

Remark: I t follows f r o m t h i s l e m m a t h a t our p r e v i o u s d e f i n i t i o n of H(f) is equi- v a l e n t to t h e d e f i n i t i o n

H(/)

= e s s s u p F ( x , / ( x ) ,

l'(x)).

xEE

I t also follows t h a t , in t h e d e f i n i t i o n of H(/), we can e x c l u d e t h e e n d p 0 i n t s of I f r o m E w i t h o u t c h a n g i n g t h e f u n c t i o n a l in a n y w a y . Therefore, t h e c o n d i t i o n s a) a n d c) in T h e o r e m 1 m a y be w e a k e n e d i n t o

a ' ) /'(x) is c o n t i n u o u s for x 1 < x < x 2 a n d

C')

F ( f ( x ) , / ' ( x ) ) - - M f o r x i < x < x 2.

L e t us n o w consider t h e m i n i m i z a t i o n p r o b l e m on t h e i n t e r v a l x 1 ~ x ~ x 2 w i t h t h e b o u n d a r y v a l u e s Yl a n d Y2, r e s p e c t i v e l y . L e t us use t h e n o t a t i o n

M (xl, x2; Yl, Y2) = inf H (/).

W e shall n e e d t h e following e s t i m a t e s :

L e m m a 5: Let L be the straight line between (xl, Yl) and (x 2, Y2).

P u t t = y ~ - y l

Z 2 - - X 1

Then r a i n F(x, y, t) <~ M ( x 1, x~; Yl, Y2) <~ m a x F(x, y, t).

(x,y)eL (X,y)eL

(14)

a . A R O ~ S S O N , Minimization problems

Proo/: The right inequality is obvious. L e t l(x) be the admissible linear function a n d let re(x) be a different admissible function. N o w the left inequality is p r o v e d in the same w a y as T h e o r e m 5. W e only have to substitute l(x) f o r / ( x ) a n d re(x) for h(x). This completes the proof.

L e m m a 6: Suppose that x~-->Xo, ~=-->Xo, x ~ < ~ /or all n, yn-~yo, ~n-->yo and (~7~-Yn)/(~ x~)->z o. (0/ course, F(x,y,z) must be de/ined and satis/y its conditions on an interval containing all the points xo, {x~}~ and { ~ } ~ . ) Then

lim M(x,, ~,; y~, ~n) = F(x0, Y0' %)"

n - - ~

Proo/: This is an i m m e d i a t e consequence of the preceding l e m m a a n d the c o n t i n u i t y of F(x,y,z).

L e m m a 7: Suppose that /(x) is a minimizing /unction on xl<~x~x z. (Boundary values Yl and Y2. ) Suppose/urther that x I ~ ~ < fi ~ x 2. Then

M(zc,fl; /(~), /(fl)) <~M(xl,x2; Yl,Y2).

Proo/: M(g, fl; /(~), /(~)) ~H(/; ~,fl) ~H(/; xi,x2) =M(xa,x2; Yl,Y2), w h e r e ' t h e mean- ing of the notations is obvious.

N o w we m u s t introduce a new condition on F(x, y, z), a n d this condition is assumed to hold in the rest of section 4:

3) limR~l_~r F(x,y,z)= + ~ for every fixed x a n d y.

As is easily seen, using the conditions 1 a n d 2 also, this means t h a t lim ( inf F(x, y, z))= +

lYI<~K

for every c o m p a c t interval [u,fl] (where F is defined) a n d for every K > 0 .

Theorem 7: I / / ( x ) is an a.s. minimal on an interval containing x o in its interior, then/'(Xo) exists.

Proo/: L e t I be a c o m p a c t interval with x 0 in its interior such t h a t / ( x ) is an a.s.

minimal on I. T h e n / ( x ) a n d F(x, /(x), /'(x)) are b o u n d e d on I . B u t t h e n it follows t h a t / ' ( x ) is also b o u n d e d on I . L e t zr be the greatest a n d fi the smallest of the four derivates o f / ( x ) at x = x 0. T h e n zr a n d fi are finite. Clearly, there exist sequences {p,}

a n d {q~} such t h a t

p~ < x o < q~, q n - p ~ - ~ 0

and /(q.) -/(P-)_+~.

q, - Pn

Of course, corresponding sequences {%}, {s,} exist for ft.

