• Aucun résultat trouvé

Work under the CISCC/NRCC Steel Industries Fellowship: its objectives and achievements

N/A
N/A
Protected

Academic year: 2021

Partager "Work under the CISCC/NRCC Steel Industries Fellowship: its objectives and achievements"

Copied!
22
0
0

Texte intégral

(1)

Publisher’s version / Version de l'éditeur:

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

Internal Report (National Research Council of Canada. Division of Building

Research), 1974-06-01

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

NRC Publications Archive Record / Notice des Archives des publications du CNRC :

https://nrc-publications.canada.ca/eng/view/object/?id=04df0542-a5c0-44ae-9be0-6e62b1652aa5 https://publications-cnrc.canada.ca/fra/voir/objet/?id=04df0542-a5c0-44ae-9be0-6e62b1652aa5

NRC Publications Archive

Archives des publications du CNRC

For the publisher’s version, please access the DOI link below./ Pour consulter la version de l’éditeur, utilisez le lien DOI ci-dessous.

https://doi.org/10.4224/20354532

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Work under the CISCC/NRCC Steel Industries Fellowship: its objectives

and achievements

(2)

WORK UNDER THE CISCCjNRC STEEL INDUSTRIES FELLOWSHIP:

ITS OBJECTIVES AND ACHIEVEMENTS

by

G. W. Shorter and W. W. St an z ak

Internal Report No. 414 of the

Division of Building Research

Ottawa June 1974

(3)

WORK UNDER THE CISCCjNRC STEEL INDUSTRIES FELLOWSHIP:

ITS OBJECTIVES AND ACl:!IEVEMENTS

by

G. W. Shorte rand W. W. St an z ak

PREFACE

In 1964 the Division of Building Research entered into an agreement with the steel industry of Canada, represented at that time by the Steel Industries Advisory Council, for the establishment of a Steel Industries Fellowship at the National Research Council. The steel industry agreed to support a Fellow to be assigned to the staff of the Fire Research Section. Topics for study, which by prior agreement were to be con-cerned with the action of steel under fire exposure, were selected by the Fellowship Committee composed of members from the steel industry and from DBR/NRC. An industry representative served as chairman.

Mr. W. W. Stanzak, a mechanical engineer, was appointed as the first Steel Industries Fellow and was the author of DBR Internal Report No. 353, which covers the term of the first Fellowship agreement from September 1964 to August 1967. Mr. Stanzak was re-appointed for a second Fellowship term from October 1968 to June 1973, sponsored by the Canadian Steel Industrie s Construction Council.

The pre sent report was prepared for members of the joint CSICC/NRC Fellowship Committee by Mr. G. W. Shorter, head of the Fire Research Section at DBR/NRC, and Mr. W. W. Stanzak, the Steel Industrie s Fellow. It explains the general nature of the work as well as its objectives and achievements. As will be seen from the appended list of publications, the work represents the F'e l Iowl s own research efforts and

proje cts on which he co -operated with his DBR/NRC colleague s , Mr. Stanzak has now joined the CSICC in the capacity of Fire Protection Consultant, to put the information gained under Fellowship research into practice. He is also teaching a course entitled "Fire Protection of Building Structures" at the University of Toronto in the

graduate division of the Department of Civil Engineering. These activities accomplish the principal aim of the Fellowship which was to help put

specialized knowledge available at DBR/NRC into Canadian building practice.

OTTAWA C.B. Crawford

(4)

INDUSTRIES FELLOWSHIP:

ITS OBJECTIVES AND ACHIEVEMENTS

by

G. W. Shorter and W. W. Stanzak

This paper is intended to provide a record of the research activities of the first holder of the Steel Industries Fellowship for members of the joint CSICC/NRC Fellowship Committee that was created in 1964 to guide the work under this co-operative agreement.

The first three year Fellowship term under the agreement between CSICC and DBR/NRC took effect in September 1964. After a one-year pause, a second term, with work being conducted on a part-time basis while the Fellow was attending university courses, began on 1 October 1968 and was to terminate at the end of September 1971. The second ter m was extended, again on a part-time basis with the Fellow dividing his time between work at DBR/NRC and

CSICC as Fire Protection Consultant on a 2/3 - 1/3 basis. Formal termination of the 2nd Fellowship was on 30 June 1973 with duties of the Fellowship being transferred to Mr. L. Konicek, second holder of the Steel Industries Fellowship.

DEVELOPMENT OF THE RESEARCH PROGRAM

The Steel Industries Fellowship Agreement, as it has come lo

be called, was the first scheme of its kind in Canada. The industry sponsored a Fellow to work at DBR/NRC on subjects related to the behaviour of steel in fire. The work was generally confined to areas in which a staff member of DBR/NRC might work, with the research being guided by the joint CSICC/NRC Steel Industries Fellowship

Committee at its regular meetings.

The three general directives immediately adopted by the Committee were that the Fellow should:

1. conduct a search of the literature relating to the behaviour of

steel under fire conditions and compile a bibliography;

2. plan fire tests (agreed upon by the members) to fill gaps in existing test data, particularly with a view to providing ratings for use in Supplement No. 2 to the National Building Code; and

(5)

2

-3.   co­operate  with  senior  members  of  the  Fire  Section  in  conducting  work  of  common  interest. 

These  general  directives  will  be  reflected i n  a  more  detailed  description  of  the  work  that  has  been  done. 

Mapping  out  the  actual  research program for  the  Fellowship 

presented  some  difficulty  ­ partly  because  the  task  was  a  new  experience  for  everyone  involved.  As  the  early work  progressed,  however,  areas  of  possible  research became  more  apparent  and  the  program began to  take  shape. 

