• Aucun résultat trouvé

Dynamic properties of Lions' Gate suspension bridge

N/A
N/A
Protected

Academic year: 2021

Partager "Dynamic properties of Lions' Gate suspension bridge"

Copied!
13
0
0

Texte intégral

(1)

READ THESE TERMS AND CONDITIONS CAREFULLY BEFORE USING THIS WEBSITE. https://nrc-publications.canada.ca/eng/copyright

Vous avez des questions? Nous pouvons vous aider. Pour communiquer directement avec un auteur, consultez la première page de la revue dans laquelle son article a été publié afin de trouver ses coordonnées. Si vous n’arrivez pas à les repérer, communiquez avec nous à PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca.

Questions? Contact the NRC Publications Archive team at

PublicationsArchive-ArchivesPublications@nrc-cnrc.gc.ca. If you wish to email the authors directly, please see the first page of the publication for their contact information.

NRC Publications Archive

Archives des publications du CNRC

This publication could be one of several versions: author’s original, accepted manuscript or the publisher’s version. / La version de cette publication peut être l’une des suivantes : la version prépublication de l’auteur, la version acceptée du manuscrit ou la version de l’éditeur.

Access and use of this website and the material on it are subject to the Terms and Conditions set forth at

Dynamic properties of Lions' Gate suspension bridge

Rainer, J. H.; Van Selst, A.

https://publications-cnrc.canada.ca/fra/droits

L’accès à ce site Web et l’utilisation de son contenu sont assujettis aux conditions présentées dans le site LISEZ CES CONDITIONS ATTENTIVEMENT AVANT D’UTILISER CE SITE WEB.

NRC Publications Record / Notice d'Archives des publications de CNRC:

https://nrc-publications.canada.ca/eng/view/object/?id=066e646c-23c7-4bca-a347-c5dd38a229c9 https://publications-cnrc.canada.ca/fra/voir/objet/?id=066e646c-23c7-4bca-a347-c5dd38a229c9

(2)

TH1

N21d National Research Conseil national

lo. 700

1

Council Canada de recherches Canada

BLDG . -

- .

- - -

DYNAMIC PROPERTIES OF

LIONS' GATE SUSPENSION BRIDGE

by J.

H.

Rainer and A. Van Selst

Reprinted, with permission, from

Proceedings, ASCEIEMD Specialty Conference

Dynamic Response of Structures : Instrumentation, Testing Methods. and System Identification

held at the University of California, Los Angeles 30 and 31 March 1976

p. 243 252

s f - -

f s : : , R - . L i - 2 3

DBR Paper No. 700

Division of Building Research

(3)

DYNAMIC PROPERTIES OF LIONS1 GATE SUSPENSION BRIDGE by

I

J . H . R a i n e r and A . Van S e l s t I I

INTRODUCTION

The L i o n s ' Gate Suspension Bridge c r o s s e s t h e F i r s t Narrows o f Burrard I n l e t a t Vancouver, B r i t i s h Columbia. The b r i d g e , which opened i n 1938, c a r r i e s t h r e e l a n e s o f v e h i c u l a r t r a f f i c and two s i d e w a l k s . Because o f t h e need f o r e x t e n s i v e r e p a i r s t o t h e b r i d g e deck and r e q u i r e m e n t s f o r w i d e r t r a f f i c l a n e s , a complete r e b u i l d i n g o f t h e deck s t r u c t u r e i s p l a n n e d . This w i l l r e s u l t i n t h e s i d e w a l k s b e i n g moved from i n s i d e t h e s t i f f e n i n g t r u s s e s t o t h e o u t s i d e . A new o r t h o t r o p i c r o a d s u r f a c e i s t o r e p l a c e t h e p r e s e n t c o n c r e t e and s t e e l g r i d s u p p o r t e d on s t e e l beams and g i r d e r s . S i n c e changes i n g e o m e t r i c and s t r u c t u r a l p r o p e r t i e s c o u l d i n f l u e n c e t h e b e h a v i o r o f t h e m o d i f i e d b r i d g e under wind l o a d i n g , an aerodynamic i n v e s t i g a - t i o n i s b e i n g u n d e r t a k e n which i n c l u d e s wind t u n n e l s e c t i o n t e s t s and a f u l l a e r o - e l a s t i c model. To o b t a i n some guidance i n e s t a b l i s h i n g t h e dynamic p a r a m e t e r s f o r t h e model t e s t s and t h e d e s i g n c a l c u l a t i o n s , measurements on t h e e x i s t i n g s t r u c : t u r e were c a r r i e d o u t t o d e t e r m i n e i t s dynamic p r o p e r t i e s . This p a p e r d e s c r i b e s t h e measurement program and t h e r e s u l t s o b t a i n e d , a s well a s comparisons between t h e o b s e r v e d v a l u e s o f n a t u r a l f r e q u e n c i e s and t h o s e from two d i f f e r e n t methods of c a l c u l a t i - o n .

DESCRIPTION OF THE BRIDGE

I

-

I

The b r i d g e c o n s i s t s o f a main span o f 1550 f t (473 m) and two s i d e s p a n s , I each o f 614 f t (187 m)

.

The tower h e i g h t i s 361.5 f t (110 m) from t o p o f c o n c r e t e I

i f o o t i n g t o t h e s a d d l e p o i n t s , w i t h t h e road deck p a s s i n g a t m i d - h e i g h t . An e l e v a - t i o n i s p r e s e n t e d i n F i g . 1, and a t y p i c a l c r o s s - s e c t i o n w i t h some s t r u c t u r a l p r o p e r t i e s i n F i g . 2 .

