• Aucun résultat trouvé

Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb Of Collisions at with the ATLAS experiment

N/A
N/A
Protected

Academic year: 2022

Partager "Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb Of Collisions at with the ATLAS experiment"

Copied!
22
0
0

Texte intégral

(1)

Article

Reference

Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb Of Collisions at with the ATLAS

experiment

ATLAS Collaboration

ADORNI BRACCESI CHIASSI, Sofia (Collab.), et al .

Abstract

A search for flavour-changing neutral current (FCNC) events via the coupling of a top quark, a photon, and an up or charm quark is presented using 81 fb$^{−1}$ of proton–proton collision data taken at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC. Events with a photon, an electron or muon, a b-tagged jet, and missing transverse momentum are selected. A neural network based on kinematic variables differentiates between events from signal and background processes. The data are consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effective field theory.

These are also interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tuγ coupling of 36 fb (78 fb) and on the branching ratio for t→γu of 2.8×10−5 (6.1×10−5). In addition, they are interpreted as 95% CL upper limits on the cross section for FCNC tγ production via a left-handed (right-handed) tcγ coupling of 40 fb (33 fb) and on the branching ratio for t→γc of 22×10−5 (18×10−5).

ATLAS Collaboration, ADORNI BRACCESI CHIASSI, Sofia (Collab.), et al . Search for

flavour-changing neutral currents in processes with one top quark and a photon using 81 fb Of Collisions at with the ATLAS experiment. Physics Letters. B , 2019, vol. 800, p. 135082

DOI : 10.1016/j.physletb.2019.135082

Available at:

http://archive-ouverte.unige.ch/unige:128816

Disclaimer: layout of this document may differ from the published version.

1 / 1

(2)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for flavour-changing neutral currents in processes with one top quark and a photon using 81 fb

1

of pp collisions at √

s = 13 TeV with the ATLAS experiment

.TheATLASCollaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received22August2019

Receivedinrevisedform16October2019 Accepted29October2019

Availableonline13November2019 Editor:M.Doser

Asearchforflavour-changingneutralcurrent(FCNC)eventsviathecouplingofatopquark,aphoton,and anuporcharmquarkispresentedusing81 fb1ofproton–protoncollisiondata takenatacentre-of- massenergyof13 TeV withtheATLASdetectorattheLHC.Eventswithaphoton,anelectronormuon, ab-taggedjet,and missing transversemomentumare selected.Aneuralnetwork basedonkinematic variables differentiatesbetweeneventsfromsignal andbackground processes.The dataare consistent with the background-only hypothesis, and limits are set on the strength of the tqγ coupling in an effectivefieldtheory.Theseare alsointerpretedas 95%CLupperlimits onthecrosssectionforFCNC tγ productionviaaleft-handed(right-handed)tuγ couplingof36 fb(78 fb)andonthebranchingratio fortγuof2.8×105(6.1×105).Inaddition,theyareinterpretedas95%CLupperlimitsonthe crosssectionforFCNCtγ productionviaaleft-handed(right-handed)tcγ couplingof40 fb(33 fb)and onthebranchingratiofortγcof22×105(18×105).

©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

Flavour-changingneutralcurrents(FCNCs)areforbiddenattree levelintheStandardModel(SM)andstronglysuppressedathigher ordersvia the GIM mechanism [1].Several extensionsto the SM predict processes involving FCNCs. In particular, some of these modelspredictthebranchingratiosoftop-quarkdecaysvia FCNC tobesignificantlylarger [2] thanthosepredictedbytheSM,which areoftheorder of1014 [2]. Examplesare R-parity-violatingsu- persymmetricmodels [3] andmodelswithtwoHiggsdoublets [4].

SuchmodelswouldallowtheproductionoftopquarksviaFCNCs atameasurablerate.

ThisLetterpresentsasearchforFCNCsinprocesseswithatop quark(t)andaphoton(γ)basedondatacollectedwiththeATLAS experimentat

s =13 TeV. Thisanalysisismostsensitive tothe productionofasingletopquarkplusaphoton,butalsoconsiders thedecayofapair-producedtopquarkintoanuporcharmquark (q)plusaphoton.Tree-levelFeynmandiagramsfortheseprocesses are shownin Fig. 1, where inboth cases,exactly one top quark decays via the SM-favoured t W b coupling. Comparedto the SM productionofatopquarkandaphoton,theFCNCprocessesresult inhigherphotontransversemomentaonaverage.