An  attempt  was  made  during  both  terms  to  have  projects  with 

possible  long­term benefits  as  well  as  work  that  should  prove  immediately  useful.  Time  spent  on  the  latter  was  to  be  devoted  equally  to  the  study  of  structure  sheet  metal,  and  special  products.  Also,  where  possible,  studies  were  either  progres sive  or  somehow  related  to  each other,  in  an  attempt  to  integrate  the  research  program. 

Essentially  the  research  program was  developed  by  the  Fellow  in  consultation with his  DBR!NRC  colleagues  as  their  experience  and  competence  in  the  field  of  fire  behaviour  of  steel  increased. 

OBJECTIVES 

The  objectives  of  the  work were  not  at  first  defined  beyond  that  it  should  lead  to  a  better  understanding  of  the  behaviour  of  steel  unde r  fire  conditions.  As  time  went  on,  however,  projects  were  channeled  towards  one  or  more  of  the  following  objectives: 

(1) To  indicate  new  or  assemblies; 

more  efficient  uses  of  steel  in  fire­resistant 

(2)  To  help  solve  some  of  the  more  urgent  problems  facing  the  industry;  (3)  To  further  generally,  development  of  the  field  of  fire  technology;  (4)  To  demonstrate  the  application  of  recent  research (at  DBR!NRC  or 

elsewhere)  in  design,  product  development  and  fire  test  data  inter-pretation; 

(5)  To  encourage  application  of  existing fire  technology  to  building  design problems; 

(6)  To  provide  data  and  research to  improve  the  technical  content  of  the  National  Building  Code  and  Supplement  No.2. 

(6)

The  more  detailed  description of  the  work  that  follows  has  been  divided  into  three  sections: 

L  Long­term  Projects 

II. Short­ter m  Projects 

III. Mis cellaneous  Projects 

With  the  description it will  become  apparent  that  many  of  the  projects  are  open­ended,  i , e.,  work  on  them  can be  continued  or  expanded  almost  indefinitely.  A  few  are  relatively  clear  cut,  i , e.,  related  to  a  specific  problem or  area  of  interest.  Where  appropriate,  future  areas  of  possible  research  are  indicated.

y

L   LONG­TERM  PROJECTS 

To  aim towards  the  predetermined  goals  of  the  Fellowship,  and  particularly,  to  gain  an  under standing  of  the  behaviour  of  load­ bearing  members  under  fire  conditions,  a  number  of  basic  applied  and  applied  research  projects  have  been undertaken.  Because  work  on  such  projects  can  be  continued  and  because  the  results  will  find  practical  application  only  over  a  period  of  several years,  they  have  been  grouped  under  the  general  heading,  Illong­term  pr oje ct s "; 

1.   Creep Studies 

It  was  necessary  to  start with  an  understanding  of  the  basic  mechanis ms  involved  in  the  deformation of  load­bearing  steel  elements  exposed  to  fire.  T.  Z.  Harmathy,  a  research  officer  in  the  Fire  Research Section had  done  work  in  this  area  before  the  Fellowship was  established  and  it  was  decided  that  the  Fellow  should  work  on developing  creep  test  data  for  commonly  used  structural  steel.  Tests  were  carried  out  and  the  data  correlated  for  an  ASTM A­36  steel (formerly  widely  used  in fire  test  assemblies)  and  a  CSA  G40.  12  steel. 

The  studies  have  so  far  provided  the  following  practical  inlor-mation: 

(a)   A  mechanical  explanation  and  analysis  of  the  deflection  and  failure  of  steel  supported  assemblies. 

(b)   Technical  background  and  support  for  use  of  the  critical  temperature  concept  for  the  failure  of  steel load­bearing  members. 

(c)   A  demonstration  that  temperature  is  the  most  important  single  variable  affecting  the  behaviour  of  steel  in  fire.  That  is,  the  limitations  presently  incorporated  in  AST M  Standard  E­119  are  applicable  to  all  types  of  steel  at  present  used  in  building  con-struction. 

(7)

­ 4

-(d)   A  CSA  G40. 12  steel  has  creep  properties  superior  to  an  AST M  A­ 36  steel  and  exhibited  a  correspondingly  higher  critical  tem-perature  at  failure  under  fire  test. 

The  creep  studie s  have  other  implications  which  may  be  exploited  in  the  future.  For  example,  if  structural  fire  protection  is  incorporated  in  design  On  a  more  rational  scientific  basis  than  it  is  now,  it  will  be  possible  to  calculate  the  critical  temperatures  of  the  elements  in  a  structure  and  to  determine  the  amount  of  insulation,  if  any,  required. 

Also,  it  may  be  possible  to  take  advantage  of  the  superior  creep  properties  exhibited  by  certain  steels  so  that  they  may  be  assigned  a  higher  critical  temperature  than  another  steel  with  similar  yield  stress. 

Creep  theory  has  also  been  applied  to  the  analysis  of  cable  sup-ported  structures  and  assemblies,  as  well  as  other  types  of  structural  systems  coming  into  use. 

These  examples  show  that  the  methods  developed  using  creep  theory  have  added  considerably  to  the  tools  available  to  the  engineer  for  analyzing  building  structures  exposed  to  fire  conditions.  It is 

hoped  that  building  designers  will  make  increased  use  of  this  knowledge  in  the  future. 

2.   The  Column  Research  Program 

Building  columns  are  the  most  critical  members  of  a  building  structure,  not  only  because  of  the  vital  function  they  perform  struc-turally,  but  also  because  they  may  be  exposed  to  fire  on  four  side s.  As  a  result,  in  protected  steel  construction  a  heavier  insulation  is  usually  specified  for  the  columns  than  for  the  rest  of  the  structure. 