Assume n o w t h a t ~ > f l a n d let ? be a n y n u m b e r such t h a t ~>7>fl. As is easily seen, there m u s t exist sequences {tn}, {u,} such t h a t t~<xo<U,, u~-tn--+O a n d [ / ( u n ) - / ( t , ) ] / ( u , - Q ) = ? . According to L e m m a 6 we h a v e

lira M (pn, qn; /(P.), /(q.) ) = F ( x o , / ( X o ) , ~),

(15)

A R K I u FOR MATEMATIK. Bd 6 n r 2 lim M (rn, s~; /(rn), /(sn) ) = F(xo, /(Xo), fl),

n--->oo

a n d lim M (t,, u,; /(t,), /(u~) ) = F ( x o,/(Xo), ~).

n - - > ~

N o w there exist arbitrarily great n u m b e r s nl, n2, n a such t h a t (t~,,unl) c (rn~,s~,) c (P~0, qn~).

Application of L e m m a 7 n o w gives F(xo, /(Xo) , ~) ~ F(xo, /(Xo), fl) ~ F ( x o,/(xo), a).

B u t the inclusion relations can also be chosen in the opposite way, which gives

F(Xo, /(Xo), ~) >~ F(Xo, /(Xo), fl) >~ F(xo, /(xo), ~).

Hence these three n u m b e r s are equal. B u t this contradicts our a s s u m p t i o n t h a t Consequently ~ =fi which means t h a t / ' ( x o ) exists.

Remark: I f / ( x ) is an a.s. minimal on the interval x I ~X~'~Z2, t h e n it follows (with a few modifications in the proof) t h a t the one-sided derivatives in question exist at x 1 a n d x 2.

L e m m a 8: I / / ( x ) is an a.s. m i n i m a l on an open interval containing x o and/'(xo) = 0 , t h e n / ' ( x ) is continuous at x o.

Proo]: L e m m a 6 gives

l i m M ( x o - l , x o § O)

and, since / is an a.s. minimal, we get

lira H I / ; x o - 1 , x o + 1 ) = F(xo '/(Xo), O) n--+oo \ n n /

f r o m which t h e assertion follows.

Remark: This result is obviously true also for an e n d : p o i n t of an interval.

Theorem 8: To our previous conditions on F ( x , y , z ) we add the /ollowing: Fx, Fy and F z exist and are continuous/or all x under consideration and all y, z.

Suppose now t h a t / ( x ) is an a.s. m i n i m a l on an interval which contains x o in its in- terior, and suppose/'(xo) ~:0.

Then

1) /(x) E C 2 on an open interval I containing x o 2) F(x, /(x), /'(x)) =constant on I.

( H e n c e dF(x'/(x)'/'(x))-Odx on I . )

Proo]: Our m e t h o d of proof will be the following: W e c o n s t r u c t two solutions of the differential e q u a t i o n F ( x , y , y ' ) = c o n s t a n t , the first of which is equal to /(x) at x o a n d at some x' > x 0 a n d the second is equal t o / ( x ) at x o a n d at some x" < x 0. Then,

(16)

r AnOr~SSON, Minimization problems

using T h e o r e m 6, we prove t h a t / ( x ) a n d these two solutions are identical. We shall confine t h e discussion to the case /'(Xo)>0, since the other case is analogous.

L e t us introduce the n o t a t i o n s Y0 =/(Xo), zo =/'(xo), Mo = F(xo, Yo, %) a n d

~F(x,y,z,M) ~ F(x,y,z) M. T h e n q~(xo,Yo, zo, Mo) = 0 a n d W'~(xo,Yo, Zo, Mo)=F~(xo, Yo, Zo)>O.

