• Aucun résultat trouvé

Search for Higgs boson decays into a pair of light bosons in the bb μμ

N/A
N/A
Protected

Academic year: 2022

Partager "Search for Higgs boson decays into a pair of light bosons in the bb μμ "

Copied!
21
0
0

Texte intégral

(1)

Contents lists available atScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Search for Higgs boson decays into a pair of light bosons in the bb μμ

final state in pp collision at √

s = 13 TeV with the ATLAS detector

.TheATLASCollaboration

a r t i c l e i n f o a b s t ra c t

Articlehistory:

Received3July2018

Receivedinrevisedform12October2018 Accepted19October2018

Availableonline21December2018 Editor:W.-D.Schlatter

AsearchfordecaysoftheHiggsbosonintoapairofnewspin-zeroparticles,Haa,wherethea-bosons decayintoab-quarkpairand amuon pair,ispresented.The searchuses36.1 fb1 ofproton–proton collision data at

s=13 TeV recorded by the ATLAS experiment atthe LHC in 2015and 2016. No significantdeviationfromtheStandardModelpredictionisobserved.Upperlimitsat95%confidencelevel areplacedonthebranchingratio(σH/σSM)×B(Haabbμμ),rangingfrom1.2×104to8.4×104 inthea-boson massrangeof20–60 GeV.Model-independentlimits are setonthe visibleproduction cross-sectiontimesthebranchingratiotothebbμμfinalstatefornewphysics,σvis(X)×B(Xbbμμ), rangingfrom0.1 fbto0.73 fbformμμbetween18and62 GeV.

©2018TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense (http://creativecommons.org/licenses/by/4.0/).FundedbySCOAP3.

1. Introduction

The discovery of the Standard Model (SM) Higgs boson [1,2]

hasopenedup newavenuestosearch forphysics beyondtheSM (BSM)withperspectivesto search for non-SMor “exotic”decays ofthe Higgsboson.Suchsearchescould provideuniqueaccessto hidden-sectorparticlesthataresingletsundertheSMgaugetrans- formations [3]. ExoticdecaysoftheHiggsboson arepredictedby manynew-physicsmodels [3,4],includingthosewithanextended Higgssector [5–9],darkmatter(DM)models [10–14],modelswith afirst-orderelectroweakphasetransition [15,16] andtheorieswith neutralnaturalness [17,18]. Thesemodelshavealsobeen usedto explainthe observationsofa γ-rayexcess fromthe galacticcen- tre (GC) by theFermi LargeArea Telescope [19,20]. For example, amodelforthe GC γ-rayexcess was proposed inwhich30 GeV DMparticles pair-annihilate dominantly through a CP-oddscalar mediator that subsequently decays into SM fermions [13]. If the mediatorissufficientlylighter thantheSMHiggsboson(H) then H decayintothemediatorpaircanbeobservedattheLHC.

ExistingmeasurementsconstraintheBSMor“exotic”branching ratio(B)ofthe125 GeV Higgsbosondecaystolessthanapproxi- mately34% at95% confidencelevel [21].Duetothenarrowwidth (4 MeV) ofthe Higgsboson, even asmall non-SMcouplingof O(102)canleadtoO(10%)branchingratiointoBSMstates.This potentiallylargeB(HBSM states)motivatesdirectsearchesfor exoticHdecays.

E-mailaddress:atlas.publications@cern.ch.

TheanalysispresentedinthisLetterperformsthesearchinthe bbμμ final state. The a-boson can be eithera scalar ora pseu- doscalarunderparitytransformations,sincethedecaymodecon- sideredinthissearchisnotsensitivetothedifferenceincoupling.

Assumingthatthea-bosonmixeswiththeSMHiggsbosonandin- heritsitsYukawacouplingstofermions,thelargestbranchingratio isexpectedtobetotheheaviestfermionsaccessiblebykinematics (2ma<mH), where ma and mH are the a-boson and Higgs bo- sonmasses.Forma10 GeV thismeansthea-bosonwoulddecay preferentially into bb.However, in models withenhanced lepton couplings such as the Type-III 2HDM [22], the aμμ branch- ing ratio can also be relatively large. Additionally, the sensitivity of a givenchannel doesnot depend only on the expectedsignal ratein a particular model, butalso on theefficiency fortrigger- ing andreconstructingeventsofinterest. Thepresenceofaclean dimuonresonanceprovidesadistinctivesignaturethatcanbeused for triggering and precision mass reconstruction, which helps to suppressbackground.