Since  section  geometry  and  mass  have  a  considerable  influence  on  the  fire­enduring  qualities  of  a  column with  a  given  insulation,  research  in  this  area  might  lead  to  economies  in  construction.  There-fore,  a  comprehensive  column  research  program was  carried  out  under  the  Fellowship. 

The  study  comprised  the  following  stages: 

(a)   A  thorough  review  and  analysis  of  the  literature  on  the  subject  was  assembled 1.  This  work  indicated, that  heavy  column  sections 

could  provide  substantial  fire  endurance  with  relatively  light  protection.  Substantiation of  this  finding  by  an  experimental  pro-gram was  advisable. 

(b)   In  order  to  fill  in  some  gaps 1I1 the  fire  test data  found 

in Supple-ment  No.  2  to  the  National  Building  Code  of  Canada  a  series  of  eight  fire  tests  was  carried  out  on  wide  flange  columns  protected 

(8)

with  gypsum­ sanded  plaster.  The  column  c r o s s ­ sections  were  varied  to  provide  some  incidental  in ormation  relating  to  the  in-fluence  of  size  and  shape  on  fire  endurance.  Data  developed  were  submitted  to  the  Fire  Test  Board,  and  the  new  Supplement  No.  2  should  include  fire  protection  for  columns  proportioned  according  to  the  'Isize  and s ha.pe !' factor  of  the  steel  cross­section.  A 

similar  submission was  made  for  gypsum  perlite  and  gypsum  vermiculite  plaster,  based  on  a  study  of  fire  test  data  developed  by  Underwriters I Laboratories  Incorporated,  Chicago. 

(c)   A  series  of  eight  column  tests  designed  specifically  to  demonstrate  the  influence  of  column  size  and  shape  on  fire  endurance  was  also  carried  out.  Here  a  single  thickness  of  a  given  protective  material  was  used  for  all  the  columns,  which  comprised  hollow  square  and  rectangular  as  well  as  wide­flange  sections.  The  results  confirmed  the  prediction  that  for  most  protective  materials  the  fire  endurance  of  columns  can be  related  by  a  relatively  simple  mathematic 

equation: 

20W

T

+

C  1.

pD 

where  T = fire  endurance  time,  hr  

W

weight  of  steel  cross­section,  lblft   D 

developed  heated  perimeter,  in.  

density  of  protective  material,  Ib/ft 3  

= empirical  constant  

1. 

thickne s s  of  protec tion,  in. 

The  term WiD is  the  II size  and  shapeII factor  and  has  a  considerable 

influence  on  the  fire  endurance  time  of  a  column  with  a  given  thick-ness  of  protection. 

Findings  of  this  research  have  been  incorporated  in  research  papers  submitted  for  publication  in  Canada  and  the  United  States.  The  fire  test  data  developed  in  these  tests  were  published  in  a  Fire  Study 2  because  they  have  useful  immediate  application,  as  the  material  tested  is  sold  and  used  in  Canada. 

(d)   To  determine  fully  the  scope  and  limitations  of  methods  for  cor-relating  column  fire  endurance,  a  large  log  of  test  data  was  required.  Therefore,  an  assembly  and  an  analysis  of  published  and  unpublished  fire  test  data  were  carried  out  and  utilized  in  the  analyses.  Much  of  the  unpublished  data  were  supplied  by  the  AISI  through  one  of their  sponsored  projects  at  Underwriters I

(9)

MMMMMMMMMMセMMMMMMMMMセMMM

­ 6

-(e)   A  complete  analysis  of  the  fire  resistance  of  unprotected  steel  columns  was  conducted.  A  wide  range  of  steel  cross­sections  was  examined  by  co mputer  calculations  and  findings  were  verified  by  5  full­scale  fire  tests.  Fire­endurance  time  for  unprotected  steel  columns  can  be  calculated  by  the  relations: 

O. 7

W FE  =

10.3 

­ 

<

10

D   D and 

O. 8

W W  FE  =

8.3 

- セ  

10

D   D

FE 

fire  endurance  time  in  minutes,  and  the  other  terms  have  the  s arne  meaning  as  des cribed  for  protected  columns. 

The  results  have  been  published 3,  and  the  information was  required  to  establish  relations  for  the  fire  resistance  of  concrete  protected  columns. 

From  a  practical  point  of  view,  the  limiting  fire  resistance  of  large  columns  used  in  high­rise  buildings  is  about  1 hr. 

3.   Fire  Development  and  Severity 

Because  of  the  existence  of  the  standard  fire  test,  this  basic  and  important  part  of  fire  research has  until  recently  received  little  attention  in  North  America.  Several  researchers  have  shown  that  in  most  modern buildings  the  course  of  the  fire  and  the  temperatures  attained  bear  little  resemblance  to  the  standard  curve.  Continued  research  in  this  area  at  present  underway  at  DBR  and  elsewhere  in  the  world  is  likely  to  result  in  new  and  different  ways  of  approaching  building  fire  problems. 

This  type  of  research  should  be  of  particular i nt e r e s t to  the  steel  industry  since  the  behaviour  of  steel  in  fire  is  so  dependent  on  its  temperature  ­ as  has  been  demonstrated  by  the  creep  studies  carried out  at  DBR.  Therefore,  when  asked  to  co­operate  with  Dr.  Harmathy  in  carrying  out  some of the  experimental  furnace  tests  associated with  these  new  concepts,  the  Fellow  agreed  initially  to  conduct  four  beam  tests  on  identically  constructed  specimens  exposed  to  fires  of  varying  severity  in  the  floor  furnace.  The  protection  used  incorporated  a  sheet  steel  membrane,  part  of  another  project  de-s cr ibed  later  in  this  report. 