E-mailaddress:atlas.publications@cern.ch.

FCNC contributionsto the decaymode (tqγ) and thepro- duction mode (qtγ) can be expressed in terms of effective coupling parameters but also in terms of branching ratios and cross sections [5,6]. In the former case and following the nota- tion in Ref. [7], the corresponding operators are O(uBi j) and O(uWi j), where i=j areindices forthequark generation.Ingeneral, left- handed (LH) andright-handed (RH) couplings could exist, which result in different kinematic properties of the top-quark decay products, such asthe transverse momentum of the charged lep- toninsemileptonictop-quarkdecays.Themoststringentlimitsto datearelimitsonbranchingratiosofB(tuγ)<1.3·104 and B(tcγ)<1.7·103 set by the CMS Collaboration, assuming equalleft- andright-handedcouplings [8].

2. ATLASdetector

The ATLAS experiment [9] atthe LHCis a multi-purposepar- ticledetector witha forward-backwardsymmetric cylindricalge- ometry anda near4π coverage in solidangle.1 It consistsofan inner tracking detector (ID) surrounded by a thin superconduct-

1 ATLASuses aright-handedcoordinatesystemwith itsoriginat thenominal interactionpoint(IP)inthecentreofthedetectorandthez-axisalongthebeam pipe.Thex-axispointsfromtheIPtothecentreoftheLHCring,andthe y-axis pointsupwards.Cylindricalcoordinates(r,φ)areusedinthetransverseplane,φ beingtheazimuthalanglearoundthez-axis.Thepseudorapidityisdefinedinterms https://doi.org/10.1016/j.physletb.2019.135082

0370-2693/©2019TheAuthor(s).PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(3)

Fig. 1.Tree-level Feynman diagrams for top-quark production (left) and decay (right) via FCNCs. Thetqγvertex, which is not present in the SM, is highlighted.

ingsolenoidprovidinga 2 Taxialmagneticfield, electromagnetic andhadron calorimeters,and amuon spectrometer (MS). The ID covers the pseudorapidity range |η|<2.5. It consists of silicon pixel,siliconmicrostrip,andtransitionradiationtrackingdetectors.

Lead/liquid-argon(LAr)samplingcalorimetersprovideelectromag- netic(EM) energymeasurementswithhighgranularity. Ahadron (steel/scintillator-tile)calorimeter coversthe central pseudorapid- ityrange(|η|<1.7). Theend-capandforwardregions areinstru- mented with LAr calorimeters for both EM and hadronic energy measurementsupto|η|=4.9.TheMSsurroundsthecalorimeters andisbasedonthreelargeair-coretoroidalsuperconductingmag- netswitheightcoilseach.Thefield integralofthetoroidsranges between2.0and6.0 T m acrossmostofthedetector.The MS in- cludesasystemofprecisiontrackingchambersandfastdetectors fortriggering.Atwo-leveltrigger systemis usedtoselectevents.

Thefirst-leveltriggerisimplementedinhardwareandusesasub- setof thedetector informationto reduce the acceptedrateto at mostnearly 100 kHz.Thisisfollowedbyasoftware-basedtrigger thatreducestheacceptedeventrateto1 kHzonaveragedepend- ingonthedata-takingconditions.

3. Analysisstrategy

Thesearchstrategy selectseventswithafinalstate containing onepromptphotonandthedecayproductsofatopquark,namely anelectronoramuon,ab-taggedjet,andmissingtransversemo- mentum,andestimatescontributionsfromFCNCprocessesinthis background-dominated dataset.Asignalregion (SR)isdefinedby looserequirements on thekinematic propertiesof thefinal-state objects,giving rise to alarge acceptance forsignal events inthe production mode. With this selection, the search is most sensi- tivetoFCNCsinthismode,butthedecaymodeisincludedinthe analysis. The mainbackground contributionstems fromelectrons misidentified as photons, primarily in top-quark–anti-top-quark events (tt¯). These contributions and contributions from hadrons misidentified as photons (both labelled “fakes” in the following) aremodelledbyMonteCarlo(MC)simulationsandscaledtodata- drivenestimates.Photons producedinassociationwitha leptoni- callydecayingW orZ bosonareestimatedincontrolregions(CRs) whichdonotoverlapwiththeSRbutarekinematicallysimilarto it.Thepredictionsforothersmallprompt-photonbackgroundpro- cessesare takenfromMC simulationandincludet¯tγ production, single-topquarkproductioninassociation withaphoton andthe production of two massive gauge bosons with a photon. As the lattertwoprocessesresultinasmallcontributiontothetotalback- groundprediction, it issufficient that in theseprocesses prompt photonsaregenerated bythe parton-showerprogram.Signal and backgroundeventsaredistinguishedusinganeuralnetwork(NN).