Hence the equation 1F(x, y, z, M ) = 0 can be used to define z as a function z-OP(x,y,M) on the set R in x yM-space, defined b y the inequalities Ix x 0 ~<5,

l y - y o l <~5 a n d I M - M o I ~ < 5 , for some 5 > 0 .

W e m a y assume t h a t we have, for .(x,y,M)ER a n d for some 51 > 0 , 0 < % - 5 1 <~(P(x,y,M) <~z o +51.

W e shall also assume t h a t /(x) is an a.s. minimal on [X-Xol <5. The function (I)(x, y, M) is c o n t i n u o u s l y differentiable on R, a n d we have

H e n c e

~x F~' By Fz a n d ~M - F~"

~x ~ 1 a n d ~<C 2 on R.

L e t us consider the differential equation y' =dP(x,y,M) together with t h e initial value y(xo)-Yo- Here the p a r a m e t e r M is a s s u m e d to satisfy I M - M o l ~ .

I t follows f r o m P i c a r d ' s t h e o r e m t h a t there exists a unique solution for I x - x 0 ] ~ 5~, a n d 52 is independent of M. L e t us denote the solution b y y(x, M). I t is also true t h a t for every Xl, such t h a t Ix1 x0] <5~, the solution y(Xl,M ) depends c o n t i n u o u s l y on M. This is p r o v e d b y a s t a n d a r d a r g u m e n t . (Cf. [2], pp. 46, 65, 70.) If ] x - x 0 l ~ 3 ~ 5~, then, clearly, ]y(x,M) Y0] ~K3, where K=zo+51. If f l > 0 is small enough, t h e n there is a 7 > 0 (but 3<52) such t h a t the inequalities I x - x 0 1 < 7 , lY-Y0] ~<KT, i m p l y t h a t

I CP(x,y, Mo+5) ~Zo+t~

a n d [ (I)(x~y,M o - 5 ) <~z o-ft.

(For d) is continuous a n d ~ / ~ M > 0 on R.) This gives the inequalities y(x, M o + 8) ~ Yo + (% +~) (x - xo)

a n d y(x, M o - 5 ) ~ Yo + ( % - fl) (x -xo),

valid for x 0 ~ x ~< x o + 3.

Fix n u m b e r s fl a n d 3 h a v i n g the above properties and, in addition, satisfying the condition

Yo + (Zo fi) 3 </(x o + 3) < Yo + (% + fi) 3.

T h e n we have

y(x o +'v, M o - (~) </(x o + 7) < y(x o + % Mo + (~).

Since y(x o + T, M) depends c o n t i n u o u s l y on M, there is a value M* such t h a t y(x o + T,M*) = / ( x 0 +3).

(17)

A R K I V FOR MATEMATIK. B d 6 n r 2 B u t / ( x ) is a n a.s. m i n i m a l a n d n o w it follows f r o m T h e o r e m 6 t h a t / ( x ) = y ( x , M * ) for Xo <~X<~Xo+T.

I n a similar w a y one c a n f i n d n u m b e r s T' a n d M** a n d p r o v e t h a t / ( x ) = y ( x , M * * ) for x o - T ' ~<x ~ x o.

H e n c e /'(Xo) = r Y0, Mo) = (I)(x0, Y0, M*) = O(x 0, Yo, M**),

which gives us M o = M* = M**. C o n s e q u e n t l y / ' ( x ) = 9 (x,/(x), Mo) for x o - 3' ~< x ~< x o + 3.

This m e a n s t h a t F ( x , / ( x ) , ] ' ( x ) ) = M o for t h e same v a l u e s of x, a n d t h e rest of t h e proof is obvious.

Remark: As is easily seen, t h e t h e o r e m c o n t i n u e s to hold ( b u t w i t h o b v i o u s modi- fications) i n t h e case w h e n x 0 is a n e n d - p o i n t of a n i n t e r v a l , w h e r e / ( x ) is a n a.s.

m i n i m a l .