(10)

To carry out these tests a means of measuring the heat input to the floor furnace was requested. The Fellow, working with the furnace laboratory staff and NRC's Hydraulics laboratory, altered the equipment to install an orifice flow meter in the gas supply line.

In addition, a thorough study of the heating capabilities of DBRj

NRC furnace equipment was carried out 4. The s mall-s cale electric furnaces were found to be capable of simulating actual compartment fire curves, but the large floor furnace was unable to provide suf-ficiently rapid temperature rise. In the report it was suggested that "improved performance may be obtained by insulating the furnace surfaces with a reflective li ne r ", The effects of such a change should be thoroughly explored before further work is undertaken.

II. SHORT- TERM PROJECTS

The short-term research projects undertaken were usually part of a broader objective so that work on them could be expanded, but they could also be terminated at different stages leaving what has already been done reasonably complete and useful on its own.

1. Sheet Steel Me mbrane Protection

This project was initiated by the Fellow during his first term and considerably expanded in the second. The principle behind this method of protection rests on the finding that any protective membrane's most vital characteristic is its ability to remain in place when

sub-jected to fire - something the sheet steel membrane does very well. Initial work involved small-scale and large-scale beam fire tests to check out the feasibility of the concept. This was expanded in the second term to include two fire tests on steel columns protected with a sheet steel membrane backed by inexpensive and non-proprietary insulating materials. Also, a sheet steel membrane [arms the basic protection to the beams to be tested in connection with the fire severity work, as already mentioned.

Two additional tests involving an economical and quickly assem-beled sheet steel column cover and protective membrane designed to yield a 2-hr rating using only generic materials, were carried out and reported. The CSICC Industry Research Subcommittee on which the Fellow is a member utilized the information developed to conduct two further sponsored tests at DBRjNRC, which resulted in ULC listings for 1- and 2-hr column designs. The completed project was given some publicity in the April 1973 issue of Building Research News.

(11)

­ 8

-Mr. L. Seigel of United States Steel has applied the sheet steel membrane protection concept by using sheet steel as a radiation barrier, protecting the exterior flanges of spandrel beams. The first

major project incorporating this particular application is the United States Steel Office skyscraper in New York City. Attending a

sky-scraper fire inves tigation in Montreal, the Fellow observed that spread of fire fro m one floor to the next had been prevented by the radiation barrier of the sheet steel induction units at the curtain wall. This was an uncons cious application of the sheet steel membrane protection con-cept by the architect.

Future research could more fully explore the possibilities and applications of sheet steel as a protective radiation barrier in the design of buildings against fire. For example, the effectiveness of a sheet steel backup for the thermal insulation required at the exterior of a building against the vertical spread of fire at the curtain wall of multi-storey buildings could be investigated.

Since development and acceptance of this prote ction method leads to increased use of steel in building construction, it should be regarded by the industry as one of the most important projects under-taken.

2. Membrane Protection

A comprehensive study of membrane protection incorporating materials other than sheet steel has been a continuing project under the Fellowship. This work is important because membrane protection is one of the most economical methods of insulating a structural steel member or assembly.

The study comprises the following:

(a) Laboratory deter mination of the ther mal and physical properties of several commonly used protective materials.

(b) Numerical analysis of heat flow through layer constructions. (c) Compilation of published and unpublished fire test data. (d) Small-scale fire tests on assemblies protected with a

membrane.

gypsum board

(e) Small-s cale fire tests to evaluate the effect of ceiling openings on fire endurance.

(12)

The  information  gathered  and  developed  is  being  assembled  into  a  report  intended  to  portray  the  state  of  the  art  in  membrane  protection  and  as  a  reference  for  the  technologies  involved  in  its  proper  functioning.  The  report  should  be  of  considerable  practical  use  for  the  Division  and  the  Steel  Industry when  dealing  with  design  or  field  problems  involving  this  type  of  protection. 

A  separate  report  was  prepared  on  the  findings  of  the  full­scale  tests  because  limitations  on  ceiling  penetration  size  and  gross  area  present  a  major  marketing  problem  in  the  increased  use  of  certain  types  of  steel building.  The  preliminary  tests  resulted  in  the  follow ing  important  tentative  conclusions: 

(a)   Provided  air  flow  is  stopped  or  a  duct  is  exhausting,  partial  pro-tection  of  duct  assemblies  against  vertical  radiation  provides  a  satisfactory  method  for  retaining  the  fire  resistant  qualities  of  membrane  protected  floor  and  roof  as semblies,  where  the  rating  of  a  similar  assembly  without  openings  has  a  margin  of  safety  of  10  per  cent. 

(b)   The  size  of  opening  at  the  ceiling  level  need  not  be  limited  provided  suitable  protection against  vertical  radiation  is  located  above  the  duct  system.  The  present tests  have  demonstrated  the  validity  of  this  principle  for  a  single  opening  having  an  area  of  H. 63  sq  ft,  or  a  unit  opening  area  of  4.  8  sq  ft/100  sq  ft  of  ceiling  area. 

(c)   A  "fire­stop fl ap "  or  I'ceiling  d a mp e r  "  is  redundant  where  other  means  of  stopping  air  flow  in  mechanical  intake  systems  are  pro-vided. 

These  results  are  encouraging  but  test  data  are  too  limited  to  draw  general  conclusions. 

Accordingly,  a  proposal  has  been prepared  to  the  CSICC  Industry  Research Sub­ Committee  to  develop  additional  data  at  Underwriters I

Laboratories  of  Canada.  It  was  agreed  in  discussions  with  the  Chairman  (who  is  also  Chair man  of  IRS)  that  U LC  co ­operation was  neces sary,  if  the  results  of  this  research  are  to  find  rapid  acceptance  and 

application. 