ofthepolarangleθasη= −ln tan(θ/2).Angulardistanceismeasuredinunitsof R

(η)2+(φ)2.

Finally,thesignal contributionisestimatedinaprofile likelihood fittotheNNoutputdistributionsintheSRandtheCRs,inwhich each source of systematicuncertainty is modelled as a nuisance parameter.

4. Dataandsimulation

The proton–proton(pp) collision dataanalysed were recorded with the ATLAS detector from2015 to 2017 ata centre-of-mass energy of

s=13 TeV. The average number of interactions per bunchcrossingwas13.4,25.1,and37.8in2015,2016and2017,re- spectively.Events wereselectedbysingle-leptontriggers [10] and required to haveat least one reconstructed primary vertexwith at least three assignedtracks that havea transverse momentum greaterthan400 MeV.Aftertheapplicationofdata-qualityrequire- ments,thedatasamplecorrespondstoanintegratedluminosityof 81 fb1.ItisobtainedusingtheLUCID-2detector [11] forthepri- maryluminositymeasurements.

The data were modelled by MC simulations ofthe signal and backgroundprocesses.Aftereventgeneration,theresponseofthe ATLAS detectorwas simulatedusingGeant4 [12] with afull de- tectormodel [13] ormodelledbyafastsimulation [14].Toaccount foradditionalppcollisions(pile-up),inelasticppinteractionswere superimposedonthehard-scatteringeventsandweightedaccord- ing to theobserved pile-updistribution.The pile-upevents were simulated usingPythia8.186 [15],withthe A3 [16] setof tuned parameters(A3tune).

The simulated signal samples were generated using Mad- Graph5_aMC@NLO 2.4.3 [17] with the TopFCNC model [6,18] at next-to-leading order (NLO) in QCD and the NNPDF3.0NLO [19]

set ofpartondistribution functions(PDFs).The partonshowering was done with Pythia 8.212 with the A14 tune set [20]. Simu- latedsamplesofSMtt¯andsingle-top-quarkeventsweregenerated using Powheg-Box [21–27] with the NNPDF3.0NLO PDF set. The parton showering, hadronisation, andthe underlying event were modelledusingPythia8.230.Thetop-quarkmassmtop wassetto 172.5 GeV inthesesamples,andthehdampparameterthatcontrols thetransversemomentumofthefirstgluonemittedwassetto1.5 timesmtop. Samplesoft¯tγ eventswere generatedas27 pro- cess atleading order usingMadGraph5_aMC@NLO 2.3.3and the NNPDF2.3LO PDF [28] set andwiththe followingfiducial photon criteria [29]: photon pT>15 GeV and |η|<5.0, charged-lepton pT>15 GeV and|η|<5.0,andR<0.2 betweenthephotonand any chargedfinal-stateparticle. The crosssections forSM t¯t and single-top-quarkproductionarescaled totheNNLO+NNLLpredic- tions [30–33].Theleading-ordercrosssectionfort¯tγ productionof 4.62 pb [29] isscaledtotheNLOpredictions [34] usingak-factor of1.24.TheNNLO+NNLLcrosssectionforSMt¯tproductionisalso used tonormalisethesignal inthe decaymode,usingthecorre- spondingFCNCbranchingratio.Thecrosssectionsforthesignalin the productionmode, however,are calculated atNLO with Mad- Graph5_aMC@NLO.