I

i D i v i s i o n o f B u i l d i n g Research, N a t i o n a l Research Council of Canada, Ottawa, O n t a r i o , . . Canada. - .

I I Buckland 6 T a y l o r Ltd. , C o n s u l t i n g E n g i n e e r s , ~ a n c o u v e r , B r i t i s h Columbia, Canada.

(4)

I

A t t h e b r i d g e c e n t e r and a t t h e n o r t h and s o u t h ends o f t h e s u s p e n s i o n b r i d g e , t r a c t i o n rods cbnnect t h e c a b l e t o t h e t o p chord o f t h e s t i f f e n i n g t r u s s . However, t h e s e t r a c t i s n rods were found t o be somewhat l o o s e . The two s t i f f e n i n g t r u s s e s a r e j o i n e d a t t h e lower chords by f l o o r beams t h a t s u p p o r t t h e r o a d deck, and by h o r i z o n t a l c r o s s b r a c i n g t h a t d e c r e a s e s i n s t i f f n e s s toward t h e c e n t e r o f t h e

b r i d g e . The t r u s s e s , t e g e t h e r with t h e c r o s s b r a c i n g s and t h e decking, t h u s e f f e c - t i v e l y form an open channel s e c t i o n . The t r u s s e s r e s t on f i x e d b e a r i n g s a t t h e N and S s u p p o r t s o f t h e b r i d g e and have s l i d i n g b e a r i n g s a t t h e t o w e r s . The g i r d e r has a v e r t i c a l curve w i t h r i s e o f 22.3 f t ( 6 . 8 m) from t h e tower t o t h e b r i d g e c e n t e r l i n e .

MEASUREMENT PROGRAM

The measurements were performed i n two main s t a g e s : Phase I was c a r r i e d o u t d u r i n g t h e w i n t e r o f 1974-75, and Phase 11, i n September 1975. The s u b s e q u e n t d e s c r i p t i o n and r e s u l t s o b t a i n e d r e f e r t o Phase 11, e x c e p t where o t h e r w i s e n o t e d . I n s t r u m e n t a t i o n

The motions o f t h e b r i d g e were monitored w i t h b a t t e r y - p o w e r e d s e r v o - d r i v e a c c e l e r o m e t e r s o f 5 V/g s e n s i t i v i t y . These were mounted on b r a s s b a s e s and p l a c e d on t h e t o p f l a n g e o f t h e c r o s s beam c l o s e t o t h e i n s i d e o f t h e s t i f f e n i n g t r u s s a t t h e numbered l o c a t i o n s shown i n F i g . 1. Cables c a r r i e d t h e s i g n a l s t o t h e r e c o r d - i n g s t a t i o n i n t h e o b s e r v a t i o n c a b i n a t t h e b r i d g e c e n t e r . D-C compensation was a p p l i e d , > t h e s i g n a l s p a s s e d through 1 Hz low p a s s f i l t e r s and 20 dB a m p l i f i e r s and were r e c o r d e d on a 7-channel FM t a p e r e c o r d e r . The t r a n s d u c e r s , s i g n a l c o n d i t i o n - i n g and r e c o r d i n g channels were c a l i b r a t e d i n t h e l a b o r a t o r y and a s t a t i c i n v e r s i o n check o f t h e t r a n s d u c e r s was performed a t t h e r e c o r d i n g s i t e .

S t a t i o n 1N was used a s a r e f e r e n c e ; t h e remaining s t a t i o n s were covered by s u c c e s s i v e l y moving t h e t r a n s d u c e r s t o t h o s e s t a t i o n s . A s p e c i a l r u n was made with t r a n s d u c e r s p l a c e d a t S t a t i o n s 2 N and 2s.

Ambient V i b r a t i o n s .

-

Ambient v i b r a t i o n s d u r i n g Phase I 1 c o n s i s t e d o f v e h i c u l a r t r a f f i c o n l y , mainly p a s s e n g e r c a r s and t r a n s i t b u s e s . Wind s p e e d s ranged from zero t o about 5 mph (8 km/h). During Phase I , measurements were a l s o made under v a r i o u s wind c o n d i t i o n s d u r i n g e a r l y morning h o u r s when t r a f f i c was minimal o r a b s e n t . One l i m i t e d s e t o f measurements was o b t a i n e d a t winds g u s t i n g t o 50 mph

(80 km/h). For each s e t u p t h e motions were monitored f o r a p p r o x i m a t e l y 45 min. Vehicle Impacts.

-

A s e r i e s of s i m u l a t e d impacts were a p p l i e d t o t h e b r i d g e from a s i n g l e r e a r a x l e sand t r u c k and a small p a s s e n g e r c a r . The t r u c k was d r i v e n i n t h e o u t s i d e l a n e a t a b o u t 10 mph, swerved normal t o t h e b r i d g e and b r o u g h t t o a sudden b r a k i n g s t o p . T h i s produced t o r s i o n a l and l a t e r a l r e s p o n s e s o f t h e b r i d g e . Another s i m u l a t e d impact t e s t f o r t o r s i o n a l and l a t e r a l v i b r a t i o n s c o n s i s t e d o f a small c a r d r i v e n normal t o t h e roadway and b r o u g h t t o a sudden b r a k i n g s t o p . V e r t i c a l impact r e s p o n s e s were induced by s l o w l y d r i v i n g t h e r e a r wheels o f t h e t r u c k o f f a 6 - i n . (15-cnl) ram?. However, t h i s proved t o b e s u c c e s s f u l i n o n l y one of t h r e e a t t e m p t s . Driving t h e t r u c k from t h e main s p a n o n t o t h e s i d e s p a n a t approximately- 40 mph (64 km/h) produced some s a t i s f a c t o r y v e r t i c a l motions.