A  very  considerable  quantity  of  data  on  membrane  protection  has  been  compiled  over  the  years  and  it  is  suggested  that  the  second  Fellow  co­operate  with  Mr.  Stanzak  in  continuing  this  work. 

3.  Composite  Action 

With  increasing  use  of  steel­concrete  compositely  designed  structural  members,  composite  action  became  an  item  of  investigation  and  research  under  the  Fellowship.  In  co­operation with  Mr.  N. S. 

(13)

­ IO ­ 

Pearce  of  Underwriters I Laboratories  of  Canada,  a  research  paper 5 

was  published  which  showed  that  most  steel  supported  floor  assemblies  subjected  to  fire  test  exhibited  a  considerable  degree  of  composite  action  not  contemplated  in  the  design. 

Mr.  Pearce  and  the  Fellow  have  agreed  to  continue  work  on  this  topic  and  prepare  an  additional  report  on  the  fire  behaviour  of  com-positely  designed  structures,  using  information  based  on  test  data  developed  at  ULC  and  DBR/NRC.  Unfortunately,  some  ULC  data 

rrr-dicate  that  certain  composite  deck  designs  result  in  unanticipated  behaviour  under  concentrated  loading  conditions.  Also,  a  CSICC  sponsored  test  is  still  awaiting  completion.  It  is  hoped  that  the  find-ings  will  cons iderably  reduce  the  difficulties  reportedly  encountered  in  assigning  fire  ratings  and  protection  methods  to  compositely  designed  structures. 

4.  Heat­Sink 

This  project was  carried  out  to  provide  experimental  support  for  the  critical  temperature  concept  of  the  failure  of  steel beams  and  to  show  that  the  heat­sink  effect  of  the  deck  does  not  significantly  affect  the  critical  temperature.  Dr.  Harmathy  and  the  Fellow  co­operated  in  this  work. 

The  project was  undertaken  because  of  anticipated  possible  changes  in  the  test  standard  ASTM E­119  to  include  temperature  limits  for  failure  criteria.  St a nz.a k  and  Harmathy  felt  that  including  the  heat-sink  of  the  deck  in  failure  criteria  would  be  unnecessarily  complicated  and  not  technically  justifiable. 

They  published  the  findings  of  their  experimental  and  theoretical  work 6  which  showed  that  heat­sink  effect  should  not  be  included  in  assigning  temperature  for  the  revised  standard.  The  results  of  the  work were  accepted  by  those  responsible  for  the  standard  and  no  further  work  in  this  area  is  contemplated. 

5.  Partially  Protected  Steel  Structures 

Because  the  structural  failure  of  steel  exposed  to  fire  is  such  a  temperature  dependent  proces s ,  and  be cause  actual  fires  often  develop  much  more  rapidly  than  the  standard  furnace  fire,  the  idea  of  protecting  the  most  critically  heated  and/or  stressed  parts  of  a  structure  only  appears  to  have  merit.  In  connection with  this  project,  it  should  be  emphasized  that  the  real  concern  in  building  design  is  whether  the 

structure  can  res ist  the  fire  that  might  develop  in  a  particular  structure  ­ ­ not  a  fire  in  the  test  furnace. 

(14)

A joisted floor as sembly, with only the bottom chords (web and top chords exposed) protected by insulating material, was constructed and subjected to fire test. The results showed that partial protection provides a substantial improvement over unprotected construction (l/Z hr vs. about 10 min) and may provide adequate protection in cer-tain types of buildings.

Since North American building codes do not recognize a l/Z-hr fire endurance, St anz ak concluded that no further work be undertaken in this area. However, the ability of buildings thus protected to resist fire would constitute a considerable improvement over unprotected steel construction in most cases.

III. MISCELLANEOUS PROJECTS

1. Technical Translation

In 1969 the Swiss Center for Steel Construction published a technical document entitled "The Calculation of the Fire Resistance of Steel Co n s t r u cti ori s

!".

It describes methods that enable the engineer to calculate the appropriate protection required (if any) for the steel structure he designs. The Fellow thought it would be us eful to trans-late this document and make it available to North American readers. It has been published 7 and may be obtained from DBR/NRC.

The methods are based on the fire load concept and the fire load is taken as the dominant variable. The structure must be able to resist it in case of an ignition. On this basis, the design of a fire-resistant structure proceeds according to well known principles of heat transfer and structural behaviour.

The significance of this document, which has been accepted in the building regulations for the Canton of ZUrich, Switzerland, is that the design of structural fire protection is placed directly in the hands of the structural design engineer. With that step, it becomes possible to base the design procedures on scientific and engineering principles rather than arbitrary decision based on past experience and guesswork. In preparing the t r ans Iat io n , it was hoped that a similar approach

might gain adherents on this continent.

An accompanying document, using British engineenng units and examples typical of Canadian steel construction, is also in preparation.

Z. Unit Masonry/Drywall Combinations

This was an experimental program designed to develop fire ratings and sound trans mission clas sifications for concrete masonry walls in combination with gyps um board. The infor mation developed from these tests is intended for use in Supplement No.2.

(15)

12

-The  project  was  a  fire  section venture,  but  the  experimental  work  was  planned  and  supervised  by  Mr.  L. W.  Allen,  the  NCPA  Industry  Fellow,  Mr.  M.  Galbreath,  and  by  St anz ak,  They  agreed  to  do  this  in  view  of  their  experience  with  these  types  of  construction.  Stanzak's  interest  in  the  work  related  to  the  mechanical  fastening  and  behaviour  of  the  gyps um  board  ­ ­ a  material  he  has  examined  very  thoroughly.  A  Fire  Study  describing  the  work  has  been  prepared,  and  the  information  submitted  to  the  Fire  Test  Board. 