T h e o r e m 9: Let F ( x , y , z ) satis/y the same conditions as in the previous theorem. I / /(x) is an a.s. m i n i m a l on the interval I , then:

1) /(x) eC

l on I

2) the di//erential equation

d F ( x , / ( x ) , / ' ( x ) ) F z ( x , / ( x ) , / ' ( x ) ) = 0 dx

is satis/ied on I in the/ollowing sense: The second/actor is well-de/ined on I and i/ it is di//erent /rom zero at xo, then the/irst/actor exists and is zero in a neighbourhood o/ x o.

Proo/: T h e t h e o r e m is a consequence of T h e o r e m 7, L e m m a 8 a n d T h e o r e m 8.

Remark: As is s h o w n b y E x a m p l e 6 i n section 5, t h e d e r i v a t i v e s /"(x) a n d d F ( x , / ( x ) , / ' ( x ) ) / d x n e e d n o t exist a t p o i n t s where ] ' ( x ) = 0 .

Corollary: Under the present conditions on F ( x , y , z ) , suppose t h a t / ( x ) is a unique m i n i m i z i n g / u n c t i o n on x 1 <~ x <~ x 2. Then

/ ( x ) E C 1 on [x D x2] and F(x, /(x), /'(x)) =constant on [x 1, x2].

Proo/: O b v i o u s l y , / ( x ) is a n a.s. m i n i m a l o n [Xl, x2]. Hence, b y t h e t h e o r e m , / ( x ) E C 1.

I f it were t r u e t h a t F(xo,/(x0) ,/'(xo) ) < H ( / ) for some x 0, t h e n we could alter /(x) slightly i n a n e i g h b o u r h o o d of x 0 w i t h o u t increasing t h e v a l u e of H(/). B u t this con- t r a d i c t s t h e u n i q u e n e s s , a n d hence we h a v e F(x, /(x), / ' @ ) ) = c o n s t a n t . (Compare T h e o r e m 1 a n d T h e o r e m 6.)

I n t h e t h e o r e m s 5 a n d 6, t h e c o n d i t i o n t h a t / ( x ) is m o n o t o n i c p l a y s a n i m p o r t a n t role. If we impose a s u i t a b l e e x t r a c o n d i t i o n o n F ( x , y , z ) , t h e n e v e r y a.s. m i n i m a l m u s t be m o n o t o n i c :

T h e o r e m 10: Suppose that F(x, y, z) satis/ies all the conditions in Theorem 8 together with the extra condition that ~ F / ~ x does not change s i g n / o r x E I and any y,z. I / n o w /(x) is an a.s. m i n i m a l on the interval I , t h e n / ( x ) is monotonic on I. ( B u t / ( x ) need not be strictly monotonic; compare E x a m p l e 3 in section 5.)

Proo/: According to T h e o r e m 9 we h a v e

/(x) ECI(I).

Assume, for example, t h a t

(18)

r AROr~SSO~,

Minimization problems

t h e r e e x i s t x 1 a n d x 2 on I such t h a t / ' ( X l ) > 0 a n d / ' ( x 2 ) < 0 . A s s u m e also

Xl<X 2.

O b v i o u s l y , t h e r e e x i s t x a a n d x 4 such t h a t x 1 ~< x 3 < x 4 ~< x2,/(x3) = / ( x 4 ) , / ' ( x 3 ) > 0 a n d

/'(x4)

< 0 . Consider t h e m i n i m i z a t i o n p r o b l e m o n x s ~<x ~<x 4. I f

g(x) .~/(xs),

t h e n

g(x)

is a d m i s s i b l e a n d , since F x does n o t c h a n g e sign, we h a v e

H(g)

= m a x (F(xs,/(x3), 0),

F(x 4,/(x4),

0)). A s s u m e

H(g) = F(xs,/(Xs)

, 0). B u t since

]'(x3)

> 0 we h a v e

H(/) > H(g)

w h i c h is i m p o s s i b l e , s i n c e / ( x ) is a n a.s. m i n i m a l . H e n c e / ' ( x ) does n o t c h a n g e sign, w h i c h c o m p l e t e s t h e proof.