(5)

A n a l y s i s o f .Data

Ambient U b r a t i o n s . - The ambient v i b r a t i o n d a t a were a n a l y z e d on a 5 0 0 - l i n e r e a l - t i m e s p e c t r u m a n a l y z e r u s i n g t a p e s p e e d s o f 8 , 1 0 , and 16 times t h e r e c o r d i n g speed and w i t h 2 and 4 s p e c t r u m a v e r a g e s . Phase r e l a t i o n s h i p s between two s t a t i o n s were o b t a i n e d by a d d i t i o n and s u b t r a c t i o n o f t h e r e s p e c t i v e s i g n a l s . The a m p l i t u d e and phase r e l a t i o n s h i p s were a l s o confirmed by c r o s s - s p e c t r a l d e n s i t y c a l c u l a t i o n s u s i n g 512 p o i n t s and f o u r s p e c t r u m a v e r a g e s .

Impact Response.

-

The i m p a c t r e s p o n s e s i g n a l s were d i g i t i z e d and a n a l y z e d on a d i g i t a l computer u s i n g FFT r o u t i n e s . The t i m e decay c u r v e f o r v a r i o u s modes o f v i b r a t i o n was o b t a i n e d by i n v e r t i n g i n t o t h e time &main t h e f i l t e r e d s p e c t r u m f o r a p a r t i c u l a r modal f r e q u e n c y band. From t h i s decay, modal damping was computed u s i n g t h e l o g decrement r e l a t i o n s h i p .

CALCULATIONS OF MODAL PROPERTIES

Two methods were u s e d t o c a l c u l a t e t h e modal p r o p e r t i e s o f t h e b r i d g e : a continuum model, where t h e s o l u t i o n s t o t h e d i f f e r e n t i a l e q u a t i o n s d e s c r i b i n g t h e v i b r a t i o n problem a r e e v a l u a t e d , and a lumped mass, l i n e a r s t i f f n e s s model, f o r which eigenmodes were found.

Continuum model.

-

The t h e o r y f o r v i b r a t i o n o f s u s p e n s i o n b r i d g e s a s

p r e s e n t e d by S e l b e r g ( 3 ) was u t i l i z e d i n c a l c u l a t i n g t h e mode s h a p e s and f r e q u e n - c i e s f o r t h e e x i s t i n g b r i d g e . The f o l l o w i n g assumptions a r e made t o s i m p l i f y t h e t r e a t m e n t o f tlie m a t h e m a t i c a l t h e o r y : a ) a x i a l d e f o r m a t i o n s o f towers and

g i r d e r a r e n e g l e c t e d ; b) t h e i n d i v i d u a l h a n g e r s a r e r e p l a c e d by an e q u i v a l e n t membrane h a v i n g no s h e a r r e s i s t a n c e ; c ) dead l o a d i s u n i f o r m l y d i s t r i b u t e d a l o n g t h e s p a n , i m p l y i n g a p a r a b o l i c c a b l e p r o f i l e ; d) g i r d e r h a s c o n s t a n t s t i f f n e s s w i t h i n each s p a n ; e ) c u r v a t u r e o f g i r d e r i s n e g l i g i b l e compared t o c a b l e s a g ; f ) s h e a r d e f o r m a t i o n i n g i r d e r i s n e g l i g i b l e ; g) d e f l e c t i o n s a r e s m a l l , i . e . , l i n e a r d i s p l a c e m e n t t h e o r y

i s

used. The s o l u t i o n o f t h e d i f f e r e n t i a l e q u a t i o n s i s a r a p i d l y c o n v e r g i n g i n f i n i t e s e r i e s . A g e n e r a l computer program was w r i t t e n t o s o l v e t h e s e r i e s by a t r i a l and e r r o r method u t i l i z i n g t h e f i r s t 5 terms f o r t h e s i d e s p a n s and 7 terms f o r t h e main s p a n . The t o r s i o n a l modal p r o p e r t i e s were o b t a i n e d a n a l o g o u s l y t o t h e v e r t i c a l ones by r e p l a c i n g t h e v e r t i c a l s t i f f n e s s and mass w i t h t h e t o r s i o n a l s t i f f n e s s and mass moment o f i n e r t i a o f t h e g i r d e r . The f u l l t o r s i o n a l s t i f f n e s s o f t h e roadway i s assumed t o b e a c t i v a t e d and t h e t r a c - t i o n r o d s a r e assumed t o b e u n s t r e s s e d .

The above method i s s i m i l a r t o t h e t h e o r y p r e s e n t e d e a r l i e r by B l e i c h e t a l . (1) b u t i s more r e f i n e d .

Lumped mass, l i n e a r s t i f f n e s s model.