3.  Education 

Providing  educational  material  for  those  engaged  in  the  con-struction industry is one of the important functions of DBR/NRC. For the Fire Section this function is even more important because fire technology as it relates to building design is not yet taught at the universities or colleges. Therefore, me mbers of the Section, in-cluding the Fellow, have attempted to inform people of their work through talks or lectures wherever possible or appropriate. As the understanding of fire technology among those responsible for building increases, technical advances can be made more rapidly.

Unfortunately, the field of fire technology has not yet developed into an orderly dis cipline that can be s imply taught. However, much information is now available and any attempts to regiment it should be welcomed.

Some of the work under the Fellowship therefore included writing of papers to educate and assist those engaged in building design or product development 8,

9.

It is expected that Mr. Stanzak will purs ue these educational activities even more actively in his position as Fire Protection

Consultant to the CSICC. A course on fire protection of building structures at the University of Toronto is already scheduled for the spring of 1974, in the Civil Engineering Department. It is recognized that the F'e Il ow t s participation in the 1972 Canadian Structural

Engineering Conference was an important contribution to this develop-ment.

4. Steel Roof Design

Steel roofs incorporating light gauge deck present special prob-lems of fire protection and sometimes lack sufficient stiffness to

satisfy ordinary service requirements. Accordingly, the concept of providing a s mall amount of concrete fill to improve the fire resistance and stiffness of roof assemblies has been explored by small scale test.

(16)

The CSICC Project Analysis Division has indicated that this could be an economical solution.

Results of the preliminary investigation will be pres ented to the Industry Research Sub-Committee. It is likely that additional research under the Fellowship on this topic will also be appropriate.

5. Others

A variety of other small research projects and investigations were simultaneously carried out by the Fellow; for example, laboratory tests on a small scale have been carried out on materials and methods that appear particularly suitable for the protection of steel constructions. It was out of these that the sheet-steel membrane project mentioned earlier, one of the most important in the program, came into being.

Also, it has been found that a great deal can be learned by attending fires in buildings. The Fellow has attended those he thought might be of interest whenever it was possible, and should continue to do so. The findings must often remain confidential due to pos sible

legal problems. They do, however, provide valuable personal experience. Finally, as a me mber of the Fire Section, the Fellow, as any other member of the staff, co-operates by assisting with inquiries, fire tests, design of laboratory equipment, etc. For example, he is designing loading equipment suitable for the testing of beams in the floor furnace. He has also been involved with the installation of equip-ment to measure heat inputs and losses from the furnaces.

CONCLUSION

The CSICC/NRC Fellowship at the Division of Building Research has played an important role in the progress of North American fire technology. This field has been in a process of change from an art, depending almost entirely on practical experience, to a science which can be taught in a disciplined manner. Mr. Stanzak's course "Fire Protection of Building St r u ctu r e s ", beginning in January, 1974 at the University of Toronto, is the first in Canada to reflect this change.

Ten years ago, the only means for assessing the fire endurance of a structure or assembly design was the standard fire endurance test. There was little technical data to offer in support of proposed changes from a tested assembly and the criteria for the interpolations of test data were virtually non-existent.

Now, as a result of the creep studies, it becomes possible to calculate the fire endurance of certain structures and assemblies. Since temperature, not stress, is the dominant variable, s ub s t it uti o n s

(17)

­ 14

-of  one  type  -of  steel for  another  in  a  tested  assembly  can  now  be  per-mitted  on  a  rational basis.  And,  by  the  same  logic,  fire  ratings  need  not  be  revised  because  of  the  small  reductions  in  safety  factor  and  changes  in  structural design  that  have  taken  place  over  the  years. 

Also,  fire  test  methods  and  building  design will  change  in  the  future;  new  time­temperature  curves  and/or  heat  input  rates  will  be  introduced,  and  the  geometry  and  weight  of  protected  steel  members  will  be  taken  into  account.  The  last  ite m  is  already  being  incorporated  in  some  building  designs,  and  acceptance  of  engineering  design  methods  for  fire  resistance  by  officials  is  on  the  increase. 

The  Fellow  has  made  presentations  based  on  his  research  to  the  Fire  Test  Board  and  his  recommendations  have  been  considered  in  preparing  a  new  draft  Supplement  No.2.  In  addition,  he  has  worked  in  an  advisory  capacity  with  several  subcommittees  of  ASTM  and  CSA  that  are  concerned with  fire  test  methods.  He  has  also  been  instrumen-tal  in promoting  co­operation with  Underwriters I Laboratories  of 

Canada  in  unifying  fire  test  practice  and  other  matters  of  common  interest.  Finally,  through  his  presence  at  DBR/NRC,  he  has  been  able  to  provide  assistance  to  members  of  the  steel  industry  faced  with  fire  protection problems,  particularly  in  his  work with  the 

CSICC's  Industry  Res earch Sub­ Committee. 

In  concluding  this  final  report,  it  is  appropriate  to  emphasize  the  amount  of  fire  test  work  that  has  been  done  under  the  Fellowship  ­-a  tablulation  of  the  full­scale  tests  is  included  in  Appendix  A.  These  about  equal  the  number  of  all  other  full­scale  fire  tests  (sponsored  and  research)  conducted  at  DBR/NRC  since  1964,  when  the  Fellowship  began.  Appendix  B  is  a  listing  of  publications  and  reports  issued 

under  the  Fellowship,  1964  to  1973. 

REFERENCES 

1. Stanzak,  W. W.  The  Behaviour  of  Steel  Columns  at  Elevated  Te mperatures.  DBR  Internal  Report  No.  351,  March  1968.  2.   Stanzak,  W. W.  and  T. T.  Lie.  Fire  Tests  on  Protected  Steel 

Columns  with  Different  Cross ­Sections,  Fire  Study  No.  30  of  the  Division  of  Building  Research,  Ottawa,  February  1973,  NRCC  13072. 