(4)

For the study of systematic uncertainties in the modelling of processes involving top quarks, simulated t¯t samples were produced with Powheg-Box + Herwig 7.0.4 [35,36] and Mad- Graph5_aMC@NLO 2.6.0plusPythia8.212.TheMMHT2014LO [37]

PDFsetisusedtogetherwiththeH7-UE-MMHT [36] tune.Anad- ditional tt¯ sample was produced with hdamp set to three times mtop andthe factorisation and renormalisation scales set to half their nominal values using the A14tune. For the t W process, a samplewasproducedwithanalternativeschemeforremovingthe overlapwitht¯t production [38]. Moreover, single-top-quark sam- ples were produced withPowheg-Box +Herwig 7.0.4 andMad- Graph5_aMC@NLO 2.6.2 plusPythia 8.212. The NNPDF2.3LO PDF setisusedaswellastheA14tune.

Processes with one or two heavy gauge bosons, in particu- larthe processes W+γ+jets and Z+γ+jets, were simulatedusing Sherpa2.2.1 and 2.2.2 [39] with the matrix elements calculated usingComix [40] and OpenLoops [41]. All matrixelements were mergedwith theSherpa partonshowering [42] accordingto the ME+PS@NLO [43] prescription. The NNPDF3.0NNLO PDF set was used.

An overlap removal scheme was applied to remove double- countingofeventsstemmingfromphotonradiationinsamplesin whichaphotonwasnot explicitlyrequiredinthefinalstate [29].

Thisappliestotheprocessestt¯,W+jetsand Z+jetsinordertore- movetheoverlapwiththett¯γ,W+γ+jetsandZ+γ+jetssamples.

Mismodellingofthephoton pT distributionis observedinthe W+γ+jetandZ+γ CRs,whicharedefinedinSection5.Thephoton pT spectrum in the W+γ+jets and Z+γ+jets processes was cor- rectedby adjustingthe MCpredictionto thedatainfive pT bins usingalinear functionthat onlychanges theshape ofthedistri- butionandnotitsnormalisation.Thiscorrectiontothephoton pT improvesthemodellingoftheNNoutputdistributionintheCRs.

As discussed in Sections 6 and 7, the contribution of events withelectrons andhadronsmisidentified asphotonsis corrected usingdata.Thecontributionfromprocesseswithhadronsmisiden- tifiedasleptonsisestimatedtobenegligible.

5. Objectandeventselection

Electronsare reconstructedfromclustersofenergydepositsin theelectromagneticcalorimetercellswithamatchedIDtrack [44].

Theyarerequiredtomeetthetightidentificationcriteria [44],and their tracksmust point to theprimary vertex. Theymust havea transversemomentum pT largerthan27 GeV and|ηcluster|<2.47, excluding1.37<|ηcluster|<1.52,where|ηcluster|isthepseudora- pidityoftheelectron’senergycluster.Muonsarereconstructedby combining a track in the MS with a track in the ID [45]. They are required to meet the medium identification criteria [45] and must point to the primary vertex. They must have pT>27 GeV and |η|<2.5. Isolated electrons and muons are selected by re- quiring the amount of energy in nearby energy deposits in the calorimeters and the scalar sum of the transverse momenta of nearbytracksintheIDtobesmall.

Photons are reconstructed fromclustersof energydeposits in the electromagnetic calorimeter cells with no matched ID track (unconvertedphotons)orwithoneortwomatchedIDtracksthat arecompatiblewiththetracksfromanelectronorpositronfroma photonconversion(convertedphotons) [44].TheymusthavepT>

20 GeV and|ηcluster|<2.37,excluding1.37<|ηcluster|<1.52.They arerequiredtomeetthetight identificationcriteriafortheshape ofthe shower inthe electromagneticcalorimeter(shower shape) andfortheenergydepositedinthehadroniccalorimeter [44].Pho- tonsmustbeisolatedfromnearbyenergydepositsinthecalorime- terandnearbytracksintheID: thesumoftheenergydeposited (pT of the tracks) within R=0.4 (R=0.2) of the photon

direction is required to be smaller than 0.022×pT+2.45 GeV (0.065×pT), excluding thephoton energydeposition (tracks as- sociatedwiththephoton).

Jets are reconstructed fromtopological clusters [46,47] in the calorimeterswiththeanti-kt algorithm [48] usingFastJet [49] and aradiusparameterof0.4.Theirenergyiscalibrated [50],andthey mustfulfilpT>25 GeV and|η|<2.5.Jetswith pT<120 GeV and

|η|<2.4 are required to pass a requirement on the jet-vertex- tagger (JVT) [51] to suppress pile-upjets. Jetsare b-tagged with the MV2c10 algorithm [52], which uses a boosted decision tree withseveralb-taggingalgorithmsasinput.Theb-taggingefficiency forjetsthatoriginatefromthehadronisationofb-quarksis60%in simulatedt¯tevents.Theb-taggingrejection2 forjetsthatoriginate fromthehadronisation ofc-quarks(u-,d-, s-quarksorgluons)is 23(1200).