-

The s t i f f n e s s m a t r i x f o r t h e d i s c r e t e model o f some 750 members and 400 j o i n t s h a v i n g o v e r 1,000 d e g r e e s o f freedom was assembled w i t h a space-frame a n a l y s i s program. Symmetry p r o p e r t i e s a l o n g t h e l e n g t h and t h e width o f t h e b r i d g e were u t i l i z e d s o t h a t o n l y one q u a r t e r o f t h e s t r u c t u r e needed t o be encompassed. The e i g e n v a l u e problem w i t h t h e d i a g o n a l mass m a t r i x was s o l v e d by a sweeping t e c h n i q u e . _ - - - -

- . -

The method o f a n a l y s i s o f t h e problem i m p l i e s l i n e a r d i s p l a c e m e n t t h e o r y . 'Ihe t o r s i o n a l r i g i d i t y u s e d f o r t h e b r i d g e g i r d e r i n c l u d e s f u l l p a r t i c i p a t i o n o f t h e roadway and s t r i n g e r s and t h e assumption t h a t t h e e x p a n s i o n j o i n t s have s e i z e d .

(6)

G i r d e r b e a r i n g s a t t h e towers a r e t a k e n a s f i x e d and t h e t r a c t i o n r o d s a r e assumed t o b e i n e f f e c t i v e . These assumptions were found t o b e s t f i t t h e e x p e r i m e n t a l d a t a . RESULTS

*

The r e s u l t s o f t h e measurements and c a l c u l a t i o n s a r e p r e s e n t e d i n Tables 1, 2 and 3 f o r each i d e n t i f i e d mode. The measuring p o i n t s on t h e i n t e r p o l a t e d modes s h a p e s a r e shown by c i r c l e s f o r t h e v e r t i c a l and t o r s i o n a l d i s p l a c e m e n t s , and

t r i -

a n g l e s f o r h o r i z o n t a l g i r d e r d i s p l a c e m e n t . Damping v a l u e s a r e given where p o s s i b l e , as w e l l a s t h e computed f r e q u e n c i e s from t h e two mathematical models a l r e a d y des- c r i b e d . The damping v a l u e s from ambient v i b r a t i o n s were c a l c u l a t e d u s i n g t h e

method o f half-power hand w i d t h . Dampine v a l u e s c a l c u l a t e d from t h e f i l t e r e d decay curves vary s l i g h t l y o v e r t h e l e n g t h o f t h e decaying v i b r a t i o n r e c o r d and conse- q u e n t l y t h e v a l u e s n e a r t h e b e g i n n i n g o f t h e impact and t h o s e a f t e r a b o u t 15 c y c l e s a r e given. A c o r r e c t i o n was a p p l i e d t o t h e a m p l i t u d e s . o f t h e decaying s i g n a l o f

t h e Phase I measurements by s u b t r a c t i n g t h e a m p l i t u d e s o f t h e ambient s i g n a l due t o wind e x c i t a t i o n .

C a t e e o r i z a t i o n o f Modes

The normal modes i d e n t i f i e d i n t h e measurement program have been c a t e g o r i z e d i n t o v e r t i c a l , h o r i z o n t a l and t o r s i o n a l modes. However, t h e u s u a l c l e a r d i s t i n c - t i o n between h o r i z o n t a l and t o r s i o n a l modes becomes o b s c u r e d because both t o r s i o n and h o r i z o n t a l motion i s p r e s e n t i n most o f t h e s e modes. Consequently, o n l y t h e lowest mode, which i s c l e a r l y i d e n t i f i a b l e a s a h o r i z o n t a l mode, was d e s i g n a t e d a s a h o r i z o n t a l mode, and a l l o t h e r modes w i t h t o r s i o n a l components were d e s i g n a t e d a s t o r s i o n a l modes.

V e r t i c a l Modes.

-

A sample s e t o f F o u r i e r s p e c t r a o f v e r t i c a l s i g n a l s monitored a t S t a t i o n 1N a r e shown i n Fig. 3 . The modes a s s o c i a t e d w i t h t h e v a r i o u s s p e c t r u m peaks a r e i n d i c a t e d n e a r t h e t o p o f t h e f i g u r e .

The v e r t i c a l mode shapes, t o g e t h e r w i t h r e l e v a n t damping v a l u e s ' a n d t h e c a l - c u l a t e d f r e q u e n c i e s , a r e p r e s e n t e d i n Table l . The modes a r e p r e s e n t e d sequen- t i a l l y a c c o r d i n g t o i n c r e a s i n g f r e q u e n c y . I t i s b e l i e v e d t h a t i n t h e v e r t i c a l d i r e c t i o n t h e modes i d e n t i f i e d r e p r e s e n t a complete s e t o f t h e major n a t u r a l modes o f v i b r a t i o n f o r t h e s u s p e n s i o n b r i d g e .

H o r i z o n t a l Modes.

-

Because t h e h o r i z o n t a l motions a r e c o u p l e d w i t h t h e t o r s i o n o f t h e deck and towers and v i c e v e r s a , a p u r e h o r i z o n t a l mode i s u n l i k e l y t o o c c u r . I n f a c t , o n l y t h e lowest h o r i z o n t a l mode a t 0.12 Hz p r e s e n t e d i n T a b l e 3 was w i t h - o u t measurable r o t a t i o n s under ambient v i b r a t i o n s . Only d u r i n g t h e s e v e r e s t impact t e s t s could r o t a t i o n a l components b e d e t e c t e d f o r t h i s mode.

T o r s i o n a l Modes.