3.   St anz ak ,  W. W.  and  T. T.  Lie.  Fire  Resistance  of  Unprotected  Steel  Columns,  ASCE  Journal  of  the  Structural Divis ion, 

(18)

4.   Stanzak,  W.  W.  and J. E.  Berndt.  Heating  Capacity  of DBR/NRC  Furnace  Equipment,  DBR  Technical  Note  No.  574,  May  1973.  5.   Pearce,  N. S.  and  W. W.  Stanzak.  Load  and  Fire  Test  Data  on 

Steel­Supported  Floor  Assemblies.  ASTM Special  Technical  Publication 422,  August  1967.  Reprinted  by  NRC  (NRC  11163).  6.   St anz ak ,  W. W.  and  T. Z.  Harmathy.  Effect  of  Deck  on  Failure 

Temperature  of  Steel  Beams.  Fire  Technology,  Vol.  4,  No.4,  Nov.  1968.  Reprinted  by  NRC  (NRC  10523). 

7.   The  Calculation  of  the  Fire  Resistance  of Steel  Constructions,  Schweizeris che  Zentralstelle  fUr  Stahlbau,  ZUrich,  1969. 

Translated  by  W.  W.  Stanzak,  NRC  TT­1425,  Ottawa  1971.  8.   Stanzak,  W. W.  Fire  Endurance  ­­ Some  Design  Considerations. 

Engineering  Digest,  April  1970.  Reprinted  by  NRC  (NRC  11465).  9.   St anz ak ,  W. W.  Product  Development  and  Fire  Performance.  DBR 

(19)

APPENDIX  A  

FULL­SCALE  FIRE  TESTS  

COMPLETED  UNDER  STEEL  INDUSTRIES  FELLOWSHIP  

TYPE  PROJECT  NUMBER  COST  1 

BEAM  CREEP  4  20,000 

COLUMN  SUPP.  No.  2  8  24,000 

BEAM  SUPP.  No.  2  3  15,000 

BEAM2  SUPP.  No.  2  MEMBRANE  PROT.  1  5,000 

BEAM  SSM3  2  10,000 

BEAM  HEAT  SINK  3  15,000 

COLUMN  SSM  2  6,000 

FLOOR  PPSS 4  1  5,000 

FLOOR  DUCT  OPENINGS  2  10,000 

COLUMN  SIZE  AND  SHAPE  7  21,000 

COLUMN  UNPROTECTED  5  10,000 

COLUMN  SSM  4  12,000 

COLUMN  CON CRET E­ FILLED  2  6,000 

TOTALS  42  159,000 

NOTES: 

1 Commercial  test  fee  (does  not  include  construction  of  specimen) 

Typical  floor  section was  included 

Sheet  steel  me mbrane 

Partially  protected  steel  structures 

(20)

LIST  OF  PUBLICATIONS  AND  REPORTS 

PUBLISHED  UNDER  THE  STEEL  INDUSTRIES  FELLOWSHIP  1964  ­ 1973 

PUBLICATIONS 

1. The  Behaviour  of Steel  in  Building  Fires,  by  W.  W.  Sta nz ak,  April  1965,  DBR  Bibliography  No.  30. 

2.   Fire  Endurance  of  Protected Steel  Columns  and  Beams,  by  M.   Galbreath  and  W. W.  Stanzak,  DBR  Technical  Paper  194,  NRC   8379,  April  1965.  

3.   Fire  Tests  on  Wide­Flange  Steel  Beams  Protected with  Gypsum-  Sanded  Plaster,  by  W.  W.  St a nz ak ,  DBR  Fire  Study  No.  16,  NRC   9474,  March  1967.  

4.   Fire  Test  on  a  Wide  Flange Steel Beam  Protected with  a  One­Inch   Gypsum­Sanded  Plaster Suspended  Ceiling  Membrane,  by  W. W.   St anz ak ,  DBR  Fire  Study  No.  19,  NRC  9764,  August  1967.  

5.   Fire  Tests  of  8  Wide­Flange  Steel  Columns  Protected with  Gypsum-Sanded  Plaster,  by  W.  W.  St a nz ak ,  DBR  Fire  Study  No.  20,  NRC  9768,  Sept.  1967. 

6.   Load  and  Fire  Test  Data  on Steel­Supported  Floor  Assemblies,  by  N. S.  Pearce  and  W.  W.  St anz ak ,  AST M  Special  Technical  Pub-lication  422,  August  1967.  Reprinted  by  NRC  (NRC  9932).  7.   Elevated­Temperature  Tensile  and  Creep  Properties  of Some  

Structural  and  Prestressing  Steels,  by  T. Z.  Harmathy  and  W.  W.   St anz ak .  ASTM STP  464,  1970.  Reprinted  by  NRC  (NRC  11163).   8.   Effect  of Deck  on  Failure  Temperature  of Steel  Beams,  by  W. W.  

St ariz ak  and  T. Z.  Harmathy.  Fire  Technology,  Vol.  4,  No.4,   Nov.  1968.  Reprinted  by  NRC  (NRC  10523).  

9.   Sheet Steel  as  a  Protective  Membrane  for  Steel  Beams  and  Columns,  by  W. W.  St anz ak ,  DBR  Fire  Study  No.  23,  Nov.  1969,  NRC  10865.  10.   Fire  Endurance  ­ Some  Design  Considerations,  by  W. W.  Stanzak. 

Engineering  Digest,  April  1970.  Reprinted  by  NRC  (NRC  11465).  11.   Product  Development  and  Fire  Perfor mance,  by  W.  W.  Stanzak. 