5. E x a m p l e s

I n t h i s section, we w a n t t o s h o w a few a p p l i c a t i o n s of s o m e of t h e t h e o r e m s a l r e a d y given. W e also m o t i v a t e b y m e a n s of e x a m p l e s t h e i n t r o d u c t i o n of c o n d i t i o n 3 a n d t h e f o r m u l a t i o n of T h e o r e m 9.

Example 1A:

L e t us use T h e o r e m 4 to solve t h e m i n i m i z a t i o n p r o b l e m if

F ( y , y ) - y , _ 2 + ~ , ~ x y , a n d 1

W e h a v e

~PM(y)=l/M----y 2,

a n d

f l o ' V ' d t

s = VM - t 2

is w e l l - d e f i n e d for M / > 89 F o r such v a l u e s of M , we h a v e s = a r c s i n ( 1 / l / ~ ) . To f i n d M0, we m u s t d e t e r m i n e t h e s m a l l e s t M>~ 89 such t h a t

1 ~ g a r c s i n ~ - ~ ~ .

This gives us M . = I . Since s t h e r e is a u n i q u e m i n i m i z i n g f u n c t i o n . I n o r d e r t o f i n d it, we use T h e o r e m 3 a n d f o r m

g~(y) = ~ = a r c s i n y.

Since X l = 0 , t h e m i n i m i z i n g f u n c t i o n is t h e i n v e r s e of

rp(y),

n a m e l y

/o(x)=sin

x.

Example 1 B:

T h i s will i l l u s t r a t e t h e ease in T h e o r e m 4 w h e r e t h e r e is no

unique

m i n i m i z i n g f u n c t i o n .

Choose

F(y,

y')

= y ,4 _ 16y2,

X l = - 2 , y x = - l , x 2 = 2 a n d y 2 = l . W r i t e

y'4--16y2

= M w h i c h gives

4

= Vi y 2 + M . F o r t h e e x i s t e n c e of

s 4

dt

9 V1-6 7 M i t is c l e a r l y n e c e s s a r y a n d sufficient t h a t M~> 0.

(19)

ARKIV FOR MATEMATIK, B d 6 n r 2

W e n e e d n o t e v a l u a t e t h e i n t e g r a l

F~(M),

since

(1 dt

s = J - 1 2 ~ t ] - < x ~ - xl.

W e see t h a t M 0 = 0 a n d t h a t t h e r e is no u n i q u e m i n i m i z i n g f u n c t i o n . L e t u s d e t e r m i n e a m i n i m i z i n g f u n c t i o n ! F o r m t h e f u n c t i o n

= ( Y dt

g(Y) J

o 2v l

{Compare T h e o r e m 3.) W e g e t

for - - l ~ y ~ < l .

{1/y for y ~> 0,

g(Y)=

- V ~ - I for y~<O.

T h e i n v e r s e f u n c t i o n is

](x)

= x Ix]. I f we d e f i n e / ( x ) as + 1 for x > 1 a n d - 1 for x < - 1, t h e n we g e t a m i n i m i z i n g f u n c t i o n . T h e f u n c t i o n

h(x)= 88 Ix[

(for - 2 ~<x ~< 2) is also a m i n i m i z i n g f u n c t i o n , b u t in c o n t r a s t t o t h e f o r m e r one, i t is c o n t i n u o u s l y dif- f e r e n t i a b l e .

W e h a v e M o = m a x y , < ~ < v ~

F(y,O)

in a c c o r d a n c e w i t h T h e o r e m 4.

Example 2:

L e t us use t h e rules g i v e n in s e c t i o n 2 B t o d e t e r m i n e t h e a t t a i n a b l e cone if F J ( y , y ) = y _ y4, Xo = 0, Yo = 1 a n d M = 0. 1~ t 2

W e h a v e O0(y ) =y2 a n d hence

q(Y) = x ~ J ~t/~,~ - .'~t t 2 1 - Y-"

S i n c e l i m ~ _ ~ ~(y) = 1 we see t h a t t h e p r e s e n t case is D 2 a n d t h a t X = 1. T h e i n v e r s e of x =~0(y) = 1 -

1/y

is y = 1/(1 - x ) . Therefore,

1 for 0 ~ x < l ,

h(x) = 1 - x

+ ~ f o r x >/1.