-

The h o r i z o n t a l components o f t h e modes shown by d a s h - d o t t e d l i n e s i n T a b l e s 2 and 3 z i v e t h e modal amplitude on t h e t o p f l a n g e o f t h e f l o o r beam, i . e . , j u s t below t h e roadway l e v e l . The p l o t t e d t o r s i o n a l component shown by s o l i d l i n e s r e p r e s e n t s t h e sum o f t h e v e r t i c a l motions a t t h e i n s i d e o f t h e s t i f f e n i n g t r u s s .

S i n c e t h e a c c e l e r o m e t e r s i n t h e h o r i z o n t a l d i r e c t i o n a r e s e n s i t i v e t o a n g u l a r

movements, a c o r r e c t i o n has t o b e a p p l i e d t o t h e measured h o r i z o n t a l component o f f

t.

(7)

Table I : Dynamic P r o p e r t i e s o f V e r t i c a l Modes L Item No. 1 2 3 4 5 6 7 8 Measured Mode Shape Measured Frequency, Hz 0.200 0.225 0.30 0.358 0.420 0.590 0.760 0.845

-

-0 2

$

Lumped 0.199 0.214 0.298 0.343 0.422 2 % ~Parameter 2 u = Continuum Mode 1 0.185 0.214 0.273 0.345 0.408 F o u r i e r # 0-4 1 . 7 1 . 6 1 . 7 1 . 0 0.7 0 . 6 0.6 . ~ m p u l s e 0.9+,0.6' 0 . 9 * , 0 . S f n e : u u Decay 1.1'+,0.9**1.05**,0.95** + Uncorrected * * C o r r e c t e d f o r ambient v i b r a t i o n s

Table 2: Dynamic P r o p e r t i e s o f a n t i - s y m m e t r i c T o r s i o n a l Modes

-

Item No. 1 2 3 4 5 6 Measured Mode Shape

-

D i f f e r e n c e o f V e r t i c a l Motion ( E a s t + up) -.+- H o r i z o n t a l (+ t o West) i I Measured Frequency, Hz 0.310 0.32 0.495 0.515 0.600 0.745 0.765 (0.33) 0.507 '0

-

4) X .y 0 Lumped 0.317 0.463 0.568 m F -4 4) Parameter 3 1 N ' w f Continuum 3 4) m &4 0 ., 31 H* C' u. Model 0.411 Damping R a t i o from F o u r i e r S p e c t r a 1.25 0.79 % c r i t i c a l C a l c u l a t e d h o r i z o n t a l mode

t h e mode s h a p e . T h i s c o r r e c t i o n depcnds on t h e modal frequency and t h e a m p l i t u d e o f t h e a n g u l a r motion a t t h e measuring p o i n t . No c o r r e c t i o n c o u l d b e a p p l i e d t o t h e modal a m p l i t u d e s a t t h e tower t o p s f o r t h e v e r t i c a l and t h e t o r s i o n a l modes. Consequently, t h e p l o t t e d tower a m p l i t u d e s a r e t o o l a r g e .

A sample spectrum o f t h e r o t a t i o n a l component f o r S t a t i o n 1N i s shown i n

F i g . 4 . The a n t i - s y m e t r i c a n d symmetric t o r s i o n a l modes t h a t c o u l d b e i d e n t i f i e d a r e p r e s e n t e d i n Tables 2 and 3 , r e s p e c t i v e l y , t o g e t h e r w i t h damping v a l u e s a n d t h e o r e t i c a l f r e q u e n c i e s where a v a i l a b l e . A s can b e s e e n , e v e r y t o r s i o n a l mode

(8)

= Item No. 1 2 3 8 Measured Mode Shape

-

D i f f e r e n c e o f V e r t i c a l Motion ( E a s t + up) -.- H o r i z o n t a l (+ t o West) Measured 0.38 Frequency, Hz 0.12 0.36 (0.37, 0.39) 0.44 0.465 0.475 0.525 0.535 -0

-

a A Lumped w u Parameter 0.125 0.364 0.441f 0.477 0.533 m c 4 al

3

s2"

4 al m k Continuum u ~ r . Model 0.12 [I** 0.347 0 . 5 9 3 0.646 w e

.;;;

F o u r i e r c

-

u S p e c t r a 3 . 3 1 . 7 0.9 0.34 0 . 6 3 0.57 .PI 0 .d

B 3

.':

a I-, cr

El

Impulse 3.0 1 . 3 , 1 . 6 Decay 3.9 I tem No. 9 10 11 12 1 3 14 15 Measured Mode , Shape Measured Frequency, H z 0.555 0.615 0.635 0.65 0.715 0.94 1 .OO C a l c u l a t e d Frequency, lumped 0.575 0.618 0.654 Parameter Model, Hz

(9)

is a l s o accompanied by a h o r i z o n t a l component.

I d e n t i f i c a t i o n o f Modes

I

Although t h e i d e n t i f i c a t i o n o f t h e v e r t i c a l mode shapes was f a i r l y s t r a i g h t -

I f o l w a r d , t h e i d e n t i f i c a t i o n o f t h e t o r s i o n a l modes proved t o b e a d i f f i c u l t t a s k .