(21)

B­2  

12.   Column  Covers:  A  Practical  Application  of  Sheet Steel  as  a  Pro-tective  Membrane.  DBR  Fire  Study  No.  27,  Ottawa,  February  1972,  NRCC  12483. 

13.   Structural  Fire  Protection  ­ An  Engineering  Approach  by  W. W.  Stanzak,  Proceedings,  Canadian Structural  Engineering  Conference, 

March  1972  (available  as  reprint  NRCC  12748). 

14.   Fire  Tests  on  Protected  Steel  Columns  with  Different  Cross­Sections  by  W. W.  Stanzak  and  T. T.  Lie,  Fire  Study  No.  30  of  the  Division  of  Building  Research,  Ottawa,  February  1973,  NRCC  13072. 

15.   Fire  Resistance  of  Unprotected  Steel  Columns  by W. W.  Stanzak  and 

T. T.  Lie,  ASCE  Journal  of  the  Structural Division,  ST5,  9719,  May  1973. 

16.   Fire  Re sistance  of  Protected  Steel  Columns  by  T. T.  Lie  and  W.  W.  St an z ak ,  American  Institute  of  Steel  Construction,  Engineering  Journal,  Third  Quarter,  1973/Vol.  10,  No.3  (available  as  reprint  NRCC  13516). 

INTERNAL  REPORTS 

1.   Summary Report  on  the  First Steel  Industries  Fellowship  1964­1967.  DBR  Internal  Report  No.  353,  Oct.  1967. 

2.   Preliminary Investigation  Into  the  Use  of Sheet  Metal  as  a  Membrane  Portection for  Steel  Beams  and  Columns,  by W. W.  Stan z a.k,  DBR 

Internal  Report  No.  352,  Dec.  1967. 

3.   The  Behaviour  of Steel  Columns  at  Elevated  Temperatures.  DBR   Internal  Report  No.  351,  March  1968.  

4.   A  Preliminary Investigation  of  the  Fire  Behaviour  of  a  Partially  Protected Steel Structure,  by  W.  W.  Stan z ak ,  DBR  Internal  Report  No.  389,  June  1971. 

5.   Work  Under  the  CSICC/NRC  Steel  Industries  Fellowship:  Its   Objectives  and  Achievements  by G. W.  Shorter  and  W. W.  Stanzak,   DBR  Internal  Report  No.  

6.   Fire  Tests To  Assess  Effects  of  Large  Duct  Openings  on  Fire   Resistance  of  Steel­Supported  Floor­ Ceiling Assemblies  by  W. W,   Stanzak  (in  process).  

TECHNICAL  NOTES 

1.   Possibilities  for  Large­Scale  Fire  Tests  Employing  Expo  Temporary  Buil.d irig s ,  by  W.  W.  St a nz ak ,  DBR  Technical  Note  482,  April  1967  (limited  distribution). 

(22)

2.   Calibration  of  DBR  Floor  Furnace  Loading  System,  by  W. W.  St anz ak,  DBR  Technical  Note  491,  July  1967  (record  purposes).  3.   Behaviour  of Structural Steel  in  Fire:  Report  of  a  Symposium 

held  at  the  Fire  Research Station,  Borehamwood,  England,  24  January  1967,  by  W. W.  St.a nz ak ,  DBR  Technical  Note  492,  August  1967  (inquiry  and  record). 

4.   Te mperature  Measure ment:  Alternate  Test  of  Fire  Protection  for  Structural Steel  Columns,  by  W. W.  Sta nz ak,  DBR  Technical  Note  538,  June  1969  (inquiry  and  record). 

5.   Heating  Capacity  of  DBR/NRC  Furnace  Equipment,  by  W.  W.  St anz ak  and  J. E.  Berndt,  DBR  Technical  Note  No.  574,  May 

1973  (record  purposes  ­ limited  interest). 

SPX  REPORTS 

1. Place  Victoria  Fire,  by  W. W.  Sta nz ak,  DBR  Report  SPX  No.  314.  (Prepared  for  the  Division  of  Building  Research  for  record  purposes  only.) 

2.   Fire  Tests  on  Seven  Protected Steel  Columns  with  Different  Cross-Sections,  by  J. E.  Berndt  and  E. O.  Porteous.  DBR  Report  SPX 

335.  (Prepared  for  CSICC.) 

TECHNICAL  TRANSLATIONS 

1.   Safety Standards  for  the  Fire  Protection  of  Structural Steel  Build-ings  Intended  for  Civilian  Use,  translated  by  D. A.  Sinclair,  NRC  TT­1347,  Ottawa,  1968. 

2.   The  Calculations  of  the  Fire  Resistance  of  Steel  Constructions,  translated  by  W.  W.  St anz ak,  NRC  TT­1425,  Ottawa,  1971. 

Références

Documents relatifs

Food quantities were modeled using linear programming to find diets that meet nutritional recommendations in two sets of models: cost-constrained (the cost should not be higher than

Finally, our data emphasize that high phenotypic plasticity is not per se positive for adaptation to climate change, as differences in stress responses are resulting in high

forsythia ATCC 43037 type strain genome revealed the presence of a protein O-glycosylation gene cluster encoding genes involved in sugar biosynthesis, glycan assembly and

Figure 45 shows the trajectory of Floe N11 during the time it was sampled, with a yellow box indicating the approximate position of the floe when image was acquired, about 30

In terms of asset management guidance, Canada has a number of activities to generate asset management knowledge (e.g., the National Research Council’s Municipal

The benefits of using CRM include: (1) The architectural design of the system can be separated from the design of individ- ual units that have to deal with proprietary features of

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at Factors affecting the performance of ventilation systems in large

/ La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur. Access