I n o r d e r t o d e t e r m i n e g(x), we f o r m t h e f u n c t i o n

~ ( Y ) = X ~ -~F~(t) j~t2 y 1.

Clearly, t h i s c o r r e s p o n d s t o t h e case B. T h e i n v e r s e of x =us =

1/y

- 1 is y = 1/(1 + x ) . H e n c e

g(x)

= 1/(1 + x ) for all x ~>0.

F ' = y~ + y'2

Example 3:

P u t

(y,y)

a n d define t h e f u n c t i o n / o ( x ) as

(20)

G. ARO~SSO~, Minimization problems

I

1

/o(X) = ~ s i n x

2Z

for x ~ 2 ' 7g< x for --

_<~_

" ~ 2 ~ 2~

- 1 for x < - - 2"

C l e a r l y , / o ( x ) E C 1 and/o(X) is m o n o t o n i c o n ~ < x < ~ . F u r t h e r , F(/o(X), / 0 ( x ) ) = l for all x. Now it follows from T h e o r e m 5 that/o(X) is a n a.s. m i n i m a l o n - c~ < x < c~.

Observe t h a t [o'(x) does n o t exist a t x = + ~ / 2 . Compare E x a m p l e 5.

Example 4: This e x a m p l e shows t h a t t h e c o n d i t i o n 3 c a n n o t be o m i t t e d i n T h e o r e m 7. I t will also give a n idea of t h e case where F is i n d e p e n d e n t of y. L e t

F(x, y, Y') = x~ + y,4 y,4 + 1"

T h e c o n d i t i o n s 1 a n d 2 are satisfied, b u t n o t c o n d i t i o n 3.

P u t F(x, y, y') = 1.

4

T h i s gives y, = + r 1 - x ~

-- X 2

F o r m t h e p r i m i t i v e f u n c t i o n

4

VItl

I t is easy to see t h a t [(x) is a u n i q u e m i n i m i z i n g f u n c t i o n b e t w e e n ( - 1 , / ( - 1 ) ) a n d (1,/(1)). H e n c e , / ( x ) is a n a.s. m i n i m a l . B u t ['(0) is n o t finite.

Example 8: This is a c o n t i n u a t i o n of E x a m p l e 3. W e n o w w a n t to d e t e r m i n e all a.s. m i n i m a l s for F(y,y')=g2 +y,2.

A s s u m e t h a t /(x) is a n a.s. m i n i m a l o n a n o p e n i n t e r v a l I . I t follows from t h e t h e o r e m s 9 a n d 10 t h a t ](x)ECI(I) a n d t h a t / ( x ) is m o n o t o n i c .

Clearly / ( x ) - - c o n s t a n t is possible. B u t a s s u m e n o w t h a t we h a v e ['(xl)=t=0 for some x 1 E I .

L e t 11 be t h e largest open i n t e r v a l c o n t a i n i n g x 1 where ['(x)=t=0. T h e n [(x)E Ce(I1) a n d [(x) 2 + ['(x) ~ = c o n s t a n t o n 11. D i f f e r e n t i a t i o n gives /"(x) +/(x) = 0. H e n c e there exist A a n d B such t h a t / ( x ) = A sin (x + B) o n 11. S i n c e / ( x ) is m o n o t o n i c , i t follows t h a t 11 is b o u n d e d , s a y I i = ( ~ , f l ) . N o w we assert t h a t ['(x) = 0 o n I - I 1 (if it is n o t e m p t y ) . If this were n o t so, t h e n we would h a v e a different open i n t e r v a l 12 = (y,d) w i t h t h e same properties as 11. L e t us assume t h a t fi ~<~, a n d t h a t / ' ( x ) > 0 o n 11 U 12.

W e h a v e ]'(fl)=['(),)-0. Since [(x) is a s i n e - f u n c t i o n o n I1, it follows t h a t / ( f l ) > 0 . F r o m t h e m o n o t o n i e i t y we conclude t h a t /(y)>~[(~). H e n c e / ( x ) = C sin ( x + D ) h a s t h e properties [()p) > 0 , ['(~,) = 0 a n d ]'(x) > 0 for y < x < d . B u t this is clearly impossible.