Some of t h e r e a s o n s a r e : f i r s t , t h e c o u p l i n g o f t o r s i o n and h o r i z o r l t a l motion

I o b s c u r e d t h e u s u a l c l e a r d i s t i n c t i o n between h o r i z o n t a l and t o r s i o n a l modes;

s e c o n d l y , a i a r g e number o f c l o s e l y s p a c e d modes appeared i n t h e s p e c t r a , which t o some e x t e n t i n f l u e n c e d each o t h e r ' s s p e c t r a l a m p l i t u d e s ; and t h i r d l y , some o f t h e modes had such s m a l l a m p l i t u d e s t h a t t h e l i m i t s o f r e s o l u t i o n o f measurement and a n a l y s i s equipment b:cre approached.

The l a r g e number o f t o r s i o n a l modes can b e t r a c e d t o t h e asymmetric s t i f f n e s s

p r o p e r t i e s o f t h e U-section formed by t h e s t i f f e n i n g t r u s s e s and t h e r o a d deck

w i t h h o r i z o n t a l c r o s s b r a c i n g . S i n c e , c o n c e p t u a l l y a t l e a s t , v a r i o u s combinations

o f i n d e p e n d e n t r o t a t i o n a l and h o r i z o n t a l motions o f s i d e spans and main span a r e

p o s s i b l e , t h e appearance o f a l a r g e number o f independent modes i s p e r h a p s n o t

s u r p r i s i n g .

The

c l o s e s p a c i n g o f t h e modes r e q u i r e s h i g h r e s o l u t i o n spectrum

a n a l y s i s and c o n s e q u e n t l y l o n g recording s e s s i o n s . No n o t i c e a b l e d i f f e r e n c e s were

found i n t h e s p e c t r a o f t h e s i g n a l s r e c o r d e d under t r a f f i c e x c i t a t i o n o r predomi- n a n t low s p e e d wind e x c i t a t i o n s o r t h e s t r o n g wind e x c i t a t i o n , a l t h o u g h a more d e t a i l e d examination o f t h e l a t t e r h a s y e t t o b e u n d e r t a k e n .

Some o f t h e u n r e s o l v e d a s p e c t s on t h e i d e n t i f i c a t i o n o f t o r s i o n a l modes a r e t h e f o l l o w i n g .

1. blul t i p l e f r e q u e n c i e s w i t h s u b s t a n t i a l l y t h e same mode shapes were found n e a r

0 . 3 2 , 0 . 3 8 , 0.51 and 0.94 Hz. Whereas some o f t h e s e modes had d i f f e r e n t phases o f

s i d e s p a n and tower motions, o t h e r s e x h i b i t e d no n o t i c e a b l e d i f f e r e n c e s .

2 . From a n examination o f v a r i o u s F o u r i e r and c r o s s - s p e c t r a l c a l c u l a t i o n s , i t i s

s u s p e c t e d t h a t a n o t h e r symmetrical t o r s i o n a l mode e x i s t s very c l o s e t o t h e symme-

t r i c mode a t 0.465 Hz and a n o t h e r one n e a r tl7.e asymmetric mode a t 0.507 Hz. HOW-

e v e r , t h e y c o u l d n o t b e i d e n t i f i e d . I t i s t h o u g h t t h a t t h e p l o t t e d mode a t 0.465

Hz i s a c t u a l l y a composite o f two modes, one a dominant s i d e span mode, and t h e o t h e r a dominant main s p a n mode.

A p o s s i b l e r e a s o n f o r t h e p r e s e n c e o f m u l t i p l e f r e q u e n c i e s n e a r 0.32, 0.38,

0 . 5 1 and 0 . 9 4 Hz might b e t h e changing r e s t r a i n t s a s t h e t i e rods b e g i n t o t i g h t z n and t h e b e a r i n g s s l i p owing t o changing l o a d i n g c o n d i t i o n s on t h e b r i d g e .

Comparison o f Measured and C a l c u l a t e d

A s t h e r e s u l t s i n T a b l e 1 i n d i c a t e , t h e r e i s g e n e r a l l y e x c e l l e n t agreement

between t h e measured and c a l c u l a t e d f r e q u e n c i e s f o r t h e v e r t i c a l modes f o r b o t h t h e

continuum model and t h e lumped p a r a m e t e r model. The s l i g h t l y lower c a l c u l a t e d

f r e q u e n c i e s f o r t h e continuum model may i n p a r t b e due t o t h e n e c e s s a r y s i m p l i f i c a - t i o n s i n t h e t h e o r y , such a s c o n s t a n t mass and s t i f f n e s s p r o p e r t i e s o f t h e g i r d e r

1

and n e g l e c t i n g t h e camber.

(10)

The frequency f o r t h e l o w e s t h o r i z o n t a l mode, Item I i n Table 3, a l s o shows good a g r e e z e n t between c a l c u l a t i o n s and measurements. A s t h e continuum t h e o r y f o r t h e h o r i z o n t a l modes does n o t t a k e a c c o u n t o f coupled h o r i z o n t a l - t o r s i o n a l motion, t h e agreement f o r t h e h i g h e r modes can b e e x p e c t e d t o become l e s s s a t i s f a c t o r y .

For t h e f r e q u e n c i e s o f t h e t o r s i o n a l modes p r e s e n t e d i n T a b l e s 2 and 3, t h e c a l c u l a t e d v a l u e s f o r t h e continuum model show s u b s t a n t i a l d i f f e r e n c e s from

measured o n e s . Reasons f o r t h i s may b e t h e d i f f i c u l t y i n a c h i e v i n g r e a l i s t i c e s t i m a t e s f o r t o r s i o n a l s t i f f n e s s o f t h e g i r d e r and t h e assumptions o f c o n s t a n t p r o p e r t i e s i n each s p a n . Furthermore, a s mentioned p r e v i o u s l y , s i n c e t h e continuum t h e o r y does n o t account f u l l y f o r coupled t o r s i o n a l - h o r i z o n t a l motion, a c o n s i s t e n t agreement between measurements and c a l c u l a t i o n s cannot be e x p e c t e d .