The magnitude ofthe missing transverse momentum EmissT is reconstructed fromthe vector sumof the pT of leptons,photons, andjets, aswellasIDtracksthatpointtotheprimaryvertexbut arenotassociatedwithareconstructedobject(softterm) [53].

Toavoiddouble-counting,objectsareremovedinthefollowing order: electrons sharing a trackwith a muon; jets within R= 0.2 ofan electron;electronswithin R=0.4 ofa jet;jetswithin R=0.4 of a muon ifthey haveat mosttwo associatedtracks;

muonswithin R=0.4 ofa jet; photonswithin R=0.4 ofan electronormuon;jetswithinR=0.4 ofaphoton.

Scalefactors(SFs)are usedtocorrecttheefficiencies insimu- lationinordertomatchtheefficienciesmeasured indataforthe electron [44] andmuon [45] trigger,reconstruction,identification, andisolationcriteria, aswell asforthephotonidentification [44]

and isolation requirements. SFs are also applied for the JVT re- quirementandfortheb-taggingefficienciesforjetsthatoriginate fromthehadronisationofb-quarks [54],c-quarks [52],andu-,d-, s-quarksorgluons [55].

The selected events have exactly one electron or muon, ex- actly one photon, exactly one b-tagged jet and no further jets, and EmissT >30 GeV.This selection definesthe SRwithsignal ef- ficiencies3 for the production mode of 3.03% (2.45%) for the LH (RH)tuγ couplingandof3.79%(3.14%)fortheLH(RH)tcγ cou- pling.These efficienciesare definedwithrespect tosignal events that include a leptonic decay of the W boson,i.e. a decay with anelectron,muonortaulepton.Theefficienciesforthecouplings thatinvolveac-quarkarelargerthanthosethatinvolveau-quark becauseofthedifferenceinthekinematicsthatarisesfromthedif- ferencebetweentheu- andc-quarkPDFs.Thedifferencebetween theefficienciesfortheLHandtheRHcouplingsisduetothekine- maticdistributionsoftheW boson’sdecayproducts,whichdiffer dependingonthehandednessofthetopquark.Theefficienciesfor thedecaymodeare0.45%and0.51%forthetuγ andthetcγ cou- pling, respectively, and are lower dueto the requirement ofnot morethanone jetinthefinal state,i.e.thisanalysisisoptimised forthe productionmode. The absolutestatisticaluncertainties in the efficiencies are0.03% orsmaller. Inthe SR, 9557data events are selected. The ratioof production-mode to decay-mode event yieldsis4.2(5.3)fortheLH(RH)tuγ couplinganditis0.86(0.68) fortheLH(RH)tcγ coupling,i.e.inthecaseoftuγ coupling,the dominantsignalprocessisindeedtheproductionmode.However, inthecaseofthetcγ coupling,thedecaymodealsoplaysanim- portant role, because the production mode is suppressed by the c-quarkPDF.

2 Therejectionisdefinedastheinverseoftheefficiency.

3 Here,thesignalefficiencyincludesthesignallossduetothelimitedacceptance ofthedetector.

Références

Documents relatifs

En moyenne, les bl´ es tendres apparaissent plus efficients dans les conditions du p´ erim` etre irrigu´ e par ´ epandage de crue d’Oum Laˆ achar ` a Guelmim que les bl´ es durs

The method presented in this paper is an attempt to combine phylogenetic and taxonomic data to estimate speciation and extinction rates, and thus can be used to analyse

6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States of America 7 Department of Physics, University of Arizona, Tucson, AZ, United States of

6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States of America 7 Department of Physics, University of Arizona, Tucson, AZ, United States of

6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States of America 7 Department of Physics, University of Arizona, Tucson, AZ, United States of

6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States of America 7 Department of Physics, University of Arizona, Tucson, AZ, United States of

6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States of America 7 Department of Physics, University of Arizona, Tucson, AZ, United States of

6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States of America 7 Department of Physics, University of Arizona, Tucson, AZ, United States of