Searches forthe Higgsboson witha mass of125 GeV decay- ingintotwo spin-zeroparticles, Haa,havebeenperformedin various final states in ATLAS and CMS [23–29]. The CMS search with

s=8 TeV datainthebbμμfinalstateset95%CLlimitson (σH/σSM)×B(Haabbμμ)between2×104and8×104in thea-bosonmassrangeof25–62.5 GeV [25].InType-III2HDM+S scenariowithtanβ=2 [4],wheretanβ denotestheratioofthe vacuum expectation values of the two Higgs fields, these limits translateintoupperlimitson(σH/σSM)×B(Haa)rangingbe- tween13%and50%.Someofthemoststringentlimitsup todate forType-III2HDM+S withtanβ=2 come from theCMSsearch with

s=13 TeV data in the bbτ τ final state, setting the up- https://doi.org/10.1016/j.physletb.2018.10.073

0370-2693/©2018TheAuthor.PublishedbyElsevierB.V.ThisisanopenaccessarticleundertheCCBYlicense(http://creativecommons.org/licenses/by/4.0/).Fundedby SCOAP3.

(2)

perlimitson(σH/σSM)×B(Haa)between4%and26%inthe a-bosonmassrangeof15–60 GeV [28].

2. Dataandsimulation

The search presented inthis Letter is basedon the 36.1 fb1 datasetof proton–protoncollisions ata centre-of-mass energyof

s=13 TeV recorded by the ATLAS experimentat theLHC dur- ing2015and2016. TheATLASexperiment [30] is amultipurpose particle detector witha forward–backward symmetric cylindrical geometry anda near 4π coverage in solid angle.1 It consists of an inner tracking detector surrounded by a thin superconduct- ingsolenoidprovidinga 2 Taxialmagneticfield, electromagnetic andhadronic calorimeters, anda muon spectrometer. Events are collected withsingle-muontriggers requiringthe muon pT tobe above 24 or 26 GeV, depending on the data-taking period. The trigger efficiencyforthe signal events withthe muon pT onthe triggerplateauisabout 80%.

Simulatedevents are used to modelthe signal andSM back- grounds processes. Higgs boson production through the gluon–

gluon fusion (ggF) and vector-boson fusion (VBF) processes was modelled at next-to-leading order (NLO) using Powheg-Box v2 [31–33] interfacedwithPythia 8.186 [34] using theAZNLOsetof tunedparameters [35] forthesimulationofthebbμμdecayofthe Higgs boson,as well as forparton showering andhadronisation.

The ggF Higgs boson production rate is normalised to the total cross-sectionpredictedby anext-to-next-to-next-to-leading-order QCDcalculationwithNLOelectroweakcorrectionsapplied [36–40].

The VBF production rate is normalised to an approximate next- to-next-to-leading-order(NNLO)QCDcross-sectionwithNLOelec- troweakcorrectionsapplied [41–44].Fivemasspointsweresimu- latedintherangema=20–60 GeV instepsof10 GeV forbothggF andVBFproduction.

Sherpa2.2.1 [45] withthe NNPDF3.0[46] setofpartondistri- bution functions(PDF) was used forthe generationof Drell–Yan, W+jets anddiboson(W W,W Z,Z Z)backgrounds.Cross-sections were calculated at NNLO QCD accuracy for Z(∗)/γ+jets and W +jets production [47] andat NLO including LOcontributions withtwoadditional partonsforthedibosonprocesses [45,48,49].

Thett¯andsingle-top-quarksamplesweregeneratedwithPowheg- Box v2 [32] using the CT10 PDF set [50] interfaced with Pythia v6.428 [51] and the Perugia 2012 set of tuned parameters [52]

forthepartonshower.Themassofthetopquark(mt) wassetto 172.5 GeV.The parameterhdamp inPowheg,usedtoregulate the high-pTradiation,was settomt forimprovedagreementbetween dataandsimulationinthehighpTregion [53].Thecross-sectionof tt¯wascalculatedatNNLOinQCDincludingresummationofnext- to-next-to-leadinglogarithmic(NNLL)softgluonterms [54,55].The cross-section forsingle-top-quarkproductionwas calculated with theprescriptionsinRefs. [56,57].Theproductionoft¯tpairsinas- sociationwith W/Z bosons (denoted by tt V¯ ) was modelledwith samplesgeneratedatLOusingMadGraph5_aMC@NLOv2.2.2 [58]

andshoweredwithPythiav8.186.Thesamplesarenormalisedto NLOcross-sections [59,60].