Damping

The s i m p l e s t method o f o b t a i n i n g modal damping v a l u e s i s t o c a l c u l a t e them from t h e half-power bandwidth o f power ( o r F o u r i e r ) spectrum p e a k s . U n f o r t u n a t e l y t h i s method h a s some p o t e n t i a l shortcomings when a p p l i e d t o t h e s t r u c t u r e u n d e r c o n s i d e r a t i o n . First, changing l o a d i n g c o n d i t i o n s on t h e b r i d g e c a u s e s m a l l v a r i - a t i o n s i n t h e f r e q u e n c i e s . These r e s u l t i n a widening of t h e resonance peak and t h u s y i e l d damping v a l u e s t h a t may b e t o o h i g h . Averaging a number o f s e q u e n t i a l s p e c t r a i s h i g h l y d e s i r a b l e f o r a p r o p e r d e f i n i t i o n of t h e spectrum p e a k s , b u t t h i s a c c e n t u a t e s t h e p o t e n t i a l problem o f g e t t i n g w i d e r peaks due t o s l i g h t f r e q u e n c y s h i f t s . Secondly, f o r some o f t h e modes i t i s d i f f i c u l t o r i m p o s s i b l e t o f i n d a spectrum peak whose width can b e p r o p e r l y measured. Where two modes n e a r l y c o i n - c i d e an e n t i r e l y erroneous p i c t u r e may emerge i f t h i s i s n o t r e c o g n i z e d . F i n a l l y , amplitude dependence o f damping cannot b e d e l i n e a t e d from t h e half-power bandwidth.

Although a f o r c e d resonance t e s t would p o s s i b l y y i e l d t h e most r e l i a b l e v a l u e s o f damping, i t i s i m p r a c t i c a l f o r t h i s type o f s t r u c t u r e . However, t h e v i b r a t i o n decay from a s i m u l a t e d impulse can b e used t o o b t a i n damping v a l u e s . A t t e n t i o n s h o u l d b e p a i d t o t h e f o l l o w i n g a s p e c t s : a ) t h e p r e s e n c e o f ambient v i b r a t i o n s s h o u l d b e r e c o g n i z e d and p o s s i b l e c o r r e c t i o n s made; b) a m p l i t u d e depen- dence o f damping can b e t a k e n i n t o a c c o u n t by c a l c u l a t i n g damping v a l u e s a t v a r i o u s p o i n t s a l o n g t h e decay curve; and c ) when two o r more modes f a l l v e r y c l o s e t o each o t h e r , t h e v i b r a t i o n decay c u r v e may b e a f f e c t e d by modal i n t e r f e r e n c e a n d t h e r e f o r e t h e damping v a l u e s o b t a i n e d have t o b e i n t e r p r e t e d w i t h c a u t i o n . T h i s a p p l i e s t o t h e t o r s i o n a l mode a t 0.38 Hz, where t h e damping v a l u e s d e r i v e d from t h e impulse curve a r e thought t o b e somewhat h i g h e r t h a n i f t h e i n d i v i d u a l f r e q u e n c y components c o u l d have been s e p a r a t e d .

The damping v a l u e s determined f o r t h i s b r i d g e a r e g e n e r a l l y lower t h a n t h o s e r e p o r t e d f o r two o t h e r s u s p e n s i o n b r i d g e s (2)

.

CONCLUSIONS

Both t h e ambient v i b r a t i o n s u r v e y and t h e impact t e s t s proved u s e f u l and complementary i n o b t a i n i n g dynamic p r o p e r t i e s o f t h e b r i d g e . For t h i s p a r t i c u l a r s t r u c t u r e , however, n e i t h e r method by i t s e l f a p p e a r s t o b e a b l e t o p r o v i d e e n t i r e l y c o n s i s t e n t v a l u e s o f damping. F u r t h e r e f f o r t s toward o b t a i n i n g b e t t e r damping v a l u e s f o r s u s p e n s i o n b r i d g e s a r e i n d i c a t e d .

(11)

The modal f r e q u e n c i e s and mode s h a p e s computed from t h e continuum model and

' t h e lumped p a r a m e t e r model showed e x c e l l e n t agreement w i t h t h e measured v a l u e s f o r

t h e v e r t i c a l -and t h e l o w e s t h o r i z o n t a l modes. L a r g e r d i f f e r e n c e s were e n c o u n t e r e d f o r t h e t o r s i o n a l modes, p a r t i c u l a r l y f o r t h e continuum model. T h i s i s a s c r i b e d i n p a r t of, t h e u n c e r t a i n c o n s t r a i n t s t h a t e x i s t i n t h e s t r u c t u r e . The a s s u m p t i o n s i n h e r e n t i n t h e c o n t i n u r n model do n o t a p p e a r t o r e p r e s e n t a d e q u a t e l y t h e t o r s i o n a l b e h a v i o r o f t h i s p a r t i c u l a r suspension b r i d g e .