C o n s e q u e n t l y / ' ( x ) = 0 o n I - 1 1 . This leads to t h e following result: T h e r e exist n u m -

(21)

ARKIV FOR MATEMATIK. B d 6 n r 2 bets p a n d q such t h a t / ( x )

=p/o(x § q)

for all

x E I,

where/o(X) is t h e f u n c t i o n i n t r o - d u c e d i n E x a m p l e 3.

H e n c e we h a v e f o u n d t h a t

the class o/a.s, minimals /or F(y,y') =y2 +y,2 is the class o//unctions o/the/orm p/o(X § q) where p and q are arbitrary real numbers, and constant /unctions

(which c a n n o t be w r i t t e n as

p/o(x + q)

if I is t h e e n t i r e real axis).

Example 6:

This e x a m p l e shows t h a t t h e d e r i v a t i v e s

dF(x,/(x),/'(x))/dx

a n d / " ( x ) i n T h e o r e m 9 n e e d n o t exist for all x.

Choose

F ( x , y , y ' ) = y , 2 _ x

a n d consider t h e f u n c t i o n

0 for x~<0,

](x)= w ~j2

for x>~0.

T h e n

F(x,/(x),/'(x)) = I [x[

for x ~<0,

[

0 for x>~0.

W e assert t h a t / ( x ) is a n a.s. m i n i m a l o n - ~ < x < ~ . To p r o v e t h a t , consider t h e m i n i m i z a t i o n p r o b l e m o n x I ~< x ~< x 2. I f Xl ~> 0 t h e n i t follows from T h e o r e m 5 t h a t

/(x)

is a m i n i m i z i n g f u n c t i o n .

If x 1 < 0, t h e n we h a v e

H(/)= Ix1/

a n d since e v e r y admissible f u n c t i o n m u s t pass t h r o u g h t h e p o i n t (Xl,0), it follows t h a t inf~

H(g)>~F(Xl,0,O ) = I x~l.

H e n c e

](x)

is a n a.s. m i n i m a l . B u t t h e d e r i v a t i v e s

dF(...)/dx

a n d / " ( x ) do n o t exist a t

x=O.

Therefore, i n T h e o r e m 9, we c a n

not

assert t h a t t h e differentiaI e q u a t i o n

dF(...)/dx. F~(...)=0

is satisfied in t h e classical sense.

R E F E R E N C E S

1. CA~TER, D. S., A m i n i m u m - m a x i m u m problem for differential expressions. Canadian J o u r n a l of Mathematic s 9, 132-140 (1957).

9. PETROVSKI, I, G., Vorlesungen tiber die Theorie der gewhhnlichen Differentialgleichungen.

Teubner, Leipzig 1954.

I n a c o m i n g p a p e r we shall discuss some q u e s t i o n s t h a t h a v e b e e n left o p e n here.

Tryckt den 21 april 1965

Uppsala 1965. Almqvist & ~Viksells Boktryckeri AB

Références

Documents relatifs

The proofs of these more general theorems are considerably more com- plicated t h a n those of the theorems announced above which concern the behavior of our

Comparez les classi- fications des corps biquadratiques que nous avons donndes dans un travail antdrieur, voir Nagell [6], p... Ainsi il n'existe aucun sous-corps

We have the following bilateral Tauberian and Abelian theorem.. Then the [ollowing conditions are

Weighted mean square approximation in plane regions, and generators of an algebra of analytic functions.. By LARs

dimension two is obtained by using ideals similar to form ideals but generated b y power products of the variables. Serre defines fiat couples in homological

Almqvist &amp; Wiksens Boktryckeri

NAGELL, T., On the representations of integers as the sum of two integral squares in algebraic, mainly quadratic fields.. Nova Acta

The present table was computed on SMIL, the electronie eomputer of Lund University.. Two different methods were used throughout,