Additional pp collisions generated with Pythia v8.186 were overlaid to model the effects of additional interactions in the sameandneighbouringbunchcrossings(pile-up)forallsimulated

1 TheATLASCollaborationusesaright-handedcoordinatesystemwithitsorigin atthenominalinteractionpoint(IP)inthecentreofthedetectorandthe z-axis alongthebeampipe.Thex-axispointsfromtheIPtothecentreoftheLHCring, andthey-axispointsupwards.Cylindricalcoordinates(r,φ)areusedinthetrans- verseplane,φbeingtheazimuthalanglearoundthebeampipe.Thepseudorapidity isdefinedintermsofthepolarangleθasη= −ln tan(θ/2).Angulardistanceis measuredinunitsofR

(η)2+(φ)2.

events.The pile-upsimulation usedthe A2setoftuned parame- ters [61] andtheMSTW2008LOPDFset [62].Allthesampleswere processed through the full ATLAS detector simulation [63] based onGEANT4[64] andprocessedwiththesamereconstructionalgo- rithmasusedfordata.

3. Selectioncriteria

Interaction vertices from proton–proton collisions are recon- structedfromatleasttwotrackswithtransversemomentum(pT) larger than 0.4 GeV, andare required to be consistent with the beamspot envelope.The primary vertex (PV) is identified as the onewiththelargest

p2T ofassociatedtracks [65].

Muoncandidatesarereconstructedusingtheinformationfrom the innerdetector andthemuon spectrometer [66].Theyare re- quiredtosatisfy“medium”identificationcriteria [66],bematched to the PV and have pT>7 GeV and |η|<2.7. Additionally, the muons must satisfy the following criteria: theprojected longitu- dinal impact parameter |z0sinθ| must be lessthan 0.5 mm and the ratio of the transverse impact parameter d0 to its estimated uncertainty σd0, |d0/σd0|, must be less than 3. Finally, the se- lected muons must fulfil requirements on the scalar sum of pT of additional inner detector tracks andon the sum of the ET of calorimeter topological clusters [67] ina cone of size R=0.2 around the muon to ensure they satisfy “tight” isolation crite- ria [66].Theserequirementsselectsignalmuonswithanidentifi- cationefficiencyof94%andisolationefficiencyrangingbetween

91%forma=20 GeV and95%forma=60 GeV.

Jets are reconstructed using the anti-kt algorithm [68] imple- mented inthe FastJet package [69] with a radiusparameter R= 0.4 appliedtotopologicalclustersofenergydepositsincalorime- tercells.Jetsfrompile-uparesuppressedwiththeuseoftracking information asdetailedinRef. [70].All selectedjetsare required to have pT>20 GeV, |η|<2.5 and must pass quality require- ments defined to minimise the impact of detector effects, beam backgroundsandcosmicrays.

Jetsconsistentwiththehadronisationofab-quark(b-jets)are identified using a multivariate discriminant [71,72]. This analysis usesthe77%b-jetidentificationefficiencyworkingpointforwhich thepurityoftheb-taggedsampleisapproximately95%,whilethe probability ofmisidentifying ajetinitiatedby acharmquarkasa b-jetisapproximately16%,asdeterminedfromasampleofsimu- latedt¯t events.

Inordertorejectnon-promptmuonsfromthedecayofhadrons within a jet, an overlap removal algorithm is applied. If a jet is found within R=0.4 of themuon candidate,the overlapisre- solved in the following way: if there are more than two tracks with pT>500 MeV associatedwiththejet then themuon isre- movedfromtheevent,otherwisethemuonisretainedandthejet isremoved.

Themissingtransversemomentum(EmissT )usedintheanalysis iscalculatedasthemagnitudeofthenegativevectorsum(pmiss

T )

ofthetransversemomentaofallselectedandcalibratedobjectsin the event andthe additional “soft” term that takes into account tracksnotassociatedwithanyofthetheseobjects [73].The“soft”

term is calculatedfrom inner detector tracksmatched to the PV andincludedtoachieveabetterEmissT resolution.

Eventsarerequiredtohaveexactlytwob-taggedjetswithpT>

20 GeV andexactly tworeconstructed muonsofopposite charge, withtheleadingmuonhavingpT>27 GeV tobeinthemaximum- efficiency regime of thetrigger andthe subleading muon having pT>7 GeV. The dimuon invariant mass (mμμ) isrequired to be between16 GeV and64 GeV.Theupperboundonmμμ isdefined by theassumptionthatthe125 GeV Higgsbosondecaysintotwo

(3)

Fig. 1.The(a)mμμ,(b)mbbbeforetheKLfit,(c)mbbμμbeforeand(d)mKLbbμμaftertheKLfitforeventsafterthepreselectionstage,butremovingtheupperboundonmμμ. Thet¯tcontributionismodelledwiththesimulatedsamplenormalisedtothetheoreticalcross-section.TheDrell–Yancontributionistakenfromdatatemplates(describedin thetext)andnormalisedtothetotalyieldpredictedbytheDrell–Yansimulation.ThesignaldistributionsforallfivesimulatedmaarealsoshownassumingtheSMHiggs bosoncross-section(includingggF,VBFandV H production)andB(Haabbμμ)=10%.Thebranchingratiointhisandallsubsequentfiguresischosensoastogive goodvisibilityontheplot.