Acknowledgement

I

1

The L i o n s ' Gate B r i d g e i s owned by t h e Department o f Highways o f B r i t i s h

I

Columbia. The c o o p e r a t i o n o f t h e Department i n t h e measurement program

i s

g r a t e -

I

f u l l y acknowledged, a s i s t h e i r p e n i s s i o n t o p u b l i s h t h e p a p e r . S t r u c t u r a l con- I s u l t a n t s f o r t h e b r i d g e m o d i f i c a t i o n s a r e Buckland and T a y l o r L t d . o f Vancouver,

B . C . The a s s i s t a n c e o f t h e i r s t a f f and o f R . G . Diment, M. Jacob and E . C . L u c t k a r o f t h e D i v i s i o n o f B u i l d i n g Research o f t h e N a t i o n a l Research Council o f Canada

i s

'

a l s o g r a t e f u l l y acknowledged. The r e s u l t s u s i n g t h e lumped mass, l i n e a r s t i f f n e s s model were o b t a i n e d by Hooley E n g i n e e r i n g , Vancouver, B . C .

I

P o r t i o n s o f t h e measurements were t a k e n w h i l e t h e f i r s t a u t h o r ( H J R ) was

on

'

s t a f f p o s t i n g a t t h e F a c u l t y o f Applied S c i e n c e o f t h e U n i v e r s i t y o f B r i t i s h Columbia, Vancouver, B . C .

Re f e r e n c c s :

1 . B l e i c h , F . , e t a l , "The Mathematical Theory o f V i b r a t i o n o f S u s p e n s i o n

B r i d g e s " , Bureau o f Pub1 i c Roads, Department o f Commerce, Washington D . C . , 1950.

2 . McLamore, V . R . , t i a r t , C . C .

,

and S t u b b s ,

I

. R . , "Ambient V i b r a t i o n o f ';bo S u s p e n s i o n P r i d g e s " , J o u r n a l o f t h e S t r u c t u r a l D i v i s i o n , ASCE, Vol. 9 7 ,

S o . ST 10, P r o c . P a p e r 8454, O c t . 1971,

p p .

2567-2582.

3 . S e l b e r g , A., " O s c i l l a t i o n and Aerodynamic S t a b i l i t y o f S u s p e n s i o n Bridges",

Acta P o l y t e c h n i c a S c a n d i n a v i a , C i v i l E n g i n e e r i n g and B u i l d i n g C o n s t r u c t i o n S e r i e s No. 13, Trondheim, Norway, 1961.

(12)

S - T O W E R S t - - N N - T O W E R

S - A B U T M E N I

I

FIGURE 1

ELEVATION O F BRIDGE S H O W I N G MEASUREMENT STATIONS

Data for Bridge:

Total Cable area = 144.9 i n 2

Bridge weight

-

4.336 kiplR for side span

= 4.732 kiplR for main .span

Inertia about

Center of Gravity = 31.0 kip sec2 for side span

= 37.0 kip sec2 for main span

FIGURE 2

CROSS SECTION A N D STRUCTURAL CONSTANTS

FIGURE 3 FIGURE 4

FOURIER AMPLITUDE SPECTRUM FOR FOURIER AMPLITUDE SPECTRUM FOR VERTICAL M O T I O N AT S T A T I O N 1 N TORSION AT STATION 1N

(13)

This publication is being distributed by the Division of Building R e s e a r c h of the National R e s e a r c h Council of Canada. I t should not be reproduced in whole o r in p a r t without p e r m i e e i o n of the original publieher. The Di- vision would b e glad to be of a s e i e t a n c e i n obtaining s u c h permiesion.

Publications of the Division m a y b e obtained by m a i l - ing the a p p r o p r i a t e r e m i t t a n c e (a Bank, E x p r e s s , o r P o e t Office Money O r d e r , o r a cheque, m a d e payable t o the R e c e i v e r G e n e r a l of Canada, c r e d i t NRC) to the National R e e e a r c h Council of Canada, Ottawa. K1A 0 R 6 . Stamps a r e not acceptable.

A l i s t of a l l publications of the Division i s available and m a y be obtained f r o m the Publications Section, Division of Building R e s e a r c h , National R e s e a r c h Council of

Figure

Table  I :   Dynamic  P r o p e r t i e s   o f   V e r t i c a l   Modes  L  Item  No

Références

Documents relatifs

Cette opération nécessite la prise en compte de la variété des contextes (documents administratifs ou autres) qui participent à diffuser et/ou modifier les noms

 Le Débutaniseur dans laquelle le Butane est vaporisé, accompagné d'un peu de C 3 qui n'a pas été complètement vaporisé dans le Dépropaniseur, les lourds

" Generality of the Program Synthesis approach: We show prob- lems from very different domains of automated feedback gen- eration for introductory programming

electronic band structure to predict or explain the electron mo- bility based on the free electron picture and its corresponding transport properties, but neglected the fact

Paraphrasing Abelardo Morell [ 9 ], ”a camera obscura has been used ... to bring images from the outside into a darkened room”. As shown in section 2.2, in certain condi- tions, we

The aim of the present study is to investigate the effects of solvent type (ethanol, methanol, acetone and water), acetone concentration (20–100%, v/v), solvent acidity

Efficiency of extraction was determined by measuring the total phenols, flavonoids, tannins, total antho- cyanin and antioxidant activity (ferric reducing power, scavenging effect

Studying this mapping, it is shown that using nonlinear decoding algorithms for single input-multiple output (SIMO) and multiple input multiple output (MIMO) systems, extra numbers