on-shellparticlesofequalmasses,whilethelowerboundismoti- vatedbythekinematicsofthea-bosondecays.Forlowervaluesof ma,mostofthesignaljetsfallbelowthereconstructionthreshold andthe jetstend tooverlapgeometricallyinthedetectorso that thesensitivityoftheanalysistothe Haasignaldecreases.This setofselectioncriteriaisreferredtoasthe“preselection”.

Signal events are characterised by the invariant mass of the twob-jets(mbb)beingequal,withinthedetectorresolution,tothe dimuoninvariantmassandthefour-objectmass(mbbμμ)beingap- proximately125 GeV.Oneside ofthe Haadecay(aμμ)is measuredwithapproximatelytentimesbetterresolutionthanthe othersideofthedecay(abb),asshowninFigs.1(a)and1(b).

Akinematic-likelihood(KL)fit [74] exploitingthesymmetryof Haadecaysisperformedtotest thecompatibilityofan event withthe mbbmμμ hypothesis and improve the mbbμμ resolu- tioninsignal events.The KLfit findsthe energies oftheleading (Eˆb1)andsubleading(Eˆb2) b-jets thatmaximisethelikelihoodfor aneventwithmeasuredleadingandsubleadingb-jetenergies Eb1 and Eb2 andwithdimuon invariant massmμμ. Thelikelihood is definedasfollows,

L=W(Eˆb1,Eb1)·W(Eˆb2,Eb2)·FBW(mKLbb,mμμ),

where mKLbb is the dijet invariant mass computed from the b-jet four-momenta corresponding to Eˆb1 and Eˆb2, W is the transfer functionoftheb-jets,andFBWisaBreit–Wignerfunctioncentred

onmμμwithawidththatissmallcomparedtothembbresolution.

Thetransferfunction W(Eˆb1,Eb1)isadoubleGaussianprobability density function derived from simulated events as a function of jet pT and ηusingthedifferencebetweentrueandreconstructed energies.Thefitdeterminesamaximum-likelihoodvalueofL(de- notedby ln(Lmax)),whichquantifieshowwellaneventfitstothe constraints.Theb-jet momentadeterminedby thefitareused to recomputethefour-bodymassdenotedmbbKLμμ.AsseeninFig.1(d), theresolutionofthemKLbbμμ distributionforthesignalisimproved by up to a factor of two compared to the pre-fit mbbμμ shown inFig.1(c), whilethe backgroundshapewithin thembbμμ signal peak remains almost unchangedwiththe yields risingby 20%.

This allows the analysis to place tighter constraints on the dif- ference between the reconstructed invariant mass of the bbμμ

systemandmH,rejecting morebackground eventsandobtaining highersignalsignificance.

Twocriteriabased on the kinematiclikelihood fitare applied to selectsignal-like events andreject background eventsthat do not fit the mbb=mμμ constraint well: |mKLbbμμmH|<15 GeV andln(Lmax)>8.Finally,the EmissT <60 GeV requirementrejects a largeportion oftt¯ pairswhere bothtop quarksdecaysemilep- tonically,while retainingmostofthe signal events.Adding these threerequirementsafterthepreselection stagedefinesthesignal- enhanced region (SR). A search for a localised excess above the expectedbackgroundisperformedinmultiplemμμ binsoftheSR

Références

Documents relatifs

En moyenne, les bl´ es tendres apparaissent plus efficients dans les conditions du p´ erim` etre irrigu´ e par ´ epandage de crue d’Oum Laˆ achar ` a Guelmim que les bl´ es durs

The method presented in this paper is an attempt to combine phylogenetic and taxonomic data to estimate speciation and extinction rates, and thus can be used to analyse

6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States of America 7 Department of Physics, University of Arizona, Tucson, AZ, United States of

6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States of America 7 Department of Physics, University of Arizona, Tucson, AZ, United States of

6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States of America 7 Department of Physics, University of Arizona, Tucson, AZ, United States of

6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States of America 7 Department of Physics, University of Arizona, Tucson, AZ, United States of

6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States of America 7 Department of Physics, University of Arizona, Tucson, AZ, United States of

6 High Energy Physics Division, Argonne National Laboratory, Argonne, IL, United States of America 7 Department of Physics, University of Arizona, Tucson, AZ